NORTH SYDNEY GIRLS HIGH SCHOOL

2011

TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working Time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 84
Attempt Questions 1-7
All questions are of equal value
At the end of the examination, place your writing booklets in order and put this question paper on top. Submit one bundle. The bundle will be separated before marking commences so that anonymity will be maintained.

Student Number: \qquad Teacher: \qquad
Student Name: \qquad

QUESTION	MARK
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 12$
TOTAL	$/ 84$

Total marks - 84

Attempt Questions 1-7
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{1}{(3+2 x)^{3}} d x$.
(b) Differentiate $2 \sin ^{-1}(3 x)$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\tan 5 x}{2 x}$.
(d) Let $f(x)=x \log _{e}(x-1)$. What is the domain and range of $f(x)$?
(e) Solve the inequality $\frac{x-3}{2 x}>1$.
(f) Use the substitution $u=1-x$ to evaluate $\int_{0}^{1} 2 x \sqrt{1-x} d x$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the polynomial $P(x)=x^{3}-7 x^{2}+8 x+16$.
(i) Show that $P(x)$ has a zero at $x=4$.
(ii) Write $P(x)$ as a product of its factors.
(iii) Sketch the polynomial over the domain $-2 \leq x \leq 5$.
(iv) Write an expression for the exact area enclosed by the curve, $x=-2$, $x=5$ and the x-axis. Do not evaluate the integral.
(b) The point X divides the interval $A B$ externally in the ratio 3:5.

If A is $(3,4)$ and B is $(0,-5)$ find the coordinates of X.
(c) Find the co-efficient of the x^{2} term in the expansion of $\left(2 x+\frac{1}{x^{2}}\right)^{8}$.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Find the derivative of $f(x)=\tan \left(x^{2}\right)$
(ii) Hence or otherwise evaluate $\int_{-a}^{a} x \sec ^{2}\left(x^{2}\right) d x$.
(c) Consider the point $T\left(4 t, 2 t^{2}\right)$ on the parabola $x^{2}=8 y$.

(i) Show that the equation of the tangent at T has equation $y-t x+2 t^{2}=0$.
(ii) This tangent meets the parabola $x^{2}+4 y=0$ at two points $P\left(x_{1}, y_{1}\right)$ and 1 $Q\left(x_{2}, y_{2}\right)$ as shown. Show that x_{1} and x_{2} are the roots of the quadratic equation $x^{2}+4 t x-8 t^{2}=0$.
(iii) Write an expression for $\frac{x_{1}+x_{2}}{2}$.
(iv) If $M(x, y)$ is the midpoint of $P Q$, find the coordinates of M in terms of t.
(v) Find the locus of M as T varies.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Five people enter a restaurant and sit at a rectangular table in which there are six seats, three on one side of the table and three on the opposite side.
(i) In how many ways can they take their seats if any person can occupy any seat?
(ii) What is the probability that persons X and Y sit facing each other?
(b) Let $f(x)=1+3 \cos \frac{x}{2}$. The diagram shows the graph $y=f(x)$.

(i) State the period and the amplitude of the curve, given that x is expressed in radians.
(ii) The point $P(x, y)$ is a turning point on the curve. Find its coordinates.
(iii) What is the largest positive domain, containing $x=0$, for which $f(x)$ has an inverse function?
(iv) Find the equation of $f^{-1}(x)$ for this restricted domain of $f(x)$.
(v) Sketch the curve $y=f^{-1}(x)$.
(vi) $\quad A(\alpha, 0)$ lies to the right of P as indicated in the diagram above.

Find a simplified expression for the exact value of $f^{-1}(f(\alpha))$.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find the volume of the solid generated when the part of the curve $y=\sin 2 x$ between $x=0$ and $x=\frac{\pi}{3}$ is rotated about the x-axis.
(b) Five players are selected at random from three sporting teams A, B and C.

Each team consists of seven players numbered 1 to 7 .
(i) Two brothers play for different teams. What is the probability that of the five selected players, both brothers are selected?
(ii) Jason wanted to find the number of ways to select five players so that no team misses out in the selection. His answer was

$$
{ }^{3} C_{1}{ }^{7} C_{1}{ }^{7} C_{1}{ }^{7} C_{3}+{ }^{3} C_{1}{ }^{7} C_{1}{ }^{7} C_{2}{ }^{7} C_{2} .
$$

Explain why this expression is correct.
(c) From three points A, B and C on level ground, the angles of elevation of the top T of a hill are $32^{\circ}, 30^{\circ}$ and 25° respectively. Point A is due west and C is due south of the hill H. Point B lies on the straight line $A C$.

