Penrith Selective
High School

2011

Higher School Certificate
Trial Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question
- All questions are of equal value
- Staple this test to your answers
- Attempt Questions 1 - 7

Total marks - 84

Question	Mark
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 12$
Total	$/ 84$
Percentage	

Student's Name: \qquad
Teacher: \qquad

Question 1 (Start a new page).

a) Find the coordinates of the point which divides the interval joining $(-3,5)$ to $(8,4)$ in the ratio $1: 3$
b) Find the equations of the two lines inclined at 45° to the line $3 x+y=8$ and passing through the point $A(4,0)$.
c) Find $\int x \sqrt{3-x} d x$, using the substitution $u=3-x$
d) Solve $\frac{2 x+5}{x} \geq 1$
e) Without using a calculator, show that $\sin \left[\cos ^{-1}\left(\frac{3}{5}\right)+\tan ^{-1}\left(-\frac{3}{4}\right)\right]=\frac{7}{25}$

Question 2 (Start a new page).

a) Find the Cartesian equation of the curve and describe it geometrically if $x=\sin \theta+\cos \theta$ and $y=\sin \theta-\cos \theta$
b) i) Derive the equation of the normal to $x^{2}=4 a y$ at $\left(2 a p, a p^{2}\right)$.
ii) The chord joining $\mathrm{P}\left(2 a p, a p^{2}\right)$ to $\mathrm{Q}\left(2 a q, a q^{2}\right)$ passes through $T(0,-2 a)$ show that $p q=2$.
c) $A D$ is a diameter of the circle centre O. E is a point on the circumference.

Tangents at A and E meet at C. $C E$ and $A D$ meet at B.
Prove that angle $A C B=2$ (angle $D E B$).

Question 3 (Start a new page).

The polynomial $P(x)=0$ has a double root at $x=a$.
a) By putting $P(x)=(x-a)^{2} Q(x)$, show that $P^{\prime}(a)=0$.
b) The equation $P(x)=m x^{4}+n x^{3}-6 x^{2}+22 x-12=0$ has a double root at $x=1$. Find the values of m and n.
c) Using the fact that $x=3$ is also a root of $P(x)$, express $P(x)$ in factorised form.
d) Solve $P^{\prime}(x)=0$ and state if $x=1$ represents a local minimum or local maximum.
e) Show on a sketch of $P(x)$ where it cuts the axes and the x-values of the turning points.
f) From the graph solve $P(x)>0$

Question 4 (Start a new page).

a) Let $S_{n}=1^{2}+2^{2} \ldots \ldots \ldots+n^{2}$, for $n=1,2,3, \ldots$
i) Use Mathematical Induction to prove that for $n=1,2,3, \ldots$

$$
S_{n}=\frac{1}{6} n(n+1)(2 n+1)
$$

ii) By using the result of part (i) estimate the least n such that

$$
S_{n} \geq 10^{11}
$$

b) i) How many different arrangements are there of the letters

ARRANGEMENT
ii) How many of these begin with the letter R ?
c) Evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{4} x d x$, using the substitution $u=\tan x$

Question 5 (Start a new page).

a) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2} 3 x d x$
b) i) Express $-\sin x-\sqrt{3} \cos x$ in the form $R \cos (x-\alpha)$
ii) Hence solve $-\sin x-\sqrt{3} \cos x=2$ for $0 \leq x \leq 2 \pi$.

