NORTH SYDNEY GIRLS HIGH SCHOOL

2017 TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet has been provided ٠
- In Questions 11 14, show relevant ٠ mathematical reasoning and/or calculations

Total marks – 70

Pages 3 - 6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section Pages 7 - 13

(Section II)

60 Marks

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

NAME:

TEACHER:

STUDENT NUMBER:

QUESTION	MARK
1–10	/10
11	/15
12	/15
13	/15
14	/15
TOTAL	/70

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

1 Consider the polynomial $P(x) = 3x^3 + 3x + a$. If x - 2 is a factor of P(x), what is the value of a? (A) -30 (B) -18 (C) 18 (D) 30

2 Let α , β and γ be the roots of $P(x) = 2x^3 - 5x^2 + 4x - 9$. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

(A)
$$\frac{5}{9}$$

(B) $-\frac{5}{9}$
(C) $\frac{4}{9}$
(D) $-\frac{4}{9}$

Which expression is equal to $\int \sin^2 2x \, dx$?

(A)
$$\frac{1}{2}\left(x-\frac{1}{4}\sin 4x\right)+c$$

3

(B)
$$\frac{1}{2}\left(x+\frac{1}{4}\sin 4x\right)+c$$

(C)
$$\frac{1}{2}\left(x-\frac{1}{2}\sin 4x\right)+c$$

(D)
$$\frac{1}{2}\left(x + \frac{1}{2}\sin 4x\right) + c$$

4 Which of the following is equivalent to $\frac{\sin x}{1 - \cos x}$?

(A) $\tan\left(\frac{x}{2}\right)$

(B)
$$-\tan\left(\frac{x}{2}\right)$$

(C)
$$\cot\left(\frac{x}{2}\right)$$

(D)
$$-\cot\left(\frac{x}{2}\right)$$

5 What are the asymptotes of $y = \frac{3x}{(x+1)(x-2)}$?

- (A) y = 0, x = -1, x = 2
- (B) y = 0, x = 1, x = -2
- (C) y = 3, x = -1, x = 2
- (D) y = 3, x = 1, x = -2

Which of the following is the range of the function $y = 2\sin^{-1} x + \frac{\pi}{2}$?

- (A) $-\pi \le y \le \pi$
- (B) $-\pi \le y \le \frac{3\pi}{2}$

(C)
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(D)
$$-\frac{\pi}{2} \le y \le \frac{3\pi}{2}$$

7 If *P* divides the interval *AB* internally in the ratio m:n, in what ratio does *A* divide the interval *BP*?

- (A) (m+n): -n
- (B) (m+n): -m

(C)
$$-n:(m+n)$$

(D)
$$-m:(m+n)$$

8 What is a general solution of $\tan 2\theta \tan \theta = 1$?

- (A) $2n\pi \pm \frac{\pi}{3}$ where *n* is an integer.
- (B) $(6n \pm 1)\frac{\pi}{6}$ where *n* is an integer.
- (C) $(4n\pm 1)\frac{\pi}{6}$ where *n* is an integer.

(D)
$$2n\pi \pm \frac{\pi}{6}$$
 where *n* is an integer.

6

In the diagram below, AB is the tangent to the circle at B and ADC is a straight line. If AB: AD = 2:1, then what is the ratio of the area of $\triangle ABD$ to the area of $\triangle CBD$?

- (A) 1:2
- (B) 1:3
- (C) 1:4
- (D) 2:3

10 In the figure below, AB is a vertical pole standing on horizontal ground BCD, where $\angle CBD = 90^\circ$. If the angle between the plane ACD and the horizontal ground is θ , then what is the value of θ closest to?

