

2014

TRIAL HSC EXAMINATION

Mathematics Extension 1

GENERAL INSTRUCTIONS

- Reading Time - 5 minutes
- Working Time - 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this booklet
- Show all necessary working in questions 11-14

Total Marks - 70

Section 1
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section 2
 60 marks

- Attempt Questions 11 - 14
- Allow about 1 hour 45 minutes for this section.
\qquad
\qquad
NUMBER: \qquad

QUESTION	MARK
$1-10$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
TOTAL	$/ 70$

Section I

Total marks - 10

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 Which of the following is an expression for $\int \cos ^{2} 2 x d x$?
(A) $x-\frac{1}{4} \sin 4 x+C$
(B) $x+\frac{1}{4} \sin 4 x+C$
(C) $\frac{x}{2}-\frac{1}{8} \sin 4 x+C$
(D) $\frac{x}{2}+\frac{1}{8} \sin 4 x+C$

2 Below is the graph of the polynomial $y=P(x)$

Which of the following is a possible equation for $P=(x)$?
(A) $\quad P(x)=(x-2)^{3}(1-x)^{2}(x+2)$
(B) $\quad P(x)=(x-2)(1-x)^{2}(x+2)^{3}$
(C) $\quad P(x)=(2-x)^{3}(1-x)^{2}(x+2)$
(D) $\quad P(x)=(2-x)(1-x)^{2}(x+2)^{3}$

3 What is the maximum value of $\sqrt{5} \cos x-2 \sin x$?
(A) $\sqrt{5}$
(B) 3
(C) 5
(D) $\sqrt{29}$

4 In the diagram below, $B C$ and $D E$ are chords of a circle. $C B$ and $E D$ produced meet at A.

What is the value of x ?
(A) $\frac{11}{28}$
(B) $\frac{28}{11}$
(C) 5
(D) 12
$5 \quad$ What is the domain and range of the equation $y=4 \cos ^{-1} 3 x$?
(A) Domain: $-\frac{1}{3} \leq x \leq \frac{1}{3}$ and Range: $-2 \pi \leq y \leq 2 \pi$
(B) Domain: $-3 \leq x \leq 3$ and Range: $-2 \pi \leq y \leq 2 \pi$
(C) Domain: $-\frac{1}{3} \leq x \leq \frac{1}{3}$ and Range: $0 \leq y \leq 4 \pi$
(D) Domain: $-3 \leq x \leq 3$ and Range: $0 \leq y \leq 4 \pi$

6 What is the solution of the inequation $3 x+2<|2 x-1|$?
(A) $x<-\frac{1}{5}$
(B) $-3<x<\frac{1}{5}$
(C) $x<-\frac{1}{5}$ or $x>3$
(D) $x<-3$
$7 \quad$ What is the value of $\lim _{x \rightarrow 0} \frac{3 x \cos 4 x}{\sin 2 x}$?
(A) 0
(B) $\frac{3}{2}$
(C) $\frac{2}{3}$
(D) Undefined

8 Which of the following is the derivative x of $\tan ^{-1}\left(e^{-x}\right)$?
(A) $\frac{e^{x}}{1+e^{2 x}}$
(B) $\frac{-e^{-x}}{1+e^{2 x}}$
(C) $\frac{-e^{-x}}{1+e^{-2 x}}$
(D) $\frac{e^{x}}{1+e^{-2 x}}$

9 A particle undergoing simple harmonic motion and has acceleration according to the equation:

$$
v^{2}=9\left(5-x^{2}\right)
$$

What is the amplitude A and Period T of this motion?
(A) $\quad A=\sqrt{5} \quad$ and $\quad T=\frac{2 \pi}{9}$
(B) $\quad A=5 \quad$ and $\quad T=\frac{2 \pi}{9}$
(C) $\quad A=\sqrt{5} \quad$ and $\quad T=\frac{2 \pi}{3}$
(D) $\quad A=5 \quad$ and $\quad T=\frac{2 \pi}{3}$

10 In the diagram below $D F, G I$ and $H E$ are common tangents to the two unequal circles that have centres at A and C.

Which of the following quadrilaterals are NOT cyclic?
(A) $A B E D$
(B) HICB
(C) GIFD
(D) $A C F D$

Section II

Total marks - 60
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Factorise the polynomial $P(x)=x^{3}-7 x+6$.
(b) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} d x$.
(c) Solve $\frac{2 x+3}{x} \geq x$.
(d) The point P divides the interval from $A(-1,3)$ to $B(7,-4)$ externally in the ratio 2:5. Find the coordinates of P.
(e) Use the substitution $u=x-1$ to evaluate:

$$
\int_{2}^{4} \frac{3 x}{(x-1)^{2}} d x
$$

(f) The two curves $y=2-x^{2}$ and $y=x^{3}$ intersect at $(1,0)$.

