NORTH SYDNEY GIRLS HIGH SCHOOL

2017 TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working Time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet has been provided
- In Questions $11-14$, show relevant mathematical reasoning and/or calculations

Total marks - 70
Section I Pages 3-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 7-13
60 Marks

- Attempt Questions 11 - 14
- Allow about 1 hour and 45 minutes for this section

NAME: \qquad TEACHER: \qquad

STUDENT NUMBER:

\qquad

QUESTION	MARK
$1-10$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
TOTAL	$/ 70$

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Consider the polynomial $P(x)=3 x^{3}+3 x+a$. If $x-2$ is a factor of $P(x)$, what is the value of a ?
(A) -30
(B) $\quad-18$
(C) 18
(D) 30

2 Let α, β and γ be the roots of $P(x)=2 x^{3}-5 x^{2}+4 x-9$.
Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(A) $\frac{5}{9}$
(B) $-\frac{5}{9}$
(C) $\frac{4}{9}$
(D) $-\frac{4}{9}$

3 Which expression is equal to $\int \sin ^{2} 2 x d x$?
(A) $\frac{1}{2}\left(x-\frac{1}{4} \sin 4 x\right)+c$
(B) $\frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)+c$
(C) $\frac{1}{2}\left(x-\frac{1}{2} \sin 4 x\right)+c$
(D) $\frac{1}{2}\left(x+\frac{1}{2} \sin 4 x\right)+c$
$4 \quad$ Which of the following is equivalent to $\frac{\sin x}{1-\cos x}$?
(A) $\tan \left(\frac{x}{2}\right)$
(B) $-\tan \left(\frac{x}{2}\right)$
(C) $\quad \cot \left(\frac{x}{2}\right)$
(D) $\quad-\cot \left(\frac{x}{2}\right)$
$5 \quad$ What are the asymptotes of $y=\frac{3 x}{(x+1)(x-2)}$?
(A) $y=0, x=-1, x=2$
(B) $y=0, x=1, x=-2$
(C) $y=3, x=-1, x=2$
(D) $y=3, x=1, x=-2$
$6 \quad$ Which of the following is the range of the function $y=2 \sin ^{-1} x+\frac{\pi}{2}$?
(A) $-\pi \leq y \leq \pi$
(B) $-\pi \leq y \leq \frac{3 \pi}{2}$
(C) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) $-\frac{\pi}{2} \leq y \leq \frac{3 \pi}{2}$

7 If P divides the interval $A B$ internally in the ratio $m: n$, in what ratio does A divide the interval $B P$?
(A) $(m+n):-n$
(B) $(m+n):-m$
(C) $-n:(m+n)$
(D) $-m:(m+n)$

8 What is a general solution of $\tan 2 \theta \tan \theta=1$?
(A) $2 n \pi \pm \frac{\pi}{3} \quad$ where n is an integer.
(B) $\quad(6 n \pm 1) \frac{\pi}{6} \quad$ where n is an integer.
(C) $\quad(4 n \pm 1) \frac{\pi}{6} \quad$ where n is an integer.
(D) $2 n \pi \pm \frac{\pi}{6} \quad$ where n is an integer.

9 In the diagram below, $A B$ is the tangent to the circle at B and $A D C$ is a straight line. If $A B: A D=2: 1$, then what is the ratio of the area of $\triangle A B D$ to the area of $\triangle C B D$?

(A) $1: 2$
(B) $1: 3$
(C) $1: 4$
(D) $2: 3$

10 In the figure below, $A B$ is a vertical pole standing on horizontal ground $B C D$, where $\angle C B D=90^{\circ}$. If the angle between the plane $A C D$ and the horizontal ground is θ, then what is the value of θ closest to?

(A) 45°
(B) 53°
(C) 62°
(D) 69°

End of Section I

Section II

Total marks - 60
Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Differentiate $\tan ^{-1} \sqrt{x}$ with respect to x.
(b) Consider the function $f(x)=1+\frac{2}{x-3}$ for $x>3$.
(i) What is the range of $f(x)$?
(ii) Find the inverse function $f^{-1}(x)$ and state its domain.
(c) Use the substitution $u=3+x$ to find $\int \frac{x+1}{\sqrt{3+x}} d x$.
(d) Solve $\frac{4}{x+2} \geq \frac{1}{x}$.
(e) Find $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$. Show all working.
(f) (i) Neatly sketch the graph of $y=\sin ^{-1} x$.
(ii) By considering areas on the graph in (i), find the exact value of