Copy Figure 2 into your writing booklet.
(i) Find an expression for $A H$ in terms of h.
(ii) Show that $\angle H C A=36^{\circ} 44^{\prime}$.
(iii) Find $\angle H B C$ correct to the nearest minute.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Determine the gradient of the tangent to the curve $y=\tan ^{-1}\left(e^{x}\right)$ at $x=0$. 2
(ii) Hence find the equation of the tangent at that point.
(iii) Discuss the behaviour of the curve as $x \rightarrow \infty$.
(b) The diagram shows a rectangle $K L M N$ drawn in a sector $O A B$ of a circle, radius 5 units. $\angle A O B=\theta, O M=x$ and $M N=y$.

(i) Given $\tan \theta=3$ show that $K N=3 x$.
(ii) Hence show that $(x+y)^{2}=25-9 x^{2}$.
(iii) Show that the perimeter, P, of the rectangle is given by

$$
P=4 x+2 \sqrt{25-9 x^{2}} .
$$

(iv) Find the value of x, correct to 2 decimal places, which maximises the perimeter of the rectangle.

Question 7 (12 Marks) Use a SEPARATE booklet.
(a) Two circles meet in A and $B . P Q$ is a common tangent and $P R \| Q A$. $R A$ produced meets the other circle in S.

Copy the diagram into your writing booklet.
(i) Prove that $P R S Q$ is cyclic.
(ii) Prove that $P A \| Q S$.
(b) Prove by induction that

$$
\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{n} \times n}{(n+1)(n+2)}=\frac{2^{n+1}}{n+2}-1
$$

for all integers $n \geq 1$.

Question 7 (continued)
(c) The parabola $y=a x^{2}+b x+c$ passes through the points $(-h, r)$ and (h, t) as shown. It cuts the y-axis at $(0, s)$.

(i) Show that $r+t=2 a h^{2}+2 s$.
(ii) By using integration, NOT Simpson's Rule, show that the shaded area is given by

$$
A=\frac{h}{3}(r+4 s+t) .
$$

End of paper

BLANK PAGE
Please turn over

BLANK PAGE
Please turn over

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Question 1
1)

$$
\begin{aligned}
\int \frac{1}{(3+2 x)^{3}} d x & =\int(3+2 x)^{-3} d x \\
& =\frac{(3+2 x)^{-2}}{-2 \times 2}+c \\
& =-\frac{1}{4(3+2 x)^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{d}{d x}\left[2 \sin ^{-1}(3 x)\right] & =\frac{2 \times 3}{\sqrt{1-(3 x)^{2}}} \\
& =\frac{6}{\sqrt{1-9 x^{2}}}
\end{aligned}
$$

c) $\lim _{x \rightarrow 0} \frac{5}{2} \cdot \frac{\tan 5 x}{5 x}=\frac{5}{2}$
d) $f(x)=x \log (x-1)$

Domain : $x>1$
Range $=$ all real y (range log $(x-1)$ is all real y range of product is same since $x>1$)
e)

$$
\begin{aligned}
& \frac{x-3}{2 x}>1 \quad x \neq 0 \\
& \frac{(2 x)^{2}(x-3)}{2 x}>(2 x)^{2} \\
& 2 x(x-3)-4 x^{2}>0 \\
& 2 x[x-3-2 x]>0 \\
& 2 x(-x-3)>0 \\
& -6 x(x+3)>0 \\
& \therefore-3<x<0
\end{aligned}
$$

f)

$$
\begin{aligned}
& \int_{0}^{1} 2 x \sqrt{1-x} d x \quad u=1-x \\
& =\int_{1}^{0} 2(1-u) u^{\frac{1}{2}}(-d u) \\
& \frac{d u}{d x}=-1 \\
& -d x=d x \\
& =2 \int_{0}^{1}\left(u^{1 / 2}-u^{3 / 2}\right) d u \\
& \text { When } x=1 \\
& u=0 \\
& =2\left[\frac{2 u^{3 / 2}}{3}-{\frac{2 u^{5 / 2}}{5}}^{1}\right. \\
& \text { Wham } x=0 \\
& u=1 \\
& =2\left(\frac{2}{3}-\frac{2}{5}-0\right) \\
& =\frac{8}{15}
\end{aligned}
$$