Find the acute angle between the two curves at $(1,0)$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Given the function $f(x)=\frac{2 x+1}{x-1}$
(i) Write down the equation of any vertical and horizontal asymptotes.
(ii) Given that $f(x)$ is a hyperbola, state the domain of the inverse function $f^{-1}(x)$.
(iii) Sketch the graph of the inverse function $y=f^{-1}(x)$.

Clearly label all important features of the graph.
(b) A can of soft drink at temperature T degrees is removed from a fridge and placed in a room that has a constant temperature of A degrees. The rate at which the can of soft drink warms can be expressed using the equation:

$$
\frac{d T}{d t}=-k(T-A)
$$

where t is the time in minutes after the can is placed in the room, and k is a positive constant.
(i) Show that $T=A+P e^{-k t}$ satisfies the equation, where P is a constant.
(ii) If the room temperature is 30° and the soft drink warms from 3° to 15° in the first 10 minutes find the exact value of k.
(iii) Find the time taken to the nearest second for temperature of the can to increase by another 12 degrees.

Question 12 continues on page 8

(c) The diagram shows two distinct points $P\left(2 p, p^{2}\right)$ and $Q\left(2 q, q^{2}\right)$ that lie on the parabola $x^{2}=4 y$.

(i) Show that the line $P Q$ has the equation $y=\frac{p+q}{2} x-p q$.
(ii) The point $R(8,0)$ lies on the straight line that passes through P and Q.
(1) Show that. $4(p+q)=p q$
(2) Given that M is the midpoint of $P Q$, show that the equation of the locus of M, as P and Q vary is

$$
2 y=x^{2}-8 x
$$

(3) State any restrictions on the locus.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Use mathematical induction to prove that if n is an integer and $n \geq 1$ and $a>0$

$$
\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{n}}=\frac{1}{a(a+1)^{n}}
$$

(b) A particle moves in simple harmonic motion such that its displacement x centimetres after t seconds is given by $x=2 \sqrt{3} \cos 2 t-2 \sin 2 t-7$.
(i) Express x in the form $x=4 \cos (2 t+\alpha)-7$, where $0 \leq \alpha \leq \frac{\pi}{2}$
(ii) What is the period of the motion?
(iii) What is the range of possible values for x ?
(iv) How much time elapses from when the particle first starts until it is first at its minimum displacement?
(c) By sketching appropriate graphs or otherwise solve:

$$
\sin ^{-1}(3 x+1)=\cos ^{-1} x
$$

(d) The polynomial $P(x)=x^{3}+a x^{2}-6 x-4$, where $a>0$, has three zeroes.

One zero is the product of the other two.
Find the value of a.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) An object is initially 2 m to the right of the origin travelling with velocity
$6 \mathrm{~m} / \mathrm{s}$. The acceleration $\ddot{x} \mathrm{~ms}^{-2}$ of the object is given by:

$$
\ddot{x}=2 x^{3}+4 x
$$

Find an expression for v^{2} in terms of x.
(ii) Find the minimum speed of the object giving a reason.
(b) $\quad A Q B$ is a semi-circle in the horizontal plane with diameter $A B$ of length d metres. There are two vertical posts $A A^{\prime}$ and $B B^{\prime}$ of heights a and b respectively. From Q, the angle of elevation to the tops of both posts A^{\prime} and B^{\prime} is θ. From A the angle of elevation to B^{\prime} is α and from B the angle of elevation to A^{\prime} is β.

(i) Prove that $d^{2}=\frac{a^{2}+b^{2}}{\tan ^{2} \theta}$.
(ii) Show that $\tan ^{2} \alpha+\tan ^{2} \beta=\tan ^{2} \theta$.
(c) The points A, B and C all lie on a circle. A and B are fixed, $A B$ has a constant length $k \mathrm{~cm}$ and C lies on the major arc. $\angle A B C=\theta$ and $\angle A C B=\alpha$ as shown in the diagram below. C moves on the major arc so that θ increases at 0.1 radians per second.