- (A) 45°
- (B) 53°
- (C) 62°
- (D) 69°

Section II

-

Total marks – 60 Attempt Questions 11–14 Allow about 1 hour 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate
$$\tan^{-1}\sqrt{x}$$
 with respect to x. 2
(b) Consider the function $f(x) = 1 + \frac{2}{x-3}$ for $x > 3$.
(i) What is the range of $f(x)$? 1
(ii) Find the inverse function $f^{-1}(x)$ and state its domain. 1
(c) Use the substitution $u = 3 + x$ to find $\int \frac{x+1}{\sqrt{3+x}} dx$. 3
(d) Solve $\frac{4}{x+2} \ge \frac{1}{x}$. 3
(e) Find $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$. Show all working. 2
(f) (i) Neatly sketch the graph of $y = \sin^{-1} x$. 1
(ii) By considering areas on the graph in (i), find the exact value of $\int_{0}^{\frac{1}{2}} \sin^{-1} x \, dx$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) During the early summer months, the rate of increase of the population P of cicadas is proportional to the excess of the population over 3000. The rate can be expressed by the differential equation $\frac{dP}{dt} = k(P 3000)$ where t is the time in months and k is a constant. At the beginning of summer the population is 4000 and one month later it is 10 000.
 - (i) Show that $P = 3000 + Ae^{kt}$ is a solution of the differential equation, 1 where A is a constant.
 - (ii) Find the value of A. 1
 - (iii) Show that the value of k is $\log_e 7$. 1
 - (iv) After how many weeks will the population reach half a million?2 (Assume 52 weeks in a year).

(b) The angle between the line 4x+3y=8 and the line ax+by+c=0 is 45° . **3** Find the possible values of the ratio a:b.

Question 12 continues on page 9

3

The shaded region in the diagram is bounded by the curve $y = \frac{1}{\sqrt{1+4x^2}}$,

the x-axis and the lines $x = -\frac{1}{2}$ and $x = \frac{\sqrt{3}}{2}$. Find the exact volume of the solid of revolution formed when the shaded region is rotated about the x-axis.

(d) (i) Express
$$3\sin x + \sqrt{3}\cos x$$
 in the form $A\sin(x+\alpha)$, where $0 < \alpha < \frac{\pi}{2}$. 2

(ii) Hence, or otherwise, sketch the graph of $y = 3\sin x + \sqrt{3}\cos x$ where $2 = 0 \le x \le 2\pi$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) The acceleration of a particle as it moves in a straight line is given by $\frac{d^2x}{dt^2} = -12\cos 2t \text{ where } x \text{ is the displacement in metres of the particle from}$ the origin at time t seconds. The particle starts from rest at the point x = 3.
 - (i) Find the displacement, x, of the particle as a function of t. 2
 - (ii) At what time is the particle at x = 0, and moving towards its initial position?
- (b) In the diagram below, the straight line *ACD* is a tangent at *A* to the circle with centre *O*. The interval *AOB* is a diameter of the circle The intervals *BC* and *BD* meet the circle at *E* and *F* respectively. Let $\angle BAF = \beta$.

(i) Explain why $\angle ABF = 90^\circ - \beta$. 1

(ii) Prove that the quadrilateral *CDFE* is cyclic.

3

1

Question 13 continues on page 11

(c) A ball on a spring is moving in simple harmonic motion with a vertical velocity $v \text{ cms}^{-1}$ given by $v^2 = -8 + 24y - 4y^2$ where y is the vertical displacement in cm.

(i)	Find the acceleration of the ball in terms of y .	2
(ii)	Find the centre of motion of the ball.	1
(iii)	Find the period of the oscillation.	1

(d) (i) Show that
$$n + (n+1) + (n+2) + \dots + (2n+1) = \frac{(3n+1)(n+2)}{2}$$
 1

(ii) Hence prove by mathematical induction that for all integers $n \ge 1$, **3**

$$1 + (2+3) + (3+4+5) + \dots + [n + (n+1) + (n+2) + \dots + (2n-1)] = \frac{n^2}{2}(n+1).$$

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Show that the equation of the normal to the parabola $x^2 = 4y$ at the point $P(2p, p^2)$ is $x + py = 2p + p^3$.
 - (ii) *S* is the focus of the parabola $x^2 = 4y$ and *T* is a point on the **1** normal such that *ST* is perpendicular to the normal. Write down the equation of *ST*.
 - (iii) Prove that the locus of T is a parabola and state its vertex and focal length. **3**

(b) (i) Show that
$$1 + e^{-x} = \frac{e^x + 1}{e^x}$$
. 1

(ii) The velocity v of a particle moving along the x-axis is given by $\frac{dx}{dt} = 1 + e^{-x}$ where x is the displacement of the particle from the origin in metres. Initially the particle is at the origin.