QuEstion 2
a) $P(x)=x^{3}-7 x^{2}+8 x+16$
(i)

$$
\begin{aligned}
P(4) & =64-112+32+16 \\
& =0
\end{aligned}
$$

$\therefore x=4$ i a zero of $P(x)$
(ii)

$$
\begin{aligned}
& x - 4 \longdiv { x ^ { 2 } - 3 x - 4 } \\
& \frac{x^{3}-7 x^{2}+8 x+16}{4 x^{2}} \\
& \frac{-3 x^{2}+8 x}{2}+12 x \\
& \frac{-4 x+16}{0} \\
& x-3 x-4=(x-4)(x+1) \\
& \therefore P(x)=(x-4)^{2}(x+1)
\end{aligned}
$$

$\operatorname{Tr} y x=-1$

$$
\begin{aligned}
P(-1) & =-1-7-8+16 \\
& =0
\end{aligned}
$$

$\therefore(x+1)$ is a factor
Note $P^{\prime}(x)=3 x^{2}-14 x+8$

$$
=(3 x-2)(x-4)
$$

ie $x=4$ is a doable
$100 t$
$\therefore P(x)=(x-4)^{2}(x+1)$
(ii)

$$
P(0)=8
$$

$$
P(-2)=-36
$$

$$
P(5)=6
$$

$(-2,-36)$
 can be combined
b)

$$
\begin{gathered}
A(3,4) \quad-3=5^{B(0,-5)} \quad(\text { exteradly }) \\
x=\left(x=\frac{5 \times 3+3 \times 0}{-3+5}, y=\frac{5 \times 4+3(-5)}{-3+5}\right) \\
\therefore x\left(\frac{15}{2}, \frac{35}{2}\right)
\end{gathered}
$$

c) General term of $\left(2 x+\frac{1}{x^{2}}\right)^{8}$ is ${ }^{8} C_{k}(2)^{8-k} x^{8 k} \cdot\left(x^{-2}\right)^{k}$

$$
\text { ie } T_{k}={ }^{8} C_{k} 2^{8-k} x^{8-3 k}
$$

x^{2} term: $\quad x^{2}=x^{3-3 k}$

$$
\therefore k=2
$$

Coefficient of x^{2} is ${ }^{8} C_{2}(2)^{8-2}={ }^{8} C_{2} 2^{6}$

$$
=1792
$$

Question 3
a) (i)

$$
\begin{aligned}
f(x) & =\tan \left(x^{2}\right) \\
\therefore \quad f^{\prime}(x) & =2 x \cdot \sec ^{2}\left(x^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{-a}^{a} x \sec ^{2}\left(x^{2}\right) d x & =\frac{1}{2} \int 2 x \sec ^{2}\left(x^{2}\right) d x \\
& =\frac{1}{2}\left[\tan \left(x^{2}\right)\right]_{-a}^{a} \\
& =\frac{1}{2}\left(\tan \left(a^{2}\right)-\tan a^{2}\right) \\
& =0
\end{aligned}
$$

Alternatively:
State that $x \sec ^{2}\left(x^{2}\right)$ is an odd function $s^{2}=I=0$
b) $\sin \left[\cos ^{-1}(x-1)\right]$

Let $\cos ^{-1}(x-1)=\alpha$

$$
\begin{aligned}
k^{2} & =1^{2}-(x-1)^{2} \\
& =2 x-x^{2}
\end{aligned}
$$

$$
\therefore \sin ^{\prime \prime} x=\frac{\sqrt{2 x-x^{2}}}{1}
$$

$$
\therefore \sin \left[\cos ^{-1}(x-1)\right]=\sqrt{2 x-x^{2}}
$$

Sc) $T\left(4 t, 2 t^{2}\right)$ parabola $x^{2}=8 y$

$$
\begin{aligned}
y & =\frac{1}{8} x^{2} \\
\frac{d y}{d x} & =\frac{2 x}{8} \\
& =\frac{x}{4}
\end{aligned}
$$

At T, $\begin{aligned} \frac{d y}{d x} & =\frac{4 t}{4}\end{aligned}$
\therefore Eqparicon of tangent at T :

$$
\begin{aligned}
& y-2 t^{2}=t(x-4 t) \\
& y-2 t^{2}=t x-4 t^{2} \\
& y-t x+2 t^{2}=0
\end{aligned}
$$

(ii) Solve simiuitanoously $y=t_{x}-2 t^{2}$ and $y=\frac{-x^{2}}{4}$

$$
\begin{aligned}
& t x-2 t^{2}=-\frac{x^{2}}{4} \\
& 4 t x-8 t^{2}=-x^{2} \\
& x^{2}+4 t x-8 t^{2}=0
\end{aligned}
$$