$$
\int_{0}^{\frac{1}{2}} \sin ^{-1} x d x
$$

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) During the early summer months, the rate of increase of the population P of cicadas is proportional to the excess of the population over 3000. The rate can be expressed by the differential equation $\frac{d P}{d t}=k(P-3000)$ where t is the time in months and k is a constant. At the beginning of summer the population is 4000 and one month later it is 10000 .
(i) Show that $P=3000+A e^{k t}$ is a solution of the differential equation, where A is a constant.
(ii) Find the value of A.
(iii) Show that the value of k is $\log _{e} 7$.
(iv) After how many weeks will the population reach half a million?
(Assume 52 weeks in a year).
(b) The angle between the line $4 x+3 y=8$ and the line $a x+b y+c=0$ is 45°.

Find the possible values of the ratio $a: b$.
(c) The graph of $y=\frac{1}{\sqrt{1+4 x^{2}}}$ is shown below.

The shaded region in the diagram is bounded by the curve $y=\frac{1}{\sqrt{1+4 x^{2}}}$, the x-axis and the lines $x=-\frac{1}{2}$ and $x=\frac{\sqrt{3}}{2}$. Find the exact volume of the solid of revolution formed when the shaded region is rotated about the x-axis.
(d) (i) Express $3 \sin x+\sqrt{3} \cos x$ in the form $A \sin (x+\alpha)$, where $0<\alpha<\frac{\pi}{2}$.
(ii) Hence, or otherwise, sketch the graph of $y=3 \sin x+\sqrt{3} \cos x$ where $0 \leq x \leq 2 \pi$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The acceleration of a particle as it moves in a straight line is given by $\frac{d^{2} x}{d t^{2}}=-12 \cos 2 t$ where x is the displacement in metres of the particle from the origin at time t seconds. The particle starts from rest at the point $x=3$.
(i) Find the displacement, x, of the particle as a function of t. initial position?
(b) In the diagram below, the straight line $A C D$ is a tangent at A to the circle with centre O. The interval $A O B$ is a diameter of the circle The intervals $B C$ and $B D$ meet the circle at E and F respectively. Let $\angle B A F=\beta$.

(i) Explain why $\angle A B F=90^{\circ}-\beta$.
(ii) Prove that the quadrilateral $C D F E$ is cyclic.
(c) A ball on a spring is moving in simple harmonic motion with a vertical velocity $v \mathrm{cms}^{-1}$ given by $v^{2}=-8+24 y-4 y^{2}$ where y is the vertical displacement in cm .
(i) Find the acceleration of the ball in terms of y.
(ii) Find the centre of motion of the ball.
(iii) Find the period of the oscillation.
(d) (i) Show that $n+(n+1)+(n+2)+\ldots \ldots+(2 n+1)=\frac{(3 n+1)(n+2)}{2}$
(ii) Hence prove by mathematical induction that for all integers $n \geq 1$,

$$
1+(2+3)+(3+4+5)+\ldots .+[n+(n+1)+(n+2)+\ldots+(2 n-1)]=\frac{n^{2}}{2}(n+1) .
$$

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that the equation of the normal to the parabola $x^{2}=4 y$ at the point $P\left(2 p, p^{2}\right)$ is $x+p y=2 p+p^{3}$.
(ii) S is the focus of the parabola $x^{2}=4 y$ and T is a point on the normal such that $S T$ is perpendicular to the normal. Write down the equation of $S T$.
(iii) Prove that the locus of T is a parabola and state its vertex and focal length.
(b) (i) Show that $1+e^{-x}=\frac{e^{x}+1}{e^{x}}$.
(ii) The velocity v of a particle moving along the x-axis is given by $\frac{d x}{d t}=1+e^{-x}$ where x is the displacement of the particle from the origin in metres. Initially the particle is at the origin.

Find the time taken by the particle to reach a velocity of $1 \frac{1}{2} \mathrm{~ms}^{-1}$.
(c) A runner sprints in an anticlockwise direction around a circular track of radius 100 metres with centre O at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. The runner's friend is standing at B, a distance of 300 metres from the centre of the track.