3

Find the time taken by the particle to reach a velocity of $1\frac{1}{2}$ ms⁻¹.

Question 14 continues on page 13

(c) A runner sprints in an anticlockwise direction around a circular track of radius 100 metres with centre O at a constant speed of 5 m/s. The runner's friend is standing at B, a distance of 300 metres from the centre of the track.

The runner starts at *S* and *t* seconds later is at point *A*. The distance *AB* between the two friends is *l* and the distance covered by the runner on the track is *L*. Let the angle subtended by the arc *SA* be θ .

- (i) From the diagram the coordinates of A are $(100\cos\theta, 100\sin\theta)$. **1** Use the distance formula to show that $l = 100\sqrt{10 - 6\cos\theta}$.
- (ii) At what rate is the distance between the friends changing at the moment4 when the runner is 250 metres from his friend and getting closer to him.

End of paper

NORTH SYDNEY GIRLS HIGH SCHOOL

2017 TRIAL HSC EXAMINATION

Mathematics Extension 1

1	Consider the polynomial $P(x) = 3x^3 + 3x + a$.
	If $x - 2$ is a factor of $P(x)$, what is the value of a ?
	Answer: A
	$P(2) = 0 \qquad 3 \times 2^3 + 3(2) + a = 0$
	a = -30
2	Let α , β and γ be the roots of $P(x) = 2x^3 - 5x^2 + 4x - 9$.
	Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
	Answer: C
	$\frac{4}{2}$
	$\frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha} = \frac{2}{\alpha} = \frac{4}{\alpha}$
	$\alpha\beta\gamma = \frac{9}{2}$ 9
2	Which correction is equal to $\int \sin^2 2x dx^2$
3	which expression is equal to $\int \sin 2x dx$?
	Answer: A
	$\int \sin^2 2x dx = \frac{1}{2} \int \left(1 - \cos 4x\right) dx$
	$=\frac{1}{2}\left(x-\frac{1}{4}\sin 4x\right)+c$
4	Which of the following is equivalent to $\frac{\sin x}{1 - \cos x}$?
	Answer: C
	Let $t = tan\left(\frac{x}{2}\right)$ $\frac{2t}{1+t^2} = \frac{2t}{1+t^2-1+t^2}$
	$1 - \frac{1}{1 + t^2}$
	$=\frac{1}{2}$

t

 $=\cot\left(\frac{x}{2}\right)$

6

7

-

What are the asymptotes of $y = \frac{3x}{(x+1)(x-2)}$?

Answer: A

Vertical asymptotes at x = -1, x = 2

$$\lim_{x \to \infty} \frac{\frac{3x}{x^2}}{\frac{x^2}{x^2} - \frac{x}{x^2} - \frac{2}{x^2}} = \lim_{x \to \infty} \frac{\frac{3}{x}}{1 - \frac{1}{x} - \frac{2}{x^2}} = 0$$

 \therefore horizontal asymptote at y = 0

Which of the following is the range of the function $y = 2\sin^{-1} x + \frac{\pi}{2}$?

Answer: D

$$-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$
$$-\pi \le 2 \sin^{-1} x \le \pi$$
$$-\frac{\pi}{2} \le 2 \sin^{-1} x + \frac{\pi}{2} \le \frac{3\pi}{2}$$

If *P* divides the interval *AB* internally in the ratio m:n, in what ratio does *A* divide the interval *BP*?

Answer: B

8 What is a general solution of $\tan 2\theta \tan \theta = 1$?

Answer: B

$$\frac{2 \tan \theta}{1 - \tan^2 \theta} \times \tan \theta = 1$$

$$2 \tan^2 \theta = 1 - \tan^2 \theta$$

$$3 \tan^2 \theta = 1$$

$$\cdot \tan \theta = \pm \frac{1}{\sqrt{3}} \implies \tan \theta = \tan \left(\pm \frac{\pi}{6} \right)$$

$$\theta = \pm \frac{\pi}{6} + n\pi \text{ where } n \text{ is an integer}$$

$$= \left(6n \pm 1 \right) \frac{\pi}{6}$$

In the diagram below, *AB* is the tangent to the circle at *B* and *ADC* is a straight line. If AB : AD = 2:1, then what is the ratio of the area of $\triangle ABD$ to the area of $\triangle CBD$?