(i) If P is the perimeter of the triangle $A B C$ then show that:

$$
P=\frac{k[\sin \alpha+\sin \theta+\sin (\theta+\alpha)]}{\sin \alpha}
$$

(ii) Find the value of $\frac{d P}{d t}$ in terms of k and α when $\theta=\alpha$.
(iii) Show that $\frac{d P}{d t}=0$ when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$.
(iv) Find the value of θ that will maximise P, given $\alpha=\frac{3 \pi}{8}$.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

BLANK PAGE

1 Which of the following is an expression for $\int \cos ^{2} 2 x d x$?

Since

$$
\begin{aligned}
& \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& \cos ^{2} \theta=\frac{\cos 2 \theta+1}{2} \\
& \begin{aligned}
& \cos ^{2} 2 \theta=\frac{\cos 4 \theta+1}{2} \\
& \begin{aligned}
\int \cos ^{2} 2 x d x & =\int \frac{1+\cos 4 x}{2} d x \\
& =\frac{x}{2}+\frac{\sin 4 x}{8}+C
\end{aligned}
\end{aligned} . \begin{array}{r}
2
\end{array} \\
& \hline
\end{aligned}
$$

ANSWER is D

2 ANSWER is D

$$
P(x)=(2-x)(1-x)^{2}(x+2)^{3}
$$

3 What is the maximum value of $\sqrt{5} \cos x-2 \sin x$?
$\sqrt{5} \cos x-2 \sin x=R \cos (x+\alpha)$ so thus the maximum value is when $\cos (x+\alpha)=1$.

$$
\begin{aligned}
& R=\sqrt{(\sqrt{5})^{2}+2^{2}} \\
& R=3
\end{aligned}
$$

ANSWER is (C) 3

4

$$
\begin{aligned}
& \frac{A B}{A E}=\frac{A D}{A C} \\
& \frac{x}{15}=\frac{4}{x+7} \\
& x^{2}+7 x=60 \\
& x^{2}+7 x-60=0 \\
& (x+12)(x-5)=0
\end{aligned}
$$

Since $x>0$
$x=5$
ANSWER is C
$5 \quad$ What is the domain and range of the equation $y=4 \cos ^{-1} 3 x$?
Domain
$-1 \leq 3 x \leq 1$
$-\frac{1}{3} \leq x \leq \frac{1}{3}$
Range
$0 \leq \cos ^{-1} 3 x \leq \pi$
$0 \leq 4 \cos ^{-1} 3 x \leq 4 \pi$
ANSWER is (C)
Domain: $-\frac{1}{3} \leq x \leq \frac{1}{3}$ and Range: $0 \leq y \leq 4 \pi$

6 What is the solution of the inequation $3 x+2<|2 x-1| ?$

Best method is to sketch the two functions

$$
y=3 x+2 \text { and } y=|2 x-1|
$$

Only one intersection where

$$
\begin{aligned}
& 3 x+2=-[2 x-1] \\
& 5 x=-1 \\
& x=-\frac{1}{5}
\end{aligned}
$$

ANSWER is (A) $\quad x<-\frac{1}{5}$

7 What is the value of $\lim _{x \rightarrow 0} \frac{3 x \cos 4 x}{\sin 2 x}$?
$\lim _{x \rightarrow 0} \frac{3 x \cos 4 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{3 x}{\sin 2 x} \times \lim _{x \rightarrow 0} \cos 4 x$
$=\frac{3}{2} \lim _{x \rightarrow 0} \frac{2 x}{\sin 2 x} \times \lim _{x \rightarrow 0} \cos 4 x$
$=\frac{3}{2} \times 1 \times \cos 0=\frac{3}{2}$
ANSWER is (B) $\frac{3}{2}$

8 Which of the following is the derivative of $\tan ^{-1}\left(e^{-x}\right)$?

$$
\begin{aligned}
\frac{d}{d x} \tan e^{-x} & =\frac{1}{1+\left(e^{-x}\right)^{2}} \times \frac{d}{d x}\left(e^{-x}\right) \\
& =\frac{-e^{-x}}{1+e^{-2 x}}
\end{aligned}
$$

ANSWER is (C) $\frac{-e^{-x}}{1+e^{-2 x}}$

9

$$
\begin{aligned}
& \ddot{x}=-n^{2} x \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-n^{2}\left(x-x_{0}\right) \\
& \left(\frac{1}{2} v^{2}\right)=-\frac{n^{2} x^{2}}{2}+C \\
& v^{2}=-\frac{n^{2} x^{2}}{2}+D
\end{aligned}
$$

When $v=0 \quad x=A$
$0=-n^{2} A^{2}+D$
$D=n^{2} A^{2}$
$v^{2}=-n^{2} x^{2}+n^{2} A^{2}$
$v^{2}=n^{2}\left(A^{2}-x^{2}\right)$