The runner starts at S and t seconds later is at point A. The distance $A B$ between the two friends is l and the distance covered by the runner on the track is L.
Let the angle subtended by the arc $S A$ be θ.
(i) From the diagram the coordinates of A are $(100 \cos \theta, 100 \sin \theta)$.

Use the distance formula to show that $l=100 \sqrt{10-6 \cos \theta}$.
(ii) At what rate is the distance between the friends changing at the moment when the runner is 250 metres from his friend and getting closer to him.

End of paper

Mathematics Extension 1
 SOLUTIONS

1 Consider the polynomial $P(x)=3 x^{3}+3 x+a$.
If $x-2$ is a factor of $P(x)$, what is the value of a ?
Answer: A
$P(2)=0 \quad 3 \times 2^{3}+3(2)+a=0$

$$
a=-30
$$

$2 \quad$ Let α, β and γ be the roots of $P(x)=2 x^{3}-5 x^{2}+4 x-9$.
Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
Answer: C
$\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{\frac{4}{2}}{\frac{9}{2}}=\frac{4}{9}$
3 Which expression is equal to $\int \sin ^{2} 2 x d x$?
Answer: A

$$
\begin{aligned}
\int \sin ^{2} 2 x d x & =\frac{1}{2} \int(1-\cos 4 x) d x \\
& =\frac{1}{2}\left(x-\frac{1}{4} \sin 4 x\right)+c
\end{aligned}
$$

$4 \quad$ Which of the following is equivalent to $\frac{\sin x}{1-\cos x}$?

Answer: C

Let $t=\tan \left(\frac{x}{2}\right)$

$$
\begin{aligned}
\frac{\frac{2 t}{1+t^{2}}}{1-\frac{1-t^{2}}{1+t^{2}}} & =\frac{2 t}{1+t^{2}-1+t^{2}} \\
& =\frac{1}{t} \\
& =\cot \left(\frac{x}{2}\right)
\end{aligned}
$$

$5 \quad$ What are the asymptotes of $y=\frac{3 x}{(x+1)(x-2)}$?

Answer: A

Vertical asymptotes at $x=-1, x=2$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{x}{x^{2}}-\frac{2}{x^{2}}} & =\lim _{x \rightarrow \infty} \frac{\frac{3}{x}}{1-\frac{1}{x}-\frac{2}{x^{2}}} \\
& =0
\end{aligned}
$$

$6 \quad$ Which of the following is the range of the function $y=2 \sin ^{-1} x+\frac{\pi}{2}$?

Answer: D

$$
\begin{aligned}
& -\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2} \\
& -\pi \leq 2 \sin ^{-1} x \leq \pi \\
& -\frac{\pi}{2} \leq 2 \sin ^{-1} x+\frac{\pi}{2} \leq \frac{3 \pi}{2}
\end{aligned}
$$

7 If P divides the interval $A B$ internally in the ratio $m: n$, in what ratio does A divide the interval $B P$?

Answer: B

$$
(m+n)
$$

$8 \quad$ What is a general solution of $\tan 2 \theta \tan \theta=1$?

$$
\left.\begin{array}{l}
\text { Answer: B } \\
\begin{array}{rl}
\frac{2 \tan \theta}{1-\tan ^{2} \theta} \times \tan \theta=1 \\
2 \tan ^{2} \theta=1-\tan ^{2} \theta \\
3 \tan ^{2} \theta=1
\end{array} \\
\cdot \tan \theta= \pm \frac{1}{\sqrt{3}} \Rightarrow \tan \theta
\end{array}\right]=\tan \left(\pm \frac{\pi}{6}\right) \quad \begin{aligned}
\theta & = \pm \frac{\pi}{6}+n \pi \text { where } n \text { is an integer } \\
& =(6 n \pm 1) \frac{\pi}{6}
\end{aligned}
$$

9 In the diagram below, $A B$ is the tangent to the circle at B and $A D C$ is a straight line. If $A B: A D=2: 1$, then what is the ratio of the area of $\triangle A B D$ to the area of $\triangle C B D$?