Answer: B

 $AB^{2} = AD \times AC$ $4x^{2} = x \times AC \qquad \Rightarrow AC = 4x$ $\Delta ABD \text{ is similar to } \Delta ACB \text{ (two sides in ratio and included angle equal)}$ ratio of sides 1:2

ratio of areas 1:4

 \therefore area of $\triangle ABD$ to area of $\triangle CBD$ is 1:3

10 In the figure below, *AB* is a vertical pole standing on horizontal ground *BCD*, where $\angle CBD = 90^\circ$. If the angle between the plane *ACD* and the horizontal ground is θ , then what is the value of $\tan \theta$?

Answer: D	
$CD^2 = \sqrt{8^2 + 8^2}$	Pythagoras Theorem
$=8\sqrt{2}$	
Area of ∆ <i>BCD</i>	$=\frac{1}{2} \times 8 \times 8$ $= 32$
Area of $\triangle BCD$	$=\frac{1}{2} \times 8\sqrt{2} \times h$
$\therefore \frac{1}{2} \times 8\sqrt{2} \times h =$	$32 \qquad \Rightarrow h = 4\sqrt{2}$
$\tan \theta = \frac{15}{4\sqrt{2}}$	$\Rightarrow \theta \approx 69^{\circ}$

9

Question 11 (15 marks)

(a) Differentiate
$$\tan^{-1}\sqrt{x}$$
 with respect to x .

$$\frac{d}{dx}(\tan^{-1}\sqrt{x}) = \frac{1}{1+x} \times \frac{1}{2\sqrt{x}}$$

$$= \frac{1}{\sqrt{x}(2x+2)}$$
(b) Consider the function $f(x) = 1 + \frac{2}{x-3}$ for $x > 3$.
(i) What is the range of $f(x)$?
(ii) Find the inverse function $f^{-1}(x)$ and state its domain.
(i) $y > 1$
(ii) $x = 1 + \frac{2}{y-3}$
 $x - 1 = \frac{2}{y-3}$
 $y - 3 = \frac{2}{x-1}$
 $y = \frac{2}{x-1} + 3$ (domain: $x > 1$)

(c) Use the substitution u = 3 + x to find $\int \frac{x+1}{\sqrt{3+x}} dx$. $\int \frac{x+1}{\sqrt{3+x}} dx = \int \frac{u-2}{\sqrt{u}} du \qquad u = 3 + x$ du = dx du = dx x = u - 3 x + 1 = u - 2 $= \frac{2}{3}u^{\frac{3}{2}} - 2 \times 2u^{\frac{1}{2}} + C$ $= \frac{2}{3}(3+x)^{\frac{3}{2}} - 4(3+x)^{\frac{1}{2}} + C$

(d) Solve $\frac{4}{x+2} \ge \frac{1}{x}$. $\frac{4}{x+2} \ge \frac{1}{x} \qquad x \ne 0, 2$ $4(x+2)x^2 \ge (x+2)^2 x$ $4(x+2)x^2 - x(x+2)^2 \ge 0$ $x(x+2)[4x - (x+2)] \ge 0$ $x(x+2)(3x-2) \ge 0 \qquad x \ne 0, 2$ From the graph: -2 < x < 0, $x \ge \frac{2}{3}$

3

(e) Find $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$. Show all working.