Give the solutions correct to 3 decimal places.
c) Prove that $\frac{1-\tan \theta \tan 2 \theta}{1+\tan \theta \tan 2 \theta}=4 \cos ^{2} \theta-3$

Question 6 (Start a new page).

a) $f(x)=x-\frac{1}{x}, x>0$
i) Show that $f(x)$ has no stationary points.
ii) Describe the behaviour of $f(x)$ as x approaches the extremities of its domain.
iii) Sketch, on one diagram, graphs of $y=x, y=f(x)$ and $y=f^{-1}(x)$
iv) If $x=y-\frac{1}{y}$ and $y>0$, simplify, in terms of $y, \quad x+\sqrt{x^{2}+4}$
v) Write the expression for $f^{-1}(x)$ in terms of x
b) i) \quad Find $\frac{d}{d x}\left[\sin ^{-1}(2 x-1)\right]$
ii) Hence, deduce that $\int_{\frac{3}{4}}^{1} \frac{d x}{\sqrt{x-x^{2}}}=\frac{\pi}{3}$

Question 7 (Start a new page).

a) The rate at which a body cools is assumed to be proportional to the difference between its temperature T and the constant temperature P of the surrounding medium.
This can be expressed by the differential equation:
$\frac{d T}{d t}=k(T-P) \quad$ where t is the time in hours and k is a constant.
i) Show that $T=P+A e^{k t}$, where A is a constant, is a solution of the differential equation.
ii) A heated body cools from $90^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 3 hours. The temperature of the surrounding medium is $20^{\circ} \mathrm{C}$. Find the temperature of the body after one further hour has elapsed. Give your answer correct to the nearest degree.
b) A particle is projected from a point P on horizontal ground, with speed Vms^{-1} at an angle of elevation to the horizontal of α.

Its equations of motion are $\ddot{x}=0, \ddot{y}=-g$.
i) Write down expressions for its horizontal (x) and vertical (y) displacements from P after t seconds.
ii) Determine the time of flight of the particle.
iii) The particle reaches a point Q, as shown, where the direction of flight makes an angle β with the horizontal. Show that the time taken to travel from P to Q is:

$$
\frac{V \sin (\alpha-\beta)}{g \cos \beta} \text { seconds. }
$$

iv) Consider the case when $\beta=\frac{\alpha}{2}$. If the time taken to travel from P to Q is then one-third of the total time of flight, find the value of α.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec c^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a \neq 0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{aligned}
$$

Q1 a)

$$
\begin{aligned}
& (-3,5)(8,4) \quad 1: 3 \\
& x=\frac{3 \times-3+1 \times 8}{4}=\frac{-1}{4} \quad y=\frac{3 \times 5+1 \times 40}{4}=\frac{19}{4} \\
& \left(-1 / 2, \frac{19}{4}\right)
\end{aligned}
$$

b) $y=8-3 x, \quad m_{2}=-3$

$$
\begin{aligned}
\tan 45^{\circ} & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|, \\
1 & =\left|\frac{-3-m_{2}}{1-3 m_{2}}\right|
\end{aligned}
$$

$$
\begin{array}{rlr}
-\frac{3-m_{2}}{1-3 m_{2}} & =1 & \text { or } \\
-3-m_{2} & =1-3 m_{2} \\
2 m_{2} & =4 & \\
m_{2} & =2 & \text { or }
\end{array}
$$

$$
\frac{-3-m_{2}}{1-3 m_{2}}=-1
$$

$$
-3-m_{2}=3 m_{2}-1
$$

$$
-2=4 m_{2}
$$

$$
m_{2}=-\frac{1}{2}
$$

At $(4,0) \quad y-0=2(x-4)$

$$
y=2 x-8
$$

$$
\begin{aligned}
& y=-\frac{1}{2}(x-4) \\
& y=-\frac{1}{2} x+2
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \int x \sqrt{3-x} d x \quad u=3-x \text { so } x=3-u \\
& =\int u^{\frac{1}{3}}(3-u) d u \\
& =\int-3 u^{\frac{1}{2}}+u^{3 / 2} d u=-1 \text { so } d x=-d u \\
& =\frac{2}{d x} u^{5 / 2}-2 u^{3 / 2}+C \\
& =\frac{2}{(13-x)^{5}}-2 \sqrt{(3-x)^{3}}+C
\end{aligned}
$$

d)

$$
\text { Case } 1 \begin{gathered}
x>0 \\
2 x+5 \geqslant x \\
x \geqslant-5
\end{gathered} \quad \text { Case } 2 x<0
$$