The roots of the equation will be the x values of the points P and A where tangent intersects the parabola le x_{1} and x_{2} are the roots of $*$
(iii)

$$
\begin{aligned}
\frac{x_{1}+x_{2}}{2} & =\left(\frac{\sin f+\operatorname{tot})}{2} \div 2\right. \\
& =-4 t \div 2 \\
& =-2 t
\end{aligned}
$$

Sub $x=-2 t$ ito tangent equation to find y value.

$$
\begin{gathered}
y-t(-2 t)+2 t^{2}=0 \\
y=-4 t^{2}
\end{gathered}
$$

$\therefore M$ is $\left(-t,-4 t^{2}\right)$
(v) Locus of $m=x=-2 t \Rightarrow t=-\frac{x}{2}$

$$
\begin{aligned}
y & =-4 t^{2} \\
& =-4\left(-\frac{x}{2}\right)^{2} \\
& =-x^{2}
\end{aligned}
$$

\therefore Locus is $y=-x^{2}$ fa concave down parabola]
Question 4
a)
(i)

$$
\begin{aligned}
\text { No of ways } & =6 \times 5 \times 4 \times 3 \times 2 \\
& ={ }^{6} P_{5} \\
& =720
\end{aligned}
$$

(ii) Sit x anywhere.

Then y has 5 seats to choose from, but only one of them is apposite x

$$
* P(x \text { opp } y)=\frac{1}{5}
$$

Alternatively:

$$
\begin{aligned}
& P(x \text { opp } y)=\frac{3 \times 2 x^{4} P_{3}}{{ }^{6} P_{5}} \Leftrightarrow \text { father } 3 \text { people have } \\
& L 4 \text { rears } x \text { choaseffrom. } \\
& =\frac{1}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(x)=1+3 \cos \frac{x}{2} \\
& \text { Amplitude }=3 \\
& \text { Period }=\frac{2 \pi}{n} \text { where } n=1 / 2 \quad \text { [oR / wave in } 2 \pi \\
&=4 \pi \\
&\text { then 1 wave in } 4 \pi]
\end{aligned}
$$

(ii) Half a wave in $2 \pi \Rightarrow x=2 \pi$

$$
\begin{aligned}
\therefore y & =1+3 \cos \left(\frac{2 \pi}{2}\right) \\
& =1+3(-1) \\
& =-2
\end{aligned}
$$

OR

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{3}{2} \sin \frac{x}{2} \\
& f^{\prime}(x)=0 \text { when } x=2 \pi \\
& y=1+3 \cos \left(\frac{2 \pi}{2}\right) \\
& =-2
\end{aligned}
$$

(iii) Domain : $0 \leqslant x \leqslant 2 \pi$

Domain $-1 \leqslant \frac{x-1}{3} \leqslant 1$

$$
\begin{aligned}
& -3 \leqslant x-1 \leqslant 3 \\
& -2 \leqslant x \leqslant 4
\end{aligned}
$$

old range - $f(x)$
(v)

Let α and β have same $\stackrel{-\alpha-2 \mapsto a t u e=}{ }$ $\beta=2 \pi-(\alpha-2 \pi)$ by symmetry about P $\beta=4 \pi-\alpha$

$$
\begin{aligned}
\therefore f^{-1}[f(\alpha)] & =f^{-1}[f(\beta)] \quad \text { since } f(\alpha)=f(\beta) \\
& =\beta \quad \text { Price } \beta \text { is in the domovia } \\
& =4 \pi-\alpha \quad \text { of } f^{-i}(x)
\end{aligned}
$$

Quartan 5
a)

$$
\begin{array}{rlrl}
\therefore 5 \\
\text { Volume } & =\pi \int_{0}^{\pi / 3 / 3} 2 x d x & \cos 2 x=1-2 \sin ^{2} x \\
& =\frac{\pi}{2} \int_{0}^{\pi / 3}(1-\cos 4 x) d x & & \sin ^{2} x=\frac{1}{2}(1-\cos 2 \\
& =\frac{\pi}{2}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 3} & \therefore \sin ^{2} 2 x=\frac{1}{2}(1-\cos \\
& =\frac{\pi}{2}\left[\frac{\pi}{3}+\frac{\sqrt{3}}{8}-0\right] & & \\
& =\frac{\pi^{2}}{6}+\frac{\pi \sqrt{3}}{16} &
\end{array}
$$

b) (i) Ne Ways = ${ }^{1} C_{1}{ }^{\prime} C_{1}{ }^{19} C_{3}$ (2 brother +3 from 19)

$$
\text { Probability }=\frac{{ }^{C_{1}} x^{\prime} c_{1} \times c_{3}}{2 C_{5}}=\frac{1}{21}
$$