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{1 - \left(\cos^2 x - \sin^2 x\right)}{x^2}$$
$$= \lim_{x \to 0} \frac{\left(2\sin^2 x\right)}{x^2}$$
$$= 2 \times \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2$$
$$= 2 \times \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \times \lim_{x \to 0} \left(\frac{\sin x}{x}\right)$$
$$= 2 \times 1 \times 1$$
$$= 2$$

2

-

(a)	Duri cicad	During the early summer months, the rate of increase of the population P of cicadas is proportional to the excess of the population over 3000. The rate				
	can b	be expressed by the differential equation $\frac{dP}{dt} = k(P - 3000)$ where t is				
	the t	the time in months and k is a constant. At the beginning of summer the				
	(i)	Show that $P = 3000 \pm 4e^{kt}$ is a solution of the differential equation	1			
	(1)	where A is a constant.	1			
	(ii)	Find the value of A.	1			
	(iii)	Show that the value of k is $\log_e 7$.	1			
	(1V)	After how many weeks will the population reach half a million?	2			
(a)	(i)	$P = 3000 + Ae^{kt} \implies P - 3000 = Ae^{kt}$				
		dP				
		$LHS = \frac{dt}{dt}$				
		$=kAe^{kt}$				
		=k(P-3000)				
		= RHS				
		$\therefore P = 3000 + Ae^{kt} \text{ is a solution.}$				
	(ii)	When $t = 0$, $P = 4000$				
		4000 = 3000 + A				
	(:::)	A = 1000				
	(111)	when $P = 10000$ and $t = 1$, $10000 = 3000 + 1000e^{\kappa}$				
		$7000 = 1000e^{k}$				
		$e^k = 7$				
		$k = \log_e 7$				
	(iv)	P = 500000				
		$500000 = 3000 + 1000e^{t\log_e 7}$				
		$497000 = 1000e^{t \log_e 7}$				
		$e^{t\log_e 7} = 497$				
		$t\log_e 7 = \log_e 497$				
		$t = \frac{\log_e 497}{\log_e 7} \approx 3.19$ $\frac{3.19}{12} \times 52 \approx 13.83$ weeks				

It will take 14 weeks.

(b)

-

The angle between the line 4x+3y=8 and the line ax+by+c=0 is 45° . Find the possible values of the ratio a:b.

$$m_{1} = \frac{4}{3} \qquad m_{2} = \frac{a}{b}$$

$$\tan 45^{\circ} = \left| \frac{-\frac{4}{3} - \left(-\frac{a}{b}\right)}{1 + \frac{4}{3} \times \frac{a}{b}} \right|$$

$$1 = \left| \frac{-4b + 3a}{\frac{3b}{3b + 4a}} \right|$$

$$1 = \left| \frac{-4b + 3a}{\frac{3b}{3b + 4a}} \right|$$

$$\therefore -4b + 3a = 3b + 4a \qquad \text{or} \qquad -4b + 3a = -(3b + 4a)$$

$$a = -7b \qquad 7a = b$$

$$\frac{a}{b} = -7 \qquad \frac{a}{b} = \frac{1}{7}$$

Ratio of *a* : *b* is -7:1 or 1:7

3

(c) The graph of
$$y = \frac{1}{\sqrt{1+4x^2}}$$
 is shown below. 3
The shaded region in the diagram is
bounded by the curve $y = \frac{1}{\sqrt{1+4x^2}}$, the
 $x - axis and the lines $x = -\frac{1}{2}$ and
 $x = \frac{\sqrt{3}}{2}$. Find the volume of the solid of
revolution formed when the shaded
region is rotated about the $x - axis$.$

$$V = \pi \int_{a}^{b} y^{2} dx$$

= $\pi \int_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{1 + 4x^{2}} dx$
= $\frac{\pi}{4} \int_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{(\frac{1}{2})^{2} + x^{2}} dx$
= $\frac{\pi}{4} \times 2 \left[\tan^{-1} 2x \right]_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}}$
= $\frac{\pi}{2} \left[\tan^{-1} \sqrt{3} - \tan^{-1}(-1) \right]_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}}$
= $\frac{\pi}{2} \left[\frac{\pi}{3} - \left(-\frac{\pi}{4} \right) \right]$
= $\frac{7\pi^{2}}{24} u^{3}$

(i) Express $3\sin x + \sqrt{3}\cos x$ in the form $A\sin(x+\alpha)$, where $0 < \alpha < \frac{\pi}{2}$.

(ii) Hence, or otherwise, sketch the graph of $y = 3\sin x + \sqrt{3}\cos x$ where $0 \le x \le 2\pi$.