Answer: B

$A B^{2}=A D \times A C$
$4 x^{2}=x \times A C \quad \Rightarrow A C=4 x$
$\triangle A B D$ is similar to $\triangle A C B$ (two sides in ratio and included angle equal)
ratio of sides 1:2
ratio of areas 1:4

\therefore area of $\triangle A B D$ to area of $\triangle C B D$ is 1:3

10 In the figure below, $A B$ is a vertical pole standing on horizontal ground $B C D$, where $\angle C B D=90^{\circ}$. If the angle between the plane $A C D$ and the horizontal ground is θ, then what is the value of $\tan \theta$?

$$
\begin{aligned}
& \text { Answer: } \mathbf{D} \\
& \begin{aligned}
C D^{2} & =\sqrt{8^{2}+8^{2}} \quad \text { Pythagoras Theorem } \\
& =8 \sqrt{2}
\end{aligned} \\
& \text { Area of } \triangle B C D=\frac{1}{2} \times 8 \times 8 \\
& \\
& =32
\end{aligned} \begin{aligned}
\text { Area of } \triangle B C D & =\frac{1}{2} \times 8 \sqrt{2} \times h
\end{aligned} \quad \begin{aligned}
\therefore \frac{1}{2} \times 8 \sqrt{2} \times h=32 \quad \Rightarrow h=4 \sqrt{2} \\
\tan \theta=\frac{15}{4 \sqrt{2}} \quad \Rightarrow \theta \approx 69^{\circ}
\end{aligned}
$$

Question 11 (15 marks)
(a) Differentiate $\tan ^{-1} \sqrt{x}$ with respect to x.
$\frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right)=\frac{1}{1+x} \times \frac{1}{2 \sqrt{x}}$

$$
=\frac{1}{\sqrt{x}(2 x+2)}
$$

(b) Consider the function $f(x)=1+\frac{2}{x-3}$ for $x>3$.
(i) What is the range of $f(x)$?
(ii) Find the inverse function $f^{-1}(x)$ and state its domain.
(i) $y>1$
(ii) $x=1+\frac{2}{y-3}$

$$
\begin{aligned}
& x-1=\frac{2}{y-3} \\
& y-3=\frac{2}{x-1} \\
& y=\frac{2}{x-1}+3 \quad(\text { domain: } x>1)
\end{aligned}
$$

(c) Use the substitution $u=3+x$ to find $\int \frac{x+1}{\sqrt{3+x}} d x$.

$$
\begin{array}{lr}
\int \frac{x+1}{\sqrt{3+x}} d x=\int \frac{u-2}{\sqrt{u}} d u & \begin{aligned}
u & =3+x \\
d u & =d x \\
= & \int\left(u^{\frac{1}{2}}-2 u^{-\frac{1}{2}}\right) d u \\
x & =u-3 \\
= & \frac{2}{3} u^{\frac{3}{2}}-2 \times 2 u^{\frac{1}{2}}+C \\
x+1 & =u-2
\end{aligned} \\
=\frac{2}{3}(3+x)^{\frac{3}{2}}-4(3+x)^{\frac{1}{2}}+C &
\end{array}
$$

(d) Solve $\frac{4}{x+2} \geq \frac{1}{x}$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{4}{x+2} & \geq \frac{1}{x} \quad x \neq 0,2 \\
4(x+2) x^{2} & \geq(x+2)^{2} x \\
4(x+2) x^{2}-x(x+2)^{2} & \geq 0 \\
x(x+2)[4 x-(x+2)] & \geq 0 \\
x(x+2)(3 x-2) & \geq 0 \quad x \neq 0,2
\end{aligned} \\
& \text { From the graph: } \quad-2<x<0 \quad, \quad x \geq \frac{2}{3}
\end{aligned}
$$

(e) Find $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$. Show all working.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1-\left(\cos ^{2} x-\sin ^{2} x\right)}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\left(2 \sin ^{2} x\right)}{x^{2}} \\
& =2 \times \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2} \\
& =2 \times \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right) \times \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right) \\
& =2 \times 1 \times 1 \\
& =2
\end{aligned}
$$

(f) (i) Neatly sketch the graph of $y=\sin ^{-1} x$.
(ii) By considering the graph in (i), find the exact value of $\int_{0}^{\frac{1}{2}} \sin ^{-1} x d x$.