$y=2 x-8$
d) $\frac{2 x+5}{x} \geqslant 1 \quad$ Case $1 \quad \begin{aligned} & x>0 \\ & 2 x+5 \geqslant x\end{aligned} \quad$ Case $2 x<0$
(e) $\sin \left[\cos ^{-1}\left(\frac{3}{5}\right)+\tan ^{-1}\left(\frac{-3}{4}\right)\right]=\frac{1}{25}$ (1)

Let $\alpha=\cos ^{-1}\left(\frac{3}{3}\right)$

$$
\sin \alpha=\frac{4}{5}
$$

Let $\beta=\tan ^{-1}\left(\frac{-3}{4}\right) \quad-\frac{\pi}{2}<\beta<\frac{\pi}{2} \therefore 4 \operatorname{Range}$ of $\tan ^{-1}$
$\begin{aligned} & \cos \beta=\frac{4}{5} \\ & \sin \beta=-\frac{3}{5} \frac{5}{\beta} \\ & 4\end{aligned}$

$$
\begin{aligned}
\text { LAS of () } & =\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{4}{3} \times \frac{4}{5}+\frac{3}{5} \times \frac{-3}{5}=\frac{7}{25}
\end{aligned}
$$

(O2) a)

$$
\begin{aligned}
& x=\sin \theta+\cos \theta \quad y=\sin \theta-\cos \theta \\
& x^{2}=\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta \\
& y^{2}=\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta .
\end{aligned}
$$

aircle ceuthe $(0,0)$ roduus $\sqrt{2}$.

$$
\begin{aligned}
& x^{2}+y^{2}=2\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& x^{2}+y^{2}=2 \quad \therefore \text { circle, centre }(0,0) \\
& \text { raduis }=\sqrt{2}
\end{aligned}
$$

b).i) $x^{2}=4 a y$ at $\left(2 a p, a p^{2}\right)$

$$
\begin{aligned}
y & =\frac{x^{2}}{4 a} \\
\frac{d y s}{d x} & =\frac{2 x}{4 a}=\frac{x}{2 a} .
\end{aligned}
$$

when $x=2 a p, \frac{d y}{d x}=\frac{2 a p}{2 a}=p$.
\therefore Sradiant of normal $=\frac{-1}{\rho}$
\therefore Equ of Normal

$$
\begin{aligned}
y-a p^{2} & =-\frac{1}{p}(x-2 a p) . \\
p y-a p^{3} & =-x+2 a p . \\
x+p y & =a p^{3}+2 a p .
\end{aligned}
$$

ii) (hoord $p\left(2 a p, a p^{2}\right)+Q\left(2 a q, a q^{2}\right)$

$$
\begin{aligned}
m=\frac{a p^{2}-a q f^{2}}{2 a p-2 q} & =\frac{a(p+y)(p-q)}{2 a(p-q)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

Fin of Churod

$$
\begin{aligned}
y-a p^{2} & =\frac{p+y}{2}(x-2 a p) . \\
y-a p^{2} & =\frac{p+y}{2}(x)-a p^{2}-a p q . \\
y & =\frac{p+q}{2}(x)-a p q
\end{aligned}
$$

Q3

$$
\text { a) } \begin{aligned}
P(x) & =(x-a)^{\prime} Q(x) \\
P^{\prime}(x) & =(x-a)^{2} Q^{\prime}(x)+2(x-a) Q(x) \\
P^{\prime}(a) & =(a-a)^{2} Q^{\prime}(a)+2(a-a) Q(a) \\
& =O^{2} Q^{\prime}(a)+2(0) Q(a)
\end{aligned}
$$

c).