Thus $n=3$ and $A=\sqrt{5}$

$$
T=\frac{2 \pi}{3}
$$

ANSWER is (C) $A=\sqrt{5}$ and $T=\frac{2 \pi}{3}$

10

$\angle A D F=90^{\circ}$ Angle between a radius and tangent
$\angle C F D=90^{\circ}$ Angle between a radius and tangent
If $A C F D$ is cyclis then $\angle C A D F=90^{\circ}$ and $\angle A C F=90^{\circ}$ opposite angle are supplementary. So $A C F D$ must be a rectangle if it is cyclic.
But the circles are not equal and so $A D$ and $C F$ are not equal.
ACFD is not cyclic

ANSWER is

(D) ACFD

Question 11

(a) Factorise the polynomial

$P(x)=x^{3}-7 x+6$.

$$
\begin{aligned}
& P(x)=x^{3}-7 x+6 \\
& \begin{aligned}
P(1) & =1^{3}-7(1)+6 \\
& =0
\end{aligned} \\
& \begin{aligned}
& \therefore(x-1) \text { is a factor of } P(x) \\
& P(x)=x^{3}-7 x+6 \\
&=(x-1)\left(x^{2}+b x-6\right)
\end{aligned}
\end{aligned}
$$

x term is
$-7 x=-b x-6 x$

$$
7=b+6
$$

$$
b=1
$$

$$
P(x)=(x-1)\left(x^{2}+x-6\right)
$$

$$
=(x-1)(x-2)(x+3)
$$

(b) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} d x$.

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} d x & =\int_{0}^{1} \frac{1}{\sqrt{4-(x)^{2}}} \\
& =\int_{0}^{1} \frac{1}{\sqrt{3} \sqrt{\frac{4}{3}-(x)^{2}}} d x \\
& =\frac{1}{\sqrt{3}} \sin ^{-1} \frac{x \sqrt{3}}{2} d x
\end{aligned}
$$

(c)

$$
\begin{aligned}
x(2 x+3) & \geq x^{3} \quad x \neq 0 \\
x(2 x+3)-x^{3} & \geq 0 \\
x\left(2 x+3-x^{2}\right) & \geq 0 \\
x(x+1)(3-x) & \geq 0
\end{aligned}
$$

From the graph of $y=x(x+1)(3-x)$ $x \leq-1$ or $0<x \leq 3$ since $x \neq 0$
(d)

$$
\begin{array}{ll}
\left.\begin{array}{rl}
A(-1,3) \text { to } B(7,-4) & \\
-2: 5 & \\
x & =\frac{(5)(-1)+(-2)(7)}{5-2} \\
& y
\end{array}\right) \frac{(5)(3)+(-2)(-4)}{5-2} \\
& =\frac{-5-14}{3} \\
& =\frac{-19}{3}
\end{array}
$$

P has Coordinates $\left(\frac{-19}{3}, \frac{23}{3}\right)$
(e) Evaluate: $\int_{2}^{4} \frac{3 x}{(x-1)^{2}} d x$.

$$
\begin{aligned}
& \begin{array}{l}
u=x-1 \\
x=u+1
\end{array} x=4 \\
& \frac{d u}{d x}=1 \text { When } \\
& d u=d x \\
& \int_{2}^{4} \frac{3 x}{(x-1)^{2}} d x=\int_{1}^{3} \frac{3(u+1)}{(u)^{2}} d u \\
&=\int_{1}^{3} \frac{3 u}{u^{2}}+\frac{3}{u^{2}} d u \\
&=\int_{1}^{3} \frac{3}{u}+\frac{3}{u^{2}} d u \\
&=\left[3 \ln u-3 u^{-1}\right]_{1}^{3} \\
&=\left(3 \ln 3-\frac{3}{3}\right)-\left(3 \ln 1-\frac{3}{1}\right) \\
&=3 \ln 3+2
\end{aligned}
$$

(f) The two curves $y=2-x^{2}$ and $y=x^{3}$ intersect at $(1,0)$. Find the acute angle between the two curves at $(1,0)$.
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1-m_{1} m_{2}}\right|$ where m_{1} and m_{2} are the gradients of the two functions at $x=1$

$$
\begin{array}{ll}
y=2-x^{2} & y=x^{3} \\
\frac{d y}{d x}=-2 x & \frac{d y}{d x}=3 x^{2} \\
\text { at } x=1 & \text { at } x=1 \\
m_{1}=-2 & m_{2}=3
\end{array}
$$