2

2

(i)

(d)

$$3\sin x + \sqrt{3}\cos x = A\sin x \cos \alpha + A\cos x \sin \alpha$$

equating coefficients: $A\cos \alpha = 3$ $A\sin \alpha = \sqrt{3}$
 $A^2 \cos^2 \alpha + A^2 \sin^2 \alpha = 12$
 $A^2 = 12$ \Rightarrow $A = 2\sqrt{3}$
Also, $\frac{A\sin \alpha}{A\cos \alpha} = \frac{\sqrt{3}}{3}$
 $\tan \alpha = \frac{1}{\sqrt{3}}$ \Rightarrow $\alpha = \frac{\pi}{6}$
 $3\sin x + \sqrt{3}\cos x = 2\sqrt{3}\sin\left(x + \frac{\pi}{6}\right)$

(ii)

Question 13 (15 marks) Use a SEPARATE writing booklet.

The acceleration of a particle as it moves in a straight line is given by (a) d^2x $= -12\cos 2t$ and the particle started from rest at the point x = 3. dt^2 Find the displacement, x, of the particle as a function of t. 2 (i) At what time is the particle first at x = 0, and moving towards its (ii) 1 initial position? (i) $\ddot{x} = -12\cos 2t$ $\dot{x} = -\frac{12\sin 2t}{2} + c$ when $t = 0, v = 0 \implies c = 0$ $= -6\sin 2t + c$ $\dot{x} = -6\sin 2t$ $x = \frac{6\cos t 2t}{2} + c_1$ when t = 0, x = 3 $\implies 3 = 3 + c_1$ $\therefore c_1 = 0$ $x = 3\cos 2t$ (ii) $\rightarrow 1$ $\frac{\pi}{2}$ 0 3π π From the graph, x = 0 when particle is moving towards its initial position at $t = \frac{3\pi}{4}$ seconds. In the diagram below, the straight line ACD is a tangent at A to the circle with (b) centre O. The interval AOB is a diameter of the circle The intervals BC and *BD* meet the circle at *E* and *F* respectively. Let $\angle BAF = \beta$. Explain why $\angle ABF = 90^{\circ} - \beta$. (i) 1 (ii) Prove that the quadrilateral *CDFE* is cyclic. 3 D A C(i) $\angle AFB = 90^{\circ}$ (angle in a semi-circle) ß $\angle ABF + \beta + 90^{\circ} = 180^{\circ}$ (angle sum of triangle) E $\angle ABF = 90 - \beta$ (ii) 0 $\angle BAF = \angle BEF$ (angle in the same segment) F $=\beta$ $\angle BAD = 90^{\circ}$ (tangent perpendicular to radius) $\angle ADB+(90-\beta)+90=180$ In $\triangle BAD$, В

 $\angle CDF = \angle FEB = \beta$ $\therefore CDFE$ is cyclic (exterior angle of a cyclic quadrilateral)

c)