(ii) There are two patterns $(1,1,3)$ and $(1,2$,
$(1,1,3)=$ One player each from 2 teams, and 3 plages from the other team ${ }^{7} C_{1},{ }^{7} C_{1},{ }^{7} C_{3}$
The team with 3 players can be selected in 3 ways $={ }^{3} C$,
$(1,2,2)$: Doe player from one team and 2 plages from other turn teams $={ }^{7} C_{1}{ }^{7} C_{2}{ }^{2} C_{2}$

The team with I player can be selected in ${ }^{3} C$, ways.

$$
\therefore \text { Total }={ }^{3} C_{1}{ }^{7} C_{1}{ }^{7} C_{1}{ }^{7} C_{3}+{ }^{3} C_{1}{ }^{7} C_{1}{ }^{7} C_{2}{ }^{7} C_{2}
$$

c)

$\tan 32^{\circ}=\frac{h}{A H}$

$$
\begin{aligned}
A H & =\frac{h}{\tan 32} \\
& =h \tan 58^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan C & =\frac{h \tan 58^{\circ}}{h \tan 65^{\circ}} \\
& =\frac{\tan 58^{\circ}}{\tan 65^{\circ}} \\
\therefore C & =36^{\circ} 44^{\circ}
\end{aligned}
$$

(i)

$$
B H=h \tan 60^{\circ} \quad C H=h \tan 65^{\circ}
$$

(ii) By the sine rule in $\triangle A B C$

$$
\begin{aligned}
& \frac{\sin B}{h \tan 65^{\circ}}=\frac{\sin C}{h \tan 60^{\circ}} \\
& \therefore \sin B=\frac{h \tan 65^{\circ} \sin C}{6 \tan 60^{\circ}} \\
& =\frac{\tan 65^{\circ} \sin 36^{\circ} 44^{\prime}}{\tan 60^{\circ}} \\
& \therefore B=47^{\circ} 46^{\prime} \text { or } 132^{\circ} 13^{\prime} \\
& \text { If } B=47^{\circ} 46^{\prime} \text { then } \angle B H C=180-\left(40^{\circ} 46^{\circ}+36^{\circ} 44^{\prime}\right) \\
& =95^{\circ} 29^{\prime} \\
& \text { which is possible } \\
& \therefore \angle B=132^{\circ} 13
\end{aligned}
$$

Question 6
a)

$$
\begin{aligned}
y & =\tan ^{-1}\left(e^{x}\right) \\
\frac{d y}{d x} & =\frac{1}{1+\left(e^{x}\right)^{2}} \times e^{x} \\
& =\frac{e^{x}}{1+e^{2 x}} \\
\text { At } x & =0, \frac{d y}{d x}
\end{aligned}=\frac{e^{x}}{1+e^{0}} .
$$

(ii)

$$
\begin{aligned}
x=0, y & =\tan ^{-1}(1) \\
& =\frac{\pi}{4}
\end{aligned}
$$

Tangent: $y-\frac{\pi}{4}=\frac{1}{2}(x-0)$

$$
y=\frac{1}{2} x+\frac{\pi}{4} \quad \text { or } \quad 2 x-4 y+\pi=0
$$

(iii) AA $x \rightarrow \infty, e^{x} \rightarrow \infty$

$$
\therefore y \rightarrow \frac{\pi}{2}
$$

(Graph not expected in solution)
b)

radius $=5$
(i) $\tan \theta=\frac{L m}{x}$

But $\tan \theta=3 \Rightarrow 3=\frac{L m}{x}$

$$
3 x=L m
$$

Now $K N=L M$ (opp sides yo rectangle are equal)

$$
\therefore K N=3 x
$$

(ii) By Pythagoras, $(3 x)^{2}+(x+y)^{2}=5^{2}$ in Δ okA

$$
\therefore \quad(x+y)^{2}=25-9 x^{2}
$$

(iii)

$$
\begin{aligned}
P & =2(3 x+y) \quad \text { since } P=(K N+m N) \times 2 \\
& =6 x+2 y \\
& =4 x+2(x+y) \\
& =4 x+2 \sqrt{25-9 x^{2}}
\end{aligned}
$$