Question 12 (15 marks)
(a) During the early summer months, the rate of increase of the population P of cicadas is proportional to the excess of the population over 3000. The rate can be expressed by the differential equation $\frac{d P}{d t}=k(P-3000)$ where t is the time in months and k is a constant. At the beginning of summer the population is 4000 and one month later, it is 10000 .
(i) Show that $P=3000+A e^{k t}$ is a solution of the differential equation, where A is a constant.
(ii) Find the value of A.
(iii) Show that the value of k is $\log _{e} 7$.
(iv) After how many weeks will the population reach half a million?
(Assume 52 weeks in a year).
(a) (i) $P=3000+A e^{k t} \Rightarrow P-3000=A e^{k t}$

$$
\begin{aligned}
\text { LHS } & =\frac{d P}{d t} \\
& =k A e^{k t} \\
& =k(P-3000) \\
& =\text { RHS }
\end{aligned}
$$

$\therefore P=3000+A e^{k t}$ is a solution.
(ii) When $t=0, P=4000$

$$
\begin{gathered}
4000=3000+A \\
A=1000
\end{gathered}
$$

(iii) When $\mathrm{P}=10000$ and $t=1,10000=3000+1000 e^{k}$

$$
\begin{aligned}
7000 & =1000 e^{k} \\
e^{k} & =7 \\
k & =\log _{e} 7
\end{aligned}
$$

(iv)

$$
\begin{aligned}
P & =500000 \\
500000 & =3000+1000 e^{t \log _{e} 7} \\
497000 & =1000 e^{t \log _{e} 7} \\
e^{t \log _{e} 7} & =497 \\
t \log _{e} 7 & =\log _{e} 497
\end{aligned}
$$

$$
t=\frac{\log _{e} 497}{\log _{e} 7} \approx 3.19 \quad \frac{3.19}{12} \times 52 \approx 13.83 \text { weeks }
$$

It will take 14 weeks.
(b) The angle between the line $4 x+3 y=8$ and the line $a x+b y+c=0$ is 45°.

Find the possible values of the ratio $a: b$.
$m_{1}=\frac{4}{3} \quad m_{2}=\frac{a}{b}$
$\tan 45^{\circ}=\left|\frac{-\frac{4}{3}-\left(-\frac{a}{b}\right)}{1+\frac{4}{3} \times \frac{a}{b}}\right|$
$1=\left|\frac{\frac{-4 b+3 a}{3 b}}{\frac{3 b+4 a}{3 b}}\right|$
$1=\frac{|-4 b+3 a|}{|3 b+4 a|}$
$\begin{array}{rlrl}\therefore-4 b+3 a=3 b+4 a & \text { or } & -4 b+3 a & =-(3 b+4 a) \\ a & =-7 b & 7 a & =b \\ \frac{a}{b} & =-7 & \frac{a}{b} & =\frac{1}{7} \\ \text { Ratio of } a: b \text { is }-7: 1 \text { or } 1: 7 & & \end{array}$
(c) The graph of $y=\frac{1}{\sqrt{1+4 x^{2}}}$ is shown below.

The shaded region in the diagram is
bounded by the curve $y=\frac{1}{\sqrt{1+4 x^{2}}}$, the
$x-$ axis and the lines $x=-\frac{1}{2}$ and
$x=\frac{\sqrt{3}}{2}$. Find the volume of the solid of revolution formed when the shaded
 region is rotated about the x-axis.

$$
\begin{aligned}
V & =\pi \int_{a}^{b} y^{2} d x \\
& =\pi \int_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{1+4 x^{2}} d x \\
& =\frac{\pi}{4} \int_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\left(\frac{1}{2}\right)^{2}+x^{2}} d x \\
& =\frac{\pi}{4} \times 2\left[\tan ^{-1} 2 x\right]_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\
& =\frac{\pi}{2}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1}(-1)\right] \\
& =\frac{\pi}{2}\left[\frac{\pi}{3}-\left(-\frac{\pi}{4}\right)\right] \\
& =\frac{7 \pi^{2}}{24} u^{3}
\end{aligned}
$$

(d) (i) Express $3 \sin x+\sqrt{3} \cos x$ in the form $A \sin (x+\alpha)$, where $0<\alpha<\frac{\pi}{2}$.
(ii) Hence, or otherwise, sketch the graph of $y=3 \sin x+\sqrt{3} \cos x$ where $0 \leq x \leq 2 \pi$.
(i)
$3 \sin x+\sqrt{3} \cos x=A \sin x \cos \alpha+A \cos x \sin \alpha$ equating coefficients: $A \cos \alpha=3 \quad A \sin \alpha=\sqrt{3}$

$$
\begin{aligned}
& A^{2} \cos ^{2} \alpha+A^{2} \sin ^{2} \alpha=12 \\
& A^{2}=12 \quad \Rightarrow \quad A=2 \sqrt{3}
\end{aligned}
$$