$\tan \theta=\left|\frac{-2-3}{1-(-2)(3)}\right|$
$\tan \theta=\left|\frac{-5}{-5}\right|$
$\tan \theta=1$
$\theta=45^{\circ}$

Question 12

(a) (i)

Vertical Asymptote: $\quad x=1$
Horizontal Asymptote:

$$
y=2
$$

(ii) $y \neq 2$
(iii)
x intercept of $f(x)$ is when

$$
\begin{aligned}
& f(x)=0 \\
& 0=\frac{2 x+1}{x-1} \\
& 0=2 x+1 \\
& x=-\frac{1}{2}
\end{aligned}
$$

y intercept of $f(x)$ is

$$
\begin{aligned}
y & =\frac{2(0)+1}{(0)-1} \\
& =-1
\end{aligned}
$$

So the x intercept of $f^{-1}(x)$ is $x=-1$
So the y intercept of $f^{-1}(x)$ is $y=-\frac{1}{2}$

(b) (i) Show that $T=A+P e^{-k t}$ satisfies the equation, where P is a constant.

$$
\begin{aligned}
T & =A+P e^{-k t} \\
\frac{d T}{d t} & =-k P e^{-k t} \\
& =-k\left(A+P e^{-k t}-A\right) \\
\frac{d T}{d t} & =-k(T-A)
\end{aligned}
$$

(ii) When $t=0 \quad T=3$ and When $t=10$ $T=15$
$3=30+P e^{0}$
$P=-27$

$$
\begin{aligned}
& 15=30-27 e^{-10 k} \\
& 15=27 e^{-10 k} \\
& \frac{15}{27}=e^{-10 k} \\
& \ln \left(\frac{15}{27}\right)=-10 k \\
& -\frac{1}{10} \ln \left(\frac{15}{27}\right)=k \\
& O R \\
& \frac{1}{10} \ln \left(\frac{27}{15}\right)=k
\end{aligned}
$$

iii)

$$
\begin{aligned}
& 27=30-27 e^{-k t} \\
& 3=27 e^{-k t} \\
& \frac{3}{27}=e^{-k t} \\
& \ln \left(\frac{1}{9}\right)=-k t \\
& -\frac{\ln \left(\frac{1}{9}\right)}{k}=t \\
& \frac{\ln \left(\frac{1}{9}\right)}{\frac{1}{10} \ln \left(\frac{15}{27}\right)}=t \\
& t=37.38132742
\end{aligned}
$$

Time Taken is
$37.38132742-10=27.38132742$ minutes

$$
=27^{`} 23^{\prime}
$$

c) (i) Show that the line $P Q$ has the equation $y=\frac{p+q}{2} x-p q$.

$$
\begin{aligned}
m_{\text {CHORD }} & =\frac{p^{2}-q^{2}}{2 p-2 q} \\
m_{\text {CHORD }} & =\frac{p+q}{2}
\end{aligned}
$$

Equation

$$
\begin{aligned}
& y-p^{2}=\frac{p+q}{2}(x-2 p) \\
& y-p^{2}=\frac{p+q}{2} x-\frac{2 p^{2}-2 p q}{2} \\
& y=\frac{p+q}{2} x-p^{2}+2 p q+p^{2} \\
& y=\frac{p+q}{2} x-p^{2}+2 p q+p^{2} \\
& y=\frac{p+q}{2} x-p q
\end{aligned}
$$

(ii) The point $R(8,0)$ lies on the straight line that passes through P and Q.
(1) Show that $4(p+q)=p q$.

$$
\begin{aligned}
& y=\frac{p+q}{2} x-p q \\
& 0=\frac{p+q}{2} \times 8-p q \\
& 0=4(p+q)-p q \\
& 4(p+q)=p q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}-8 x}{2} \geq \frac{x^{2}}{4} \\
& 2 x^{2}-16 x \geq x^{2} \\
& x^{2}-16 x \geq 0 \\
& x(x-16) \geq 0 \\
& x \leq 0 \quad x \geq 16
\end{aligned}
$$

(2) Given that M is the midpoint of $P Q$, show that as P and Q vary the

$$
2 y=x^{2}-8 x
$$

Midpoint

$$
\begin{aligned}
x & =\frac{2 p+2 q}{2} \quad y=\frac{p^{2}+q^{2}}{2} \\
& =p+q
\end{aligned}
$$

Locus of M

$$
\begin{aligned}
x^{2}-8 x & =(p+q)^{2}-8 x \\
& =\left(p^{2}+2 p q+q^{2}\right)-8(p+q)
\end{aligned}
$$

From part (ii) (1) $4(p+q)=p q$
$=\left(p^{2}+2 p q+q^{2}\right)-2 \times 4(p+q)$
$=\left(p^{2}+2 p q+q^{2}\right)-2 \times p q$
$=p^{2}+q^{2}$
$=2 y$
(3) State any restrictions on the locus.