$$
\text { b) } \frac{=0}{P(x)=m x^{4}+n x^{3}-6 x^{2}+22 x-12}
$$

$$
P^{\prime}(x)=4 m x^{3}+3 n x^{2}-12 x+22
$$

$$
\begin{gathered}
P(1)=m+n-6+22-12=0 \\
m+n=-4
\end{gathered}
$$

$$
\begin{equation*}
m+n=-4 \tag{1}
\end{equation*}
$$

Let $\angle D E B=x$.

$$
\lim _{643}+3 n=-10 \ldots \text { (2) }
$$

$\angle C A D=90^{\circ}(\angle 6 / t$ tany t modins
$\therefore \angle C A E=90^{\circ}-x$.
$\angle A E D=90^{\circ} \mathrm{CL}$ in semi-unio
$\therefore \angle C E A=180-90-x$ (CEERKM

$$
=90-x
$$

\therefore In $\triangle A C E$

$$
\begin{aligned}
\angle A C E & =180-2(90-x) \\
& =180-180+2 x \\
& =2 x . \\
\therefore \angle A C E & =2 \times \angle D E B
\end{aligned}
$$

$$
p^{\prime}(1)=4 m+3 n-12+22=0
$$

x(1) bu3
$5 m+3 n=-12 \cdots$ 3
(2) (3) $m=2$.

Sub into (1)

$$
\begin{aligned}
2+n & =-4 \\
n & =-6 \\
\therefore m=2 \quad n & =-6
\end{aligned}
$$

c) $P(x)=2 x^{4}-6 x^{3}-6 x^{2}+22 x-12=0$ $(x-1)^{2}(x-3)$ is a factor $\dot{i}\left(x^{z}-2 x+1\right)(x-3)$

$$
=x^{3}-5 x^{2}+7 x-3
$$

d) $P^{\prime}(x)=8 x^{3}-18 x^{2}-12 x+22$.

$$
P^{\prime}(x)=0
$$

$x-1$ is a factor as $x=1$ is a double root.

$$
\begin{gathered}
x - 1 \longdiv { 8 x ^ { 3 } - 1 8 x ^ { 2 } - 1 2 x + 2 2 } \\
8 x^{3}-8 x^{2}
\end{gathered}
$$

e) $x=\frac{5-\sqrt{x 1}}{8}=\frac{1}{2}=\frac{5+\sqrt{20}}{8}$
f) $P(x)>0$
$x<-2, x>3$

$$
\begin{aligned}
& \left.x^{2}-5 x^{2}+7 x-3\right) \frac{2 x+4}{\frac{2 x^{4}-6 x^{3}-6 x^{2}+22 x-12}{}} \\
& \frac{2 x^{4}-10 x^{3}+14 x^{2}-6 x}{4 x^{3}-20 x^{2}+2 x-12} \\
& \frac{4 x^{3}--20 x^{2}+2 x-12}{2}+
\end{aligned}
$$

4, i) Prove $1^{2}+2^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)(1)$
step Prove statement tine for $n=1$
LHS of $\left(D=h^{2}=1 \quad\right.$ RUS of $(1)=\frac{1}{6} \times 1 \times 2 \times 3=1$
LAS $=$ RUS \therefore Statement true for $n=1$.
Step 2 Assume statement tine for $n=k$ Le assume $1^{2}+2^{2} \ldots \ldots+k^{2}=\frac{1}{6} k(k+1)(2 k+1)$
Prove Statement tire for $n=k+1$
i. prove $\left.k^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{1}{6}(k+1)(k+1) k-1\right)(2(k+1)+1)^{\prime}$

$$
=\frac{1}{6}(k+1)(k+2)(2 k+3)
$$

Proof: LHS of (2) $=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2}$ (By

$$
\begin{aligned}
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
= & \frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
= & \frac{1}{6}(k+1)\left(2 k^{2}+k+6 k+6\right) \\
= & \frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\
= & \frac{1}{6}(k+1)(2 k+2)(2 k+3) \\
= & \text { RHS OF (2). }
\end{aligned}
$$