Also, $\frac{A \sin \alpha}{A \cos \alpha}=\frac{\sqrt{3}}{3}$

$$
\tan \alpha=\frac{1}{\sqrt{3}} \quad \Rightarrow \quad \alpha=\frac{\pi}{6}
$$

$3 \sin x+\sqrt{3} \cos x=2 \sqrt{3} \sin \left(x+\frac{\pi}{6}\right)$
(ii)

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The acceleration of a particle as it moves in a straight line is given by $\frac{d^{2} x}{d t^{2}}=-12 \cos 2 t$ and the particle started from rest at the point $x=3$.
(i) Find the displacement, x, of the particle as a function of t.
(ii) At what time is the particle first at $x=0$, and moving towards its initial position?
(i) $\ddot{x}=-12 \cos 2 t$

$$
\begin{aligned}
\dot{x} & =-\frac{12 \sin 2 t}{2}+c & & \\
& =-6 \sin 2 t+c & & \\
\dot{x} & =-6 \sin 2 t & & \\
x & =\frac{6 \cos t 2 t}{2}+c_{1} & & \\
x & =3 \cos 2 t & & \\
x & & &
\end{aligned}
$$

(ii)

From the graph, $x=0$ when particle is moving towards its initial position at $t=\frac{3 \pi}{4}$ seconds.
(b) In the diagram below, the straight line $A C D$ is a tangent at A to the circle with centre O. The interval $A O B$ is a diameter of the circle The intervals $B C$ and $B D$ meet the circle at E and F respectively. Let $\angle B A F=\beta$.
(i) Explain why $\angle A B F=90^{\circ}-\beta$.
(ii) Prove that the quadrilateral $C D F E$ is cyclic.
(i) $\angle A F B=90^{\circ}$ (angle in a semi-circle)
$\angle \mathrm{ABF}+\beta+90^{\circ}=180^{\circ}$ (angle sum of triangle) $\angle \mathrm{ABF}=90-\beta$
(ii)
$\angle B A F=\angle B E F$ (angle in the same segment) $=\beta$
$\angle B A D=90^{\circ} \quad$ (tangent perpendicular to radius)
In $\triangle \mathrm{BAD}, \quad \angle \mathrm{ADB}+(90-\beta)+90=180$

$$
\angle A D B=\beta
$$

$\angle C D F=\angle F E B=\beta$
$\therefore C D F E$ is cyclic (exterior angle of a cyclic quadrilateral)
c) A ball on a spring is moving in simple harmonic motion with a vertical
velocity $v \mathrm{cms}^{-1}$ given by $v^{2}=-8+24 y-4 y^{2}$ where y is the vertical displacement in cm .
(i) Find the acceleration of the ball in terms of y.
(ii) Find the centre of motion of the ball.
(iii) Find the period of the oscillation.
(i)

$$
\begin{aligned}
& v^{2}=-8+24 y-4 y^{2} \\
& \frac{1}{2} v^{2}=-4+12 y-2 y^{2} \\
& \begin{aligned}
\therefore \ddot{y} & =\frac{d}{d y}\left(-4+12 y-2 y^{2}\right) \\
& =12-4 y \\
& =-4(y-3)
\end{aligned}
\end{aligned}
$$

(ii) centre of motion is at $x=3$.
(d) (i) Show that $n+(n+1)+(n+2)+\ldots \ldots+(2 n+1)=\frac{(3 n+1)(n+2)}{2} \quad 1$
(ii) Hence prove by mathematical induction that for all integers $n \geq 1$,

$$
1+(2+3)+(3+4+5)+\ldots .+[n+(n+1)+(n+2)+\ldots+(2 n-1)]=\frac{n^{2}}{2}(n+1) .
$$

(i) arithmetic series: $a=n, \quad l=(2 n+1), \quad$ number of terms $=(2 n+1)-n+1$

$$
=n+2
$$

$$
\begin{aligned}
\therefore n+(n+1)+(n+2)+\ldots(2 n+1) & =\frac{(n+2)}{2}(n+(2 n+1)) \\
& =\frac{(3 n+1)(n+2)}{2}
\end{aligned}
$$

(ii) Prove true for $\mathrm{n}=1$

LHS $=1$

$$
\text { RHS }=\frac{1}{2}(1+1)=1
$$

LHS $=$ RHS \therefore true for $n=1$.
Assume true for $n=k$.