The y-value of M must always be greater than or equal to the y-value of the parabola $x^{2}=4 y$.
路

Question 13

(a) Use mathematical induction to prove that if \boldsymbol{n} is an integer and $n \geq 1$ and $a>0$
$\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{n}}=\frac{1}{a(a+1)^{n}}$
When $n=1$

$$
L H S=\frac{1}{a}-\frac{1}{a+1} \quad R H S=\frac{1}{a(a+1)^{1}}
$$

$$
=\frac{a+1-a}{a(a+1)} \quad=\frac{1}{a(a+1)}
$$

$$
=\frac{1}{a(a+1)}
$$

True for $n=1$

Assume true when $n=k$
$\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{k}}=\frac{1}{a(a+1)^{k}}$

Prove true when $n=k+1$ if true for $n=k$ Aim : Prove that
$\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{k+1}}=\frac{1}{a(a+1)^{k+1}}$

LHS $=\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{k+1}}$
$=\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{k}}-\frac{1}{(a+1)^{k+1}}$
$=\frac{1}{a(a+1)^{k}}-\frac{1}{(a+1)^{k+1}}$
By Assumption

$$
=\frac{a+1-a}{a(a+1)^{k+1}}
$$

$$
=\frac{1}{a(a+1)^{k+1}}=R H S
$$

By Mathematical Induction
$\frac{1}{a}-\frac{1}{a+1}-\frac{1}{(a+1)^{2}}-\ldots-\frac{1}{(a+1)^{n}}=\frac{1}{a(a+1)^{n}}$ is
true for all integers $n \geq 1$
(b) (i) Express x in the form $x=4 \cos (2 t+\alpha)-7$, where $0 \leq \alpha \leq \frac{\pi}{2}$
$2 \sqrt{3} \cos 2 t-2 \sin 2 t=4 \cos (2 t+\alpha)$
$=4 \cos 2 t \cos \alpha-4 \sin 2 t \sin \alpha$
$2 \sqrt{3} \cos 2 t-2 \sin 2 t=4 \cos (2 t+\alpha)$

$$
2 \sqrt{3}=4 \cos \alpha \quad-2=-4 \sin \alpha
$$

$$
\frac{\sqrt{3}}{2}=\cos \alpha
$$

$$
\frac{1}{2}=\sin \alpha
$$

$$
\therefore \tan \alpha=\frac{1}{\sqrt{3}} \text { where } 0 \leq \alpha \leq \frac{\pi}{2}
$$

$$
\alpha=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}
$$

(ii) What is the period of the motion?

$$
T=\frac{2 \pi}{n}=\frac{2 \pi}{2}=\pi \text { seconds }
$$

(iii) What is the range of possible values for x ? Amplitude is 4 and centre of motion is at $x=-7$. Range of possible x - values is

$$
-11 \leq x \leq-3
$$

(iv) How much time elapses from when the particle first starts until it is first at its minimum displacement?
When $x=-11$
$-11=4 \cos \left(2 t+\frac{\pi}{6}\right)-7$
$-4=4 \cos \left(2 t+\frac{\pi}{6}\right)$
$-1=\cos \left(2 t+\frac{\pi}{6}\right)$

$$
\begin{aligned}
& -1=\cos \left(2 t+\frac{\pi}{6}\right) \\
& 2 t+\frac{\pi}{6}=\cos ^{-1}(-1) \\
& 2 t+\frac{\pi}{6}=\pi \\
& 2 t=\frac{5 \pi}{6} \\
& t=\frac{5 \pi}{12}
\end{aligned}
$$

(c) Sketch both functions $y=\cos ^{-1} x$ and $y=\sin ^{-1}(3 x+1)$ on the same plane.