 $\angle ADB = \beta$

velocity v cms⁻¹ given by $v^2 = -8 + 24y - 4y^2$ where y is the vertical displacement in cm. Find the acceleration of the ball in terms of y. 2 (i) Find the centre of motion of the ball. 1 (ii) Find the period of the oscillation. 1 (iii) (i) iii) $n^2 = 4$ $v^2 = -8 + 24v - 4v^2$ n = 2 $\frac{1}{2}v^2 = -4 + 12y - 2y^2$ $\therefore T = \frac{2\pi}{n} = \frac{2\pi}{2} = \pi \sec \theta$ $\therefore \ddot{y} = \frac{d}{dy}(-4 + 12y - 2y^2)$ = 12 - 4y= -4(y-3)centre of motion is at x = 3. (ii) Show that $n + (n+1) + (n+2) + \dots + (2n+1) = \frac{(3n+1)(n+2)}{2}$ (d) (i) 1 Hence prove by mathematical induction that for all integers $n \ge 1$, 3 (ii) $1 + (2+3) + (3+4+5) + \dots + [n + (n+1) + (n+2) + \dots + (2n-1)] = \frac{n^2}{2}(n+1).$ arithmetic series: $a = n, \ l = (2n+1),$ number of terms = (2n+1) - n + 1(i) = n + 2 $\therefore n + (n+1) + (n+2) + \dots (2n+1) = \frac{(n+2)}{2} (n + (2n+1))$ $=\frac{(3n+1)(n+2)}{2}$ Prove true for n=1 (ii) $RHS = \frac{1}{2}(1+1) = 1$ LHS=1 LHS=RHS \therefore true for n = 1. Assume true for n = k. $1 + (2+3) + (3+4+5) + \dots + [k + (k+1) + (k+2) + \dots + (2k-1)] = \frac{k^2}{2}(k+1).$ Prove true for n = k + 1Required to prove: $1 + (2+3) + \dots + [k + (k+1) + \dots + (2k-1)] + [(k+1) + ((k+1) + 1) + \dots + (2(k+1)-1)] = \frac{(k+1)^2}{2}((k+1) + 1).$ $1 + (2+3) + \dots + [k + (k+1) + \dots + (2k-1)] + [(k+1) + (k+2) + \dots + (2k+1))] = \frac{(k+1)^2}{2}(k+2)$ LHS = 1 + (2+3) + ... + [k + (k+1) + ... + (2k-1)] + [(k+1) + (k+2) + ... + (2k+1)]

$$= \frac{k^{2}}{2}(k+1) + [(k+1) + (k+2) + ... + (2k+1)] \text{ from assumption}$$

$$= \frac{k^{2}}{2}(k+1) + \frac{(3k+1)(k+2)}{2} - k \quad \text{from part (i)}$$

$$= \frac{k^{2}(k+1) + 3k^{2} + 7k + 2 - 2k}{2}$$

$$= \frac{k^{2}(k+1) + (3k+2)(k+1)}{2}$$

$$= \frac{(k+1)[k^{2} + 3k + 2]}{2}$$

$$= \frac{(k+1)(k+1)(k+2)}{2}$$

$$= \frac{(k+1)^{2}(k+2)}{2}$$

$$= \text{RHS}$$
The provide is true for $n = k$, then it is true for $n = k+1$.

Hence, if the result is true for n = k, then it is true for n = k+1... the result is true for all $n \ge 1$ by mathematical induction

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that the equation of the normal to the parabola
$$x^2 = 4y$$
 at the point $P(2p, p^2)$ is $x + py = 2p + p^3$.
(ii) *S* is the focus of the parabola $x^2 = 4y$ and *T* is a point on the normal such that *ST* is perpendicular to the normal. Write down the equation of *ST*.
(iii) Prove that the locus of *T* is a parabola with vertex (0,1) and with focal length $\frac{1}{4}$ that of the parabola $x^2 = 4y$.
(i) $x^2 = 4y$ (focal length $a = 1$)
 $y = \frac{x^2}{4}$
 $\frac{dy}{dx} = \frac{x}{2}$
(i) $x^2 = 4y$ (focal length $a = 1$)
 $y = \frac{x^2}{4}$
 $\frac{dy}{dx} = \frac{x}{2}$
At P, $x = 2p$, $\frac{dy}{dx} = \frac{2p}{2} = p$ (gradient of tangent at *P*)
 \therefore Gradient of normal $= -\frac{1}{p}$
Equation of normal:
 $y - y_1 = m(x - x_1)$
 $y - p^2 = -\frac{1}{p}(x - 2p)$
 $py - p^3 = -x + 2p$
 $x + py = 2p + p^3$
(ii) Gradient of *ST* = *p*
Equation of *ST*. $y = px + 1$
(iii) Since *T* is the intersection of *ST* and *PT*
 $y = px^2 + 1$, i......(1)
 $x + py = 2p + p^3$, $y - \dots$ (2)
 $py = p^2x + p \dots$ (1) $x - p^2 = p(1 + p^2)$
 $x = p + p^5 - p^2x...(2) - (3)$
 $x(1 + p^2) = p(1 + p^2)$
 $x = p$
 $y = p^2 + 1$
 \therefore Cartesian equation of *T*:
 $y = x^2 + 1$, *i.e.* $x^2 = y - 1$
Vertex (0,1), focal length $a = \frac{1}{4}$

_

(b) (i) Show that $1 + e^{-x} = \frac{e^x + 1}{e^x}$.