\therefore Assuming Statement true for $n=k$ we have
proved Statement the for $n=k+1$,
Step 3 Assuming statement the for $n=k$ then statement true for $n=k+1$. Statemantis has been proved time for $n=1, \therefore$ Statement the for $n=1+1=2$, \therefore statement it true for $n=2+1=3$, etc $\therefore B_{y}$, mathematical induction, statement time for all posture integer n.
(ii) Solve $S_{n} \geqslant 10^{11}$

$$
\begin{aligned}
\therefore \quad \frac{1}{6} n(n+1)(2 n+1) & \geqslant 10^{11} \\
n(n+1)(2 n+1) & \geqslant 6 \times 10^{11} \\
n\left(2 n^{2}+3 n+1\right) & \geqslant 6 \times 10^{11} \\
2 n^{3}+3 n^{2}+n & \geqslant 6 \times 10^{11}
\end{aligned}
$$

Dominants tom

$$
\begin{aligned}
& \sqrt[3]{3 \times 10^{11}}=6694.3 \quad \text { Try } 6694 \\
& \therefore 6.0004 \times 10^{11} \\
& \therefore n=6694 \\
& \text { is least. }
\end{aligned}
$$

$=\int_{0}^{\frac{\pi}{4}} u^{3} \sec ^{2} x d u$
$=\int u^{3}\left(1+u^{2}\right) d u$
$=\int_{0}^{1} u^{3}+u^{5} d x$
$=\left[\frac{u^{4}}{4}+\frac{u^{6}}{b}\right]_{0}^{1}$
$=\frac{1}{4}+\frac{1}{6}-0=\frac{5}{12}$

$$
\begin{aligned}
& \text { (u) } \frac{10!}{\swarrow!2!2!} \text { or } \frac{2 \times 10!}{2!2!2!2!} \\
& \text { Place }_{R}=453600
\end{aligned}
$$

$$
\begin{aligned}
& u=\tan x \\
& \frac{d u}{d x}=\sec ^{2} x \\
& \frac{d u}{\sec ^{2} x}=d x \\
& \sec ^{2} x=1+\tan ^{2} x=1+u^{2} \\
& x=0, u=\tan 0=0 \\
& x=\pi, 4=\tan \frac{\pi}{4}=1
\end{aligned}
$$

25)

$$
\begin{aligned}
& \text { as) } \int_{0}^{\frac{\pi}{2}} \cos ^{2} 3 x d x . \\
& =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 6 x) d x . \\
& =\frac{1}{2}\left[x+\frac{\sin 6 x}{6}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+\frac{\sin 3 \pi}{6}\right)-0\right] . \\
& =\frac{1}{2}\left[\frac{\pi}{2}+0\right] . \\
& =\frac{\pi}{4} .
\end{aligned}
$$

b). $-\sin x-\sqrt{3} \cos x$.
$R \cos (x-\alpha)=R(\cos x \cos \alpha+\sin x \sin \alpha)$
$R=\sqrt{1^{2}+\sqrt{3}}=\sqrt{4}=2$
$\therefore \frac{-\sqrt{3}}{2} \cos x-\frac{1-2 \sin x}{2}=\cos x \cos \alpha+\sin x \sin \alpha$
wee $\cos \alpha=-\frac{\sqrt{3}}{2}$ sin $\alpha=-\frac{1}{2}$

$$
\begin{aligned}
& \text { Tana }=\left.\frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}\right\} . \text { quad. } \\
& \alpha=\frac{7 \pi}{6} . \\
& \therefore-\sin x-\sqrt{3} \cos x=2 \cos \left(x-\frac{7 \pi}{6}\right) . \\
& 0 \cos =-2 \cos \left(x-\frac{\pi}{6}\right)
\end{aligned}
$$

ii).