(v)

$$
\begin{aligned}
\frac{d P}{d x} & =4+2 \times \frac{1}{2}\left(25-9 x^{2}\right)^{-1 / 2}(-18 x) \\
& =4-\frac{18 x}{\sqrt{25-9 x^{2}}}
\end{aligned}
$$

At maximum, $\frac{d P}{d x}=0$.

$$
\begin{gathered}
\therefore 4 \sqrt{25-9 x^{2}}=18 x \\
\sqrt{25-9 x^{2}}=\frac{9}{\frac{9}{2} x} \\
25-9 x^{2}=\frac{8}{4} x^{2} \\
\therefore x=\sqrt{\frac{100}{117}}
\end{gathered}
$$

That if maximum

x	0.8	$\sqrt{\frac{100}{10}}=0.9$	1
$d i x$	>0	0	<0

The perimeter P is maximised then $x=0.92(2$. p
Question 7

(i) Join $S Q$

$$
\text { Let } \angle S Q y=\alpha
$$

then $\angle Q A S=\alpha$ (angle in alternate segment)
$\angle A R P=\alpha \quad$ (corvemponcing angles in parallel Ines AQ||RP)

$$
\therefore \angle S Q Y=\angle A R P
$$

$\therefore P Q S R$ is a cycle quad (exterior angle of cyckicquad)
(ii) Join $P A$
$\angle A P Q=\angle A R P$ (angle in alternate segment)

$$
\therefore \angle A P Q=\angle S Q y \quad(60 \text { th } \alpha)
$$

\therefore AP II SQ (corresponding angles are egad)
b) $\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\cdots \frac{+2^{n} \times n}{(n+1)(n+2)}=\frac{2^{n+1}}{n+2}-1$

Test $n=1$

$$
\text { for } x \geqslant 1
$$

$$
\begin{aligned}
L H S & =\frac{2 \times 1}{2 \times 3} \\
& =\frac{1}{3} \\
\text { RUS } & =\frac{2^{2}}{3}-1 \\
& =\frac{1}{3}
\end{aligned}
$$

\therefore Result holds for $n=1$
Assume tree for $n=K$, where K is an integer, $k \geqslant 1$ ie assume $\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\cdots+\frac{2^{k} \times k}{(k+1)(k+2)}=\frac{2^{k+1}}{k+2}-1$ We wish to show that the result holds for $n=k+1$ ie $\frac{2 \times 1}{2 \times 3}+\cdots \cdot+\frac{2^{k} \times k}{(k+1)(k+2)}+\frac{2^{k+1} \cdot(k+1)}{(k+2)(k+3)}=\frac{2^{k+2}}{k+3}-1$ $\angle H S=\frac{2^{k+1}}{k+2}-1+\frac{2^{k+1}-(k+1)}{(k+2)(k+3}$ by assumption $=\frac{2^{k+1}(k+3)+2^{k+1}(k+1)-1}{(k+2)(k+3)}$ $=\frac{2^{k+1}[k+3+k+1]}{(k+2)(k+3)}-1$ $=\frac{2^{k+1} \cdot 2(k+2)}{(k+2)(k+3)}-1$

$$
=\frac{2^{k+2}}{k+3}-1
$$

\therefore By mathematical induction the result is true for all integers $n \geqslant 1$

Question 7
c) Since parabola parser through $(-i, r)$ and $(0,5)$ and (k, t) then
$\operatorname{sub} x=0=s=c$
sub $x=-h$:

$$
\begin{align*}
& r=a(-h)^{2}-b h+c \tag{1}\\
& t=a(h)^{2}+b h+c \tag{2}
\end{align*}
$$

(2)

$$
\begin{align*}
+(3)=r+t & =2 a h^{2}+2 c \tag{3}\\
& =2 a h^{2}+2 s \text { since } s=c \text { fromel }
\end{align*}
$$

(ii) $\int_{-h}^{h}\left(a x^{2}+b x+c\right) d x=\left[\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x\right]_{h}^{h}$

$$
\begin{aligned}
& =\left(\frac{a h^{3}}{3}+\frac{b h^{2}}{2}+c h\right)-\left(-\frac{a h^{3}}{3}+\frac{h h^{2}}{2}\right. \\
& =2\left(\frac{a h^{3}}{3}+c h\right) \\
& =\frac{h}{3}\left(2 a h^{2}+6 c\right) \\
& =\frac{h}{3}\left(2 a h^{2}+4 s+2 s\right) \text { since } \\
& =\frac{h}{3}(r+4 s+t) \text { from }(i)
\end{aligned}
$$