(ii) The velocity v of a particle moving along the *x*-axis is given by $\frac{dx}{dt} = 1 + e^{-x}$ where x is the displacement of the particle from the origin in metres. Initially the particle is at the origin.

Find the time taken by the particle to reach a velocity of $1\frac{1}{2}$ ms⁻¹.

(i) RHS =
$$\frac{e^x + 1}{e^x}$$

$$= \frac{e^x}{e^x} + \frac{1}{e^x}$$

$$= 1 + e^{-x}$$

$$= LHS$$
(ii) $\frac{dx}{dt} = 1 + e^{-x}$

$$\frac{dt}{dx} = \frac{1}{1 + e^{-x}}$$

$$= \frac{e^x}{1 + e^x}$$

$$t = \int \frac{e^x}{1 + e^x} dx = \log(1 + e^x) + c$$
At $t = 0, x = 0$ $0 = \log_e(1 + 1) + c$ $\Rightarrow c = -\log_e 2$
 $t = \log_e(1 + e^x) - \log_e 2$

$$= \log_e(\frac{1 + e^x}{2})$$
when $v = \frac{3}{2}, \quad \frac{3}{2} = 1 + e^{-x}$

$$e^{-x} = \frac{1}{2} \Rightarrow e^x = 2 \Rightarrow x = \log_e 2$$
when $x = \log_e 2, t = \log_e(1 + e^{\ln 2}) - \log_e 2$

$$= \log_e(\frac{3}{2})$$
It will take $\log_e(\frac{3}{2})$ seconds.

1

3

(c) A runner sprints in an anticlockwise direction around a circular track of radius 100 metres with centre O at a constant speed of 5 m/s. The runner's friend is standing at B, a distance of 300 metres from the centre of the track.

The runner starts at *S* and *t* seconds later is at point *A*. The distance *AB* between the two friends is *l* and the distance covered by the runner on the track is *L*. Let the angle subtended by the arc *SA* be θ .

- (i) From the diagram the coordinates of A are $(100\cos\theta, 100\sin\theta)$. Use the distance formula to show that $l = 100\sqrt{10 - 6\cos\theta}$.
- (ii) At what rate is the distance between the friends changing at the moment4 when the runner is 250 metres from his friend and getting closer to him.

1

$$A (100\cos\theta, 100\sin\theta) \qquad B (300,0)$$

$$l^{2} = (100\cos\theta - 300)^{2} + (100\sin\theta - 0)^{2}$$

$$= 100^{2}\cos^{2}\theta - 2 \times 100 \times 300\cos\theta + 300^{2} + 100\sin^{2}\theta$$

$$= 100^{2}(\cos^{2}\theta + \sin^{2}\theta) + 300^{2} - 2 \times 100 \times 300\cos\theta$$

$$l = \sqrt{100000 - 60000\cos\theta}$$

$$= 100\sqrt{10 - 6\cos\theta}$$

(ii)
$$\frac{dL}{dt} = 5 \qquad \frac{dl}{d\theta} = \frac{600 \sin \theta}{2\sqrt{10 - 6\cos \theta}}$$
$$L = 100\theta \text{ (arc length)} \Rightarrow \frac{dL}{d\theta} = 100$$
$$\frac{dl}{dt} = \frac{dl}{d\theta} \times \frac{d\theta}{dL} \times \frac{dL}{dt}$$
$$= \frac{600 \sin \theta}{2\sqrt{10 - 6\cos \theta}} \times \frac{1}{100} \times 5$$
$$= \frac{15 \sin \theta}{\sqrt{10 - 6\cos \theta}}$$
When $l = 250$, $250 = 100\sqrt{10 - 6\cos \theta}$
$$\left(\frac{5}{2}\right)^2 = 10 - 6\cos \theta \Rightarrow \cos \theta = \frac{5}{8}$$

The distance between the two friends is decreasing a rate of $\frac{3\sqrt{39}}{4}$ ms ≈ 4.7 ms