$$
\begin{aligned}
& 2 \cos \left(x-\frac{7 \pi}{6}\right)=2 \\
& \cos \left(x-\frac{7 \pi}{6}\right)=1 \\
& x-\frac{7 \pi}{6}=0,2 \pi . \\
& x=0+\frac{7 \pi}{6}, 2 \pi+\frac{7 \pi}{6} \\
& \therefore x=\frac{7 \pi}{6}, 0 \leq x \leq 2 \pi
\end{aligned}
$$

$Q 6$
a)

$$
\begin{aligned}
& \Rightarrow \frac{1-\tan \theta \tan 2 \theta}{1+\tan \theta \tan 2 \theta} \\
& =\frac{1-\tan \theta\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)}{1+\tan \theta\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)} \\
& =\frac{\frac{1-\tan ^{2} \theta-2 \tan ^{2} \theta}{1-\tan ^{2} \theta}}{\frac{1-\tan ^{2} \theta+\tan ^{2} \theta}{1-\tan ^{2} \theta}} \\
& =\frac{1-3 \tan ^{2} \theta}{1+\tan ^{2} \theta} \\
& = \\
& \frac{1-\frac{3 \sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& = \\
& =\frac{\cos ^{2} \theta-3 \sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta} \\
& = \\
& =\cos ^{2} \theta-3\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{2} \theta-3
\end{aligned}
$$

iv)

$$
\begin{array}{l|l}
f(x)=x-x^{-1} & =y-\frac{1}{y}+y+\frac{1}{y} \\
f^{\prime}(x)=1+x^{-2} & =2 y
\end{array}
$$

$$
=1+\frac{1}{x^{2}}
$$

$$
\begin{aligned}
& =y-\frac{1}{y}+\sqrt{\left(y+\frac{1}{y}\right)^{2}} \\
& =y-\frac{1}{y}+y+\frac{1}{y} \\
& =2 y
\end{aligned}
$$

$$
f^{\prime}(x)=0 \text { stationary pts }
$$

v)

$$
1+\frac{1}{x^{2}}=0
$$

$$
\frac{1}{x^{2}}=-4
$$

$$
1=-x^{2}
$$

$$
-1=x^{2}
$$

$$
\cos x^{2}=1
$$

$$
\begin{aligned}
& f(x): y=x-\frac{1}{x} \\
& f^{-1}(x): x=y-\frac{1}{y} \\
& \therefore \quad 2 y=x+\sqrt{x^{2}+4} \\
& y=\frac{x+\sqrt{x^{2}+4}}{2}
\end{aligned}
$$

(ii) $\overline{\text { As } x \rightarrow \infty \quad \frac{1}{x} \rightarrow 0}$

$$
\text { (iv) } \begin{aligned}
& x=y-\frac{1}{y} \\
& x+\sqrt{x^{2}+4}=y-\frac{1}{y}+\sqrt{\left(y-\frac{1}{y}\right)^{2}+4} \\
&=y-\frac{1}{y}+\sqrt{y^{2}-2+\frac{1}{y^{2}}+4} \\
&=y-\frac{1}{4}+\sqrt{y^{2}+2+\frac{1}{42}}
\end{aligned}
$$

b)