$$
1+(2+3)+(3+4+5)+\ldots .+[k+(k+1)+(k+2)+\ldots+(2 k-1)]=\frac{k^{2}}{2}(k+1) .
$$

Prove true for $n=k+1$
Required to prove:

$$
\begin{aligned}
& 1+(2+3)+\ldots+[k+(k+1)+\ldots+(2 k-1)]+[(k+1)+((k+1)+1)+\ldots+(2(k+1)-1)]=\frac{(k+1)^{2}}{2}((k+1)+1) . \\
& 1+(2+3)+\ldots+[k+(k+1)+\ldots+(2 k-1)]+[(k+1)+(k+2)+\ldots+(2 k+1))]=\frac{(k+1)^{2}}{2}(k+2)
\end{aligned}
$$

$$
\text { LHS }=1+(2+3)+\ldots .+[k+(k+1)+\ldots+(2 k-1)]+[(k+1)+(k+2)+\ldots+(2 k+1)]
$$

$$
\begin{aligned}
& =\frac{k^{2}}{2}(k+1)+[(k+1)+(k+2)+\ldots+(2 k+1)] \text { from assumption } \\
& =\frac{k^{2}}{2}(k+1)+\frac{(3 k+1)(k+2)}{2}-k \quad \text { from part (i) } \\
& =\frac{k^{2}(k+1)+3 k^{2}+7 k+2-2 k}{2} \\
& =\frac{k^{2}(k+1)+(3 k+2)(k+1)}{2} \\
& =\frac{(k+1)\left[k^{2}+3 k+2\right]}{2} \\
& =\frac{(k+1)(k+1)(k+2)}{2} \\
& =\frac{(k+1)^{2}(k+2)}{2} \\
& =\text { RHS }
\end{aligned}
$$

Hence, if the result is true for $n=k$, then it is true for $n=k+1$
\therefore the result is true for all $n \geq 1$ by mathematical induction

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that the equation of the normal to the parabola $x^{2}=4 y$ at the

2 point $P\left(2 p, p^{2}\right)$ is $x+p y=2 p+p^{3}$.
(ii) S is the focus of the parabola $x^{2}=4 y$ and T is a point on the
normal such that $S T$ is perpendicular to the normal. Write down the equation of $S T$.
(iii) Prove that the locus of T is a parabola with vertex $(0,1)$ and with focal length $\frac{1}{4}$ that of the parabola $x^{2}=4 y$.
(i)

$$
\begin{aligned}
x^{2} & =4 y \quad(\text { focallength } a=1) \\
y & =\frac{x^{2}}{4} \\
\frac{d y}{d x} & =\frac{x}{2}
\end{aligned}
$$

At $\mathrm{P}, x=2 p, \frac{d y}{d x}=\frac{2 p}{2}=p($ gradient of tangent at $P)$
\therefore Gradient of normal $=-\frac{1}{p}$
Equation of normal:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-p^{2} & =-\frac{1}{p}(x-2 p) \\
p y-p^{3} & =-x+2 p \\
x+p y & =2 p+p^{3}
\end{aligned}
$$

(ii)

Gradient of $S T=p$
Equation of ST: $y=p x+1$
(iii)

Since T is the intersection of $S T$ and PT

$$
\begin{aligned}
& y=p x+1 \\
& \left.x+p y=2 p+p^{3}\right\} \\
& p y=p^{2} x+p . \\
& x=p+p^{3}-p^{2} x \ldots(2)-(3) \\
& x\left(1+p^{2}\right)=p\left(1+p^{2}\right) \\
& x=p \\
& y=p^{2}+1
\end{aligned}
$$

\therefore Cartesian equation of T :
$y=x^{2}+1$, i.e. $x^{2}=y-1$
Vertex (0,1), focal length $a=\frac{1}{4}$
(b)
(i) Show that $1+e^{-x}=\frac{e^{x}+1}{e^{x}}$.
(ii) The velocity v of a particle moving along the x-axis is given by $\frac{d x}{d t}=1+e^{-x}$ where x is the displacement of the particle from the origin in metres. Initially the particle is at the origin.
Find the time taken by the particle to reach a velocity of $1 \frac{1}{2} \mathrm{~ms}^{-1}$.
(i) \quad RHS $=\frac{e^{x}+1}{e^{x}}$