From the graph, there is only one solution, $x=0$

ALTERNATIVE:

Solve algebraically:
Let $\alpha=\sin ^{-1}(3 x+1)$ and thus $\alpha=\cos ^{-1} x$
Let $\sin \alpha=3 x+1$ and $\cos \alpha=x$
By Pythagoras using $\cos \alpha=x$ then $\sin \alpha=\sqrt{1-x^{2}}$

$$
\begin{aligned}
&(3 x+1)=\sqrt{1-x^{2}} \\
&(3 x+1)^{2}=() \\
& 9 x^{4}+6 x^{3}+1=1-x^{2} \\
& 10 x^{2}+6 x=0 \\
& 2 x(5 x+3)=0 \\
& x=0 \\
& O R \\
& x=\frac{-3}{5}
\end{aligned}
$$

Check solutions in original equation.

$$
x=0 \quad \sin ^{-1}(1)=\cos ^{-1}(0)
$$

$x=\frac{-3}{5} \sin ^{-1}\left(-\frac{9}{5}+1\right) \neq \cos ^{-1}\left(\frac{-3}{5}\right)$
Solution is $x=0$
(d) Let the zeroes be α, β and $\alpha \beta$ Product of Roots
$(\alpha)(\beta)(\alpha \beta)=4$
$\alpha^{2} \beta^{2}=4$
$\alpha \beta= \pm 2$

Sum in Pairs

$$
\begin{aligned}
& \alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}=-6 \\
& \alpha \beta(1+\alpha+\beta)=-6
\end{aligned}
$$

Sum of Roots

$$
\alpha+\beta+\alpha \beta=-a \quad \text { II }
$$

$$
\text { If } \alpha \beta=2 \text { then }
$$

$$
\text { In } I
$$

$$
\alpha+\beta+2=-a
$$

$$
\alpha+\beta+1=-a-1
$$

And in II

$$
\begin{aligned}
& \alpha \beta(1+\alpha+\beta)=-6 \\
& (2)(-a-1)=-6 \\
& -a-1=-3 \\
& a=2
\end{aligned}
$$

$$
\text { If } \alpha \beta=-2 \text { then }
$$

$$
\text { In } I
$$

$$
\alpha+\beta-2=-a
$$

$$
\alpha+\beta+1=-a+3
$$

And in II

$$
\begin{aligned}
& \alpha \beta(1+\alpha+\beta)=-6 \\
& (-2)(-a+3)=-6 \\
& -a+3=3 \\
& -a=0 \\
& a=0
\end{aligned}
$$

Since $a>0 \quad a=2$

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i)

$$
\begin{aligned}
& \ddot{x}=2 x^{3}+4 x \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=2 x^{3}+4 x \\
& \frac{1}{2} v^{2}=\frac{2 x^{4}}{4}+\frac{4 x^{2}}{2}+C \\
& v^{2}=x^{4}+4 x^{2}+D
\end{aligned}
$$

$$
\text { When } x=2 \quad v=6
$$

$$
(6)^{2}=(2)^{4}+4(2)^{2}+D
$$

$$
36=16+16+D
$$

$$
4=D
$$

$$
v^{2}=x^{4}+4 x^{2}+4
$$

$$
v^{2}=\left(x^{2}+2\right)^{2}
$$

(ii) Acceleration $\ddot{x}=2 x^{3}+4 x$ is positive when x is positive.

Since the particle is initially at $x=2$ with positive velocity the velocity of the particle will always be increasing and so the minimum velocity is its initial velocity of $6 \mathrm{~m} / \mathrm{s}$
(b) (i) Prove that $d^{2}=\frac{a^{2}+b^{2}}{\tan ^{2} \theta}$.
$\angle A Q B=90^{\circ} \quad$ (Angle in a semi circle) Let $A Q$ and $B Q$ be x and y respectively.

In $\triangle A Q B$
$d^{2}=x^{2}+y^{2}$ By Pythagoras
In $\triangle A Q A^{\prime}$
$\tan \theta=\frac{a}{x}$
$x=\frac{a}{\tan \theta}$
In $\triangle B Q B^{\prime}$
$\tan \theta=\frac{b}{y}$
$y=\frac{b}{\tan \theta}$
$d^{2}=\left(\frac{a}{\tan \theta}\right)^{2}+\left(\frac{b}{\tan \theta}\right)^{2}$
$d^{2}=\frac{a^{2}+b^{2}}{\tan ^{2} \theta}$
(ii) Show that $\tan ^{2} \alpha+\tan ^{2} \beta=\tan ^{2} \theta$.