As $x \rightarrow 0 \frac{1}{2 e} \rightarrow \infty$

$$
\begin{aligned}
& \begin{array}{l}
i \\
=\frac{d}{d x}\left[\sin ^{-1} u\right] \text { where } u=2 x t
\end{array} \\
& =\frac{d x}{\frac{1}{d-u^{2}}} \times \frac{d}{d x}(2 x-1)^{-1} \\
& \begin{array}{l}
=\frac{1}{\sqrt{1-(2 x-1)^{2}}} \times 2 \\
=\frac{2}{\sqrt{1-\left(4 x^{2}-4 x+1\right.}} \\
=\frac{2}{\sqrt{4 x^{2}+4 x^{2}}} \\
=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{2}{\sqrt{4\left(x-x^{2}\right)}} \\
=\frac{1}{\sqrt{2}}
\end{array} \\
& \begin{array}{l}
=\frac{1}{\sqrt{1-(2 x-1)^{2}}} \times 2 \\
=\frac{2}{\sqrt{1-\left(4 x^{2}-4 x+1\right.}} \\
=\frac{2}{\sqrt{4 x^{2}+4 x^{2}}} \\
=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{2}{\sqrt{4\left(x-x^{2}\right)}} \\
=\frac{1}{\sqrt{2}}
\end{array} \\
& \begin{array}{l}
=\frac{1}{\sqrt{1-(2 x-1)^{2}}} \times 2 \\
=\frac{2}{\sqrt{1-\left(4 x^{2}-4 x+1\right.}} \\
=\frac{2}{\sqrt{4 x^{2}+4 x^{2}}} \\
=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{2}{\sqrt{4\left(x-x^{2}\right)}} \\
=\frac{1}{\sqrt{2}}
\end{array} \\
& \begin{array}{l}
=\frac{1}{\sqrt{1-(2 x-1)^{2}}} \times 2 \\
=\frac{2}{\sqrt{1-\left(4 x^{2}-4 x+1\right.}} \\
=\frac{2}{\sqrt{4 x^{2}+4 x^{2}}} \\
=\frac{2}{\sqrt{4 x-4 x^{2}}}=\frac{2}{\sqrt{4\left(x-x^{2}\right)}} \\
=\frac{1}{\sqrt{2}}
\end{array} \\
& =\frac{1}{\sqrt{x^{-x}}} \\
& \text { (ii) } \\
& \text { ie } \\
& \text { (ii) } \int_{\frac{3}{4}}^{1} \frac{d x}{\sqrt{x-0}}=\left[\sin ^{-1}(2 x-i)\right]_{\frac{3}{3}}^{1} \\
& =\sin ^{-1}(1)-\sin \left(\frac{4}{2}\right) \\
& =\frac{\pi}{2}-\frac{\pi}{6} \\
& =\pi / 3 \\
& \cdots \text { RHo }
\end{aligned}
$$

a: no Solution
\therefore no stationary points
(i) $\frac{d}{d x}\left[\sin ^{-1}(2 x-1)\right]$
$7 . a)$

$$
\begin{aligned}
T & =P+A e^{k t} \text { so } A e^{k t}=T-P(1) \\
\frac{d T}{d t} & =A e^{k t} \times k \\
& =k(T-P) \text { from (1) }
\end{aligned}
$$

$\therefore I=P+A e^{k t}$ a solution of $\frac{d T}{d t}=k(T-P)$
(i) $\begin{array}{ll}t=0, T=P 0 \\ \text { Find T when } & t=3, T=50 \\ t=4 .\end{array} \quad P=20$

$$
\begin{aligned}
& T=P+A e^{k t} \\
& t=0, T=90, \quad 90=20+A e^{\circ} \\
& \therefore A=70 \\
& \therefore T=20+70 e^{k t} \\
& t=3, T=50 \quad \therefore 50=20+70 e^{3 k} \\
& 30=70 e^{3 k} \\
& 3 / 7=e^{3 k} \\
& \ln \left(\frac{3}{7}\right)=3 k \\
& \therefore k=\frac{11}{3}(3 / 7) \quad \therefore T=20+70 e^{\frac{1}{3} \ln k t} \\
& t=4 \\
& T=20+70 e^{\left(\frac{k}{3} \ln k\right) \times 4} \\
& I=43^{\circ} \text { (to nearest degree) }
\end{aligned}
$$

b)

$$
\text {) (i) } \begin{aligned}
\ddot{x} & =0 \\
\dot{x} & =c_{1} \\
t=0 \dot{x} & =V \cos \alpha \quad \therefore c_{1}=V \cos \alpha \\
\therefore \dot{x} & =V \cos \alpha \\
x & =V t \cos \alpha+c_{2} \\
t=0, x & =0 \quad \therefore c_{2}=0 \\
\therefore x & =V t \cos \alpha
\end{aligned}
$$

$$
\begin{gathered}
\ddot{y}=-g \\
\dot{y}=-g t+e_{3} \\
t=0, \dot{y}=V \sin \alpha \\
\therefore c_{3}=v \sin \alpha \\
\therefore \dot{y}=-g t+V \sin \alpha \\
y=-\frac{g t^{2}}{2}+V t \sin \alpha+c_{4} \\
t=0, y=0, \therefore c_{4}=0 \\
\therefore y=\frac{-g t^{2}}{2}+V t \sin \alpha
\end{gathered}
$$

