Student Name:	Teacher Name:
A CONTRACTOR OF THE CONTRACTOR	

Penrith High School

Mathematics Department

TRIAL HIGHER SCHOOL CERTIFICATE 2008

Year 12 Mathematics Extension 1

Time Allowed: 2 HOURS plus 5 minutes reading time

DIRECTIONS TO CANDIDATE:

- Attempt all questions.
- Show all necessary working. Marks may be deducted for careless or badly arranged work.
- Only approved calculators may be used.

Office Use	e Only									
Question	1	2	3	4	5 -	6	7	8	TOTAL	%
Mark	79	/8	/10	/10	′10	/9	/10	10	176	

Question(1)

- Solve the inequality $\frac{2t+1}{t-2} > 1$. a)
- A and B are the points (-2, -1) and (1, 5) respectively. Find the co-ordinates of the point P which divides b) AB externally in the ratio 5: 3.†
- Prove by mathematical induction that

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2} (n+1)^{2}}{4} \dagger$$

Question(2)

a)

Evaluate $\int_{0}^{3} \frac{x}{\sqrt{1+x}} dx$ using the substitution $x = u^2 - 1$.

- Consider the function $f(x) = \frac{x}{x^2 4}$. b)
 - Find the natural domain of the function.
 - ii. Show that the function is decreasing throughout its natural domain.
 - iii. Sketch the graph of the function showing clearly the coordinates of any points of intersection with the x axis or the ν axis and the equations of any asymptotes.

Question(3)

- The function h(x) is given by $h(x) = \cos 3x$. The graph y = h(x) for $0 \le x \le \frac{\pi}{6}$ is rotated about the xa) axis. Find the volume of the solid generated.
- b) From a point A the bearings of two points B and C are 065°T and 105°T respectively. From a point D, 5km due east of A, the bearings of B and C are 030° and 117°T. If the distance between B and C is d km,
 - Draw a diagram of this information

Show that
$$AC = \frac{5\sin 27^{\circ}}{\sin 12^{\circ}}$$

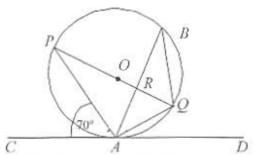
Show that
$$AC = \frac{5 \sin 27^{\circ}}{\sin 12^{\circ}}$$

By considering $\triangle ABC$ show that
$$d^{2} = 25\{(\frac{\sin 60^{\circ}}{\sin 35^{\circ}})^{2} + (\frac{\sin 27^{\circ}}{\sin 12^{\circ}})^{2} - \frac{2 \sin 60^{\circ} \sin 27^{\circ} \cos 40^{\circ}}{\sin 35^{\circ} \sin 12^{\circ}}\}$$

Find all angles θ where $-\pi \le \theta \le \pi$ for which $\sin 2\theta = \cos \theta$. C)

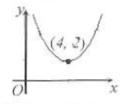
Question(4)

- a) Find $\lim_{x\to 0} \frac{\sin 5x}{2x}$.
- b) i. Show that: $\cos \theta \sqrt{3} \sin \theta = 2 \cos (\theta + \frac{\pi}{3})$.
 - ii. Hence solve the equation $\cos \theta \sqrt{3} \sin \theta = 1$ for θ in the interval $0 \le \theta \le 2\pi$.
- c) By making the substitution $t = tan \frac{\theta}{2}$ show that $\frac{1 \cos \theta}{\sin \theta} = \frac{\sin \theta}{1 + \cos \theta}$.
- d) Tangents are drawn to the curve y = e^x at the points where x = 0 and x = 1. Find i. the gradients of each of these tangents
 - ii. the acute angle between these tangents correct to the nearest degree.†


Question(5)

- a) i. Show that the equation $2x^3 + x 8 = 0$ has a root that lies between x=1 and x=2.
 - Taking 1.5 as a first approximation to this root, use Newton's Method to obtain a second approximation
- b) Consider the polynomial $P(x) = 2x^3 3x^2 11x + 6$
 - i. Show that 3 is a zero of P(x).
 - ii. Express P(x) as a product of 3 linear factors.
 - iii. Sketch the graph of y=P(x) and solve the inequality $P(x) \le 0$.
- c) The equation $x^3 + 2x^2 4x 12 = 0$ has roots α , β and γ . Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.

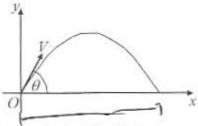
Question(6)


- a) Differentiate: $tan^{-1}7x$.
- b) Find the exact value of $\int_{-2}^{2} \frac{1}{\sqrt{16-x^2}} dx$.

c)

In the figure PQ is a diameter of the circle centre O, CD is a tangent contacting the circle at A. $\angle CAP = 70^{\circ}$

- i. Copy the diagram
- ii. Find, giving reasons, the size of ∠ ABQ
- d) The graph of $y = (x-4)^2 + 2$ is shown in the diagram.


- Find the largest positive domain for which the graph defines a function f(x) which has an
 inverse.
- ii. Find this inverse function and state its domain.

Question(7)

- a) i. Show that $\frac{d}{dx}(\frac{1}{2}v^2) = \frac{dv}{dt}$.
 - ii. A particle moves in a straight line with velocity $v \text{ cms}^{-1}$ so that $v^2 = -9x^2 + 18x + 27$ where x centimetres is its displacement from a fixed point O.
 - α . Prove that the motion is simple harmonic
 - β. Find the centre of motion, the period and the extreme points of the motion
- b) i. At any time t the rate of cooling of the temperature T of a body, when the surrounding temperature is P, is given by the equation \(\frac{dT}{dt} = -k(T-P) \), for some constant k. Show that the solution \(T-P+Ae^{-kt} \), for some constant A, satisfies this equation.
 - A heated body is immersed in a water bath kept at a constant 25°C and cools from 180°C to 120°C in 12 minutes. After how many minutes from the start of cooling does the body cool to 90°?

Question(8)

- a). $P(2ap, ap^2)$ is a variable point on the parabola $x^2 = 4ay$ and S is the focus. The interval joining P and S is produced to Q so that PS = SQ. Find
 - a. Find the co-ordinates of Q in terms of p
 - b. Find the Cartesian equation of the locus of Q.
 - c. Describe the locus in words
- b) A gun fires shells with velocity V = 200 metres per second at an elevation of θ degrees, $0^{\circ} \le \theta \le 90^{\circ}$

- i. Show the equations of motion for the shell in flight are $x = 200 \cos \theta t$ and $y = -5t^2 + 200 \sin \theta t$ (Air resistance is to be neglected and the acceleration due to gravity is taken as 10 ms^{-2} .)
- ii. Show that the range of the shell is 4000sin2θ metres
- iii. Between what values must θ lie for the range of the shell to be greater than 3000metres?

[[End-Of-Qus]]

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a \neq 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \ x > a > 0$$

NOTE: $ln x = log_e x$, x > 0