In $\triangle A B A^{\prime}$
$\tan \beta=\frac{a}{d}$

In $\triangle B A B^{\prime}$
$\tan \alpha=\frac{b}{d}$

$$
\begin{aligned}
\text { LHS } & =\tan ^{2} \alpha+\tan ^{2} \beta \\
& =\left(\frac{a}{d}\right)^{2}+\left(\frac{b}{d}\right)^{2} \\
& =\frac{a^{2}+b^{2}}{d^{2}} \\
& =\left(a^{2}+b^{2}\right) \div d^{2} \\
& =\left(a^{2}+b^{2}\right) \div \frac{a^{2}+b^{2}}{\tan ^{2} \theta} \\
& =\tan ^{2} \theta \\
& =\text { RHS }
\end{aligned}
$$

(c) (i) If P is the perimeter of the triangle $A B C$ then show that:

$$
\begin{aligned}
& P=\frac{k[\sin \alpha+\sin \theta+\sin (\theta+\alpha)]}{\sin \alpha} \\
& P=A B+A C+B C
\end{aligned}
$$

$A B=k$
$\frac{A C}{\sin \theta}=\frac{A B}{\sin \alpha}$
$A C=\frac{k \sin \theta}{\sin \alpha}$

$$
\begin{aligned}
& \frac{B C}{\sin (\pi-(\theta+\alpha))}=\frac{A B}{\sin \alpha} \\
& A C=\frac{k \sin (\pi-(\theta+\alpha))}{\sin \alpha} \\
& A C=\frac{k \sin (\theta+\alpha)}{\sin \alpha} \\
& P=k+\frac{k \sin (\theta)}{\sin \alpha}+\frac{k \sin (\theta+\alpha)}{\sin \alpha} \\
& P=\frac{k[\sin \alpha+\sin \theta+\sin (\theta+\alpha)]}{\sin \alpha}
\end{aligned}
$$

(ii) Find the value of $\frac{d P}{d t}$ in terms of k and α when $\theta=\alpha$.

Since $\angle A C B$ is an angle subtended by $A B$ in the major segment α is a constant.
$\frac{d P}{d t}=\frac{d P}{d \theta} \times \frac{d \theta}{d t}$
$\frac{d \theta}{d t}=0.1$
$P=\frac{k[\sin \alpha+\sin \theta+\sin (\theta+\alpha)]}{\sin \alpha}$
$\frac{d P}{d \theta}=\frac{k[\cos \theta+\cos (\theta+\alpha)]}{\sin \alpha}$
$\frac{d P}{d t}=\frac{d P}{d \theta} \times \frac{d \theta}{d t}$
$=\frac{k[\cos \theta+\cos (\theta+\alpha)]}{\sin \alpha} \times \frac{1}{10}$
When $\theta=\alpha$
$=\frac{k[\cos \alpha+\cos (2 \alpha)]}{10 \sin \alpha}$
(iii) Show that $\frac{d P}{d t}=0$ when
$\theta=\frac{\pi}{2}-\frac{\alpha}{2}$.
$\frac{d P}{d t}=0$ when $\frac{d P}{d \theta}=0$

Let $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$
$\frac{d P}{d \theta}=\frac{k\left[\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)+\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}+\alpha\right)\right]}{\sin \alpha}$
$\frac{d P}{d \theta}=\frac{k\left[\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)+\cos \left(\frac{\pi}{2}+\frac{\alpha}{2}\right)\right]}{\sin \alpha}$

NOTE:
$\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)=-\cos \left(\frac{\pi}{2}+\frac{\alpha}{2}\right)$
$\frac{d P}{d \theta}=\frac{k\left[\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)-\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)\right]}{\sin \alpha}=0$
(iv) Find the value of θ that will
maximise P, given $\alpha=\frac{3 \pi}{8}$.
Since $\frac{d P}{d \theta}=0$ when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$ then
$\theta=\frac{\pi}{2}-\frac{3 \pi}{16}$ is a possible value åthat can maximise P
Find the second derivative and test $\theta=\frac{5 \pi}{16}$
$\frac{d^{2} P}{d \theta^{2}}=\frac{k[-\sin \theta-\sin (\theta+\alpha)]}{\sin \alpha}$
Let $\theta=\frac{5 \pi}{16}$
$\frac{d^{2} P}{d \theta^{2}}=\frac{-k\left[\sin \frac{5 \pi}{16}+\sin \left(\frac{5 \pi}{16}+\alpha\right)\right]}{\sin \alpha}$
Since $0 \leq \alpha \leq \frac{\pi}{2}$
$\sin \frac{5 \pi}{16}+\sin \left(\frac{5 \pi}{16}+\alpha\right)>0$ and $\sin \alpha>0$

Therefore $\frac{d^{2} P}{d \theta^{2}}<0$ when $\theta=\frac{5 \pi}{16}$ thus P is \mid a maximum when $\theta=\frac{5 \pi}{16}$

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, \quad a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, \quad a \neq 0 \\
\int \sec { }^{2} a x d x & =\frac{1}{a} \tan ^{2} a x, \quad a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, \quad a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0, \quad-a<
\end{array}
$$