(i) Tine of flight $y=0$

$$
\begin{aligned}
& \therefore t(V \sin \alpha-g t)=0 \quad t=0 \quad \text { (start) } \\
& \therefore V \sin \alpha=\frac{g t}{2} \quad \therefore t=\frac{2 V \sin \alpha}{9}
\end{aligned}
$$

(iii)

$$
\bigwedge_{\dot{x}=V_{1} \cos \beta}^{V_{1} \sin \beta} \dot{y} \quad \tan \beta=\frac{V_{1} \sin \beta}{V_{1} \cos \beta}=\frac{\dot{y}}{\dot{x}}
$$

Also $\frac{\dot{y}}{x}=\frac{V \sin \alpha-g t}{V \cos \alpha}$ where t is tine from P to Q.

$$
\begin{aligned}
& \therefore \quad \begin{aligned}
\frac{\sin \beta}{\cos \beta} & =\frac{V \sin \alpha-g t}{V \cos \alpha} \\
V \sin \beta \cos \alpha & =\cos \beta(V \sin \alpha-g t) \\
V \sin \beta \cos \alpha & =V \sin \alpha \cos \beta-g t \cos \beta \\
\therefore g t \cos \beta & =V \sin \alpha \cos \beta-V \cos \alpha \sin \beta \\
& =V \sin (\alpha-\beta) \\
& \therefore t=\frac{V \sin (\alpha-\beta)}{g \cos \beta}
\end{aligned}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \frac{V \sin (\alpha-\beta)}{g \cos \beta}=\frac{1}{3}\left(\frac{2 V \sin \alpha}{9}\right) \rightarrow \text { time } \\
& \beta=\frac{\alpha}{2} \quad \therefore \frac{\forall \sin \left(\alpha-\frac{\alpha}{2}\right)}{g \cos \alpha / 2}=\frac{2}{3} \frac{\forall \sin \alpha}{g} \\
& \frac{\sin \frac{\alpha}{2}}{\cos \alpha / 2}=\frac{2}{3} \sin \alpha \\
& \frac{\sin \alpha}{\cos \alpha / 2}=\frac{2}{3}\left(2 \sin \alpha / 2 \cos \frac{\alpha}{2}\right) \text { A double } \\
& 3 \sin \frac{\alpha}{2}=4 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \cos \frac{\alpha}{2} \\
& 4 \sin \frac{\alpha}{2} \cos ^{2} \frac{\alpha}{2}-3 \sin \frac{\alpha}{2}=0 \\
& \sin \frac{\alpha}{2}\left(4 \cos ^{2} \frac{\alpha}{2}-3\right)^{2}=0 \\
& \sin \frac{\alpha}{2}=0 \quad \frac{\alpha}{2}=0 x \\
& \therefore \cos ^{2} \frac{\alpha}{2}=\frac{3}{4} \cos \frac{\alpha}{2}=\frac{\sqrt{3}}{2} \quad \frac{\alpha}{2}=\frac{\pi}{6} \\
& \begin{aligned}
\therefore \quad \cos ^{2} \frac{\alpha}{2}=\frac{3}{4} \quad \cos \frac{\alpha}{2} & =\frac{\sqrt{3}}{2} \\
\alpha & =\pi / 2
\end{aligned} \\
& \text { fight } \\
& \div \sin \frac{\alpha}{2}
\end{aligned}
$$