$$
\begin{aligned}
& =\frac{e^{x}}{e^{x}}+\frac{1}{e^{x}} \\
& =1+e^{-x} \\
& =\text { LHS }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d x}{d t}=1+e^{-x} \\
& \begin{aligned}
& \frac{d t}{d x}=\frac{1}{1+e^{-x}} \\
&=\frac{e^{x}}{1+e^{x}} \\
& t=\int \frac{e^{x}}{1+e^{x}} d x=\log \left(1+e^{x}\right)+c \\
& \text { At } t=0, x=0 \quad 0=\log _{e}(1+1)+c \quad \Rightarrow c=-\log _{e} 2 \\
& t=\log _{e}\left(1+e^{x}\right)-\log _{e} 2 \\
&=\log _{e}\left(\frac{1+e^{x}}{2}\right)
\end{aligned}
\end{aligned}
$$

when $v=\frac{3}{2}, \quad \frac{3}{2}=1+e^{-x}$

$$
e^{-x}=\frac{1}{2} \Rightarrow e^{x}=2 \Rightarrow x=\log _{e} 2
$$

when $x=\log _{e} 2, t=\log _{e}\left(1+e^{\ln 2}\right)-\log _{e} 2$

$$
=\log _{e} \frac{3}{2}
$$

It will take $\log _{e}\left(\frac{3}{2}\right)$ seconds.
(c) A runner sprints in an anticlockwise direction around a circular track of radius 100 metres with centre O at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. The runner's friend is standing at B, a distance of 300 metres from the centre of the track.

The runner starts at S and t seconds later is at point A. The distance $A B$ between the two friends is l and the distance covered by the runner on the track is L.
Let the angle subtended by the arc $S A$ be θ.
(i) From the diagram the coordinates of A are $(100 \cos \theta, 100 \sin \theta)$.

Use the distance formula to show that $l=100 \sqrt{10-6 \cos \theta}$.
(ii) At what rate is the distance between the friends changing at the moment when the runner is 250 metres from his friend and getting closer to him.
(i)

$$
\begin{aligned}
& A(100 \cos \theta, 100 \sin \theta) \quad B(300,0) \\
l^{2}= & (100 \cos \theta-300)^{2}+(100 \sin \theta-0)^{2} \\
= & 100^{2} \cos ^{2} \theta-2 \times 100 \times 300 \cos \theta+300^{2}+100 \sin ^{2} \theta \\
= & 100^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+300^{2}-2 \times 100 \times 300 \cos \theta \\
l= & \sqrt{100000-60000 \cos \theta} \\
= & 100 \sqrt{10-6 \cos \theta}
\end{aligned}
$$

(ii) $\frac{d L}{d t}=5 \quad \frac{d l}{d \theta}=\frac{600 \sin \theta}{2 \sqrt{10-6 \cos \theta}}$
$L=100 \theta$ (arc length) $\Rightarrow \frac{d L}{d \theta}=100$
$\frac{d l}{d t}=\frac{d l}{d \theta} \times \frac{d \theta}{d L} \times \frac{d L}{d t}$
$=\frac{600 \sin \theta}{2 \sqrt{10-6 \cos \theta}} \times \frac{1}{100} \times 5$
$=\frac{15 \sin \theta}{\sqrt{10-6 \cos \theta}}$
When $l=250, \quad 250=100 \sqrt{10-6 \cos \theta}$

$$
\left(\frac{5}{2}\right)^{2}=10-6 \cos \theta \quad \Rightarrow \cos \theta=\frac{5}{8}
$$

θ is in the 4th quadrant.
$\cos \theta=\frac{5}{8}, \sin \theta=-\frac{\sqrt{39}}{8}$

$$
\begin{gathered}
\frac{d l}{d t}=\frac{15\left(-\frac{\sqrt{39}}{8}\right)}{\sqrt{10-6 \times \frac{5}{8}}} \\
=-\frac{\left(\frac{15 \sqrt{39}}{8}\right)}{\sqrt{\frac{25}{4}}}=-\frac{15 \sqrt{39}}{8} \times \frac{2}{5} \\
=-\frac{3 \sqrt{39}}{4}
\end{gathered}
$$

The distance between the two friends is decreasing a rate of $\frac{3 \sqrt{39}}{4} \mathrm{~ms} \approx 4.7 \mathrm{~ms}$

