

Penrith Selective High School

2012

Higher School Certificate
Examination

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Circle the correct answer to Questions 1-10 on the multiple choice answer sheet provided at the back of this paper
- Show all necessary working in Questions 11-14

Total Marks - 70
Section I Pages 2-4
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 5-9
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Student Number: \qquad

SECTION 1: Circle the correct answer on the multiple choice answer sheet provided

Q1. $\quad y=f(x)$ is a linear function with slope $\frac{1}{3}$, find the slope of $y=f^{-1}(x)$.
(A) 3
(B) $\frac{1}{3}$
(C) -3
(D) $-\frac{1}{3}$

Q2. The interval joining the points $A(-3,2)$ and $B(-9, y)$ is divided externally in the ratio $5: 3$ by the point $P(x,-13)$. What are the values of x and y ?
(A) $x=-27, y=22$
(B) $x=27, y=4$
(C) $x=6, y=12$
(D) $\quad x=-18, y=-4$

Q3. The value of $\lim _{x \rightarrow 0} \frac{\sin \frac{\pi x}{5} \cos \frac{\pi x}{5}}{4 x}=$
(A) $\frac{5 \pi}{4}$
(B) $\frac{20}{\pi}$
(C) $\frac{4}{5 \pi}$
(D) $\frac{\pi}{20}$

Q4. Part of the graph of $y=P(x)$, where $P(x)$ is a polynomial of degree five, is shown below. This graph could be part of which of the following polynomials?

(A) $\quad P(x)=(x+5)^{3}(x-5)^{2}$
(B) $\quad P(x)=(x+1)(x+5)^{4}$
(C) $\quad P(x)=(x-5)^{5}$
(D) $\quad P(x)=(x-1)^{4}(x+5)$

Q5. Using $u=x^{2}+1$, the value that is equal to $\int_{0}^{1} 3 x\left(x^{2}+1\right)^{5} d x$ is
(A) $\frac{1}{4}$
(B) $\frac{16}{3}$
(C) $\frac{63}{4}$
(D) 32

Q6. The number N of animals in a population at time t years is given by $N=250+A e^{k t}$ for constants $A>0$ and $k>0$. Which of the following is the correct differential equation?
(A) $\frac{d N}{d t}=k(N-250)$
(B) $\frac{d N}{d t}=k(N+250)$
(C) $\frac{d N}{d t}=-k(N-250)$
(D) $\frac{d N}{d t}=-k(N+250)$

Q7. Which of the following represents $f^{\prime}(x)$ if $(x)=\cos ^{-1} 3 x+x \cos ^{-1} 3 x$?
(A) $\cos ^{-1} 3 x-\frac{x+1}{\sqrt{9-x^{2}}}$
(B) $\cos ^{-1} 3 x-\frac{3(x+1)}{\sqrt{1-9 x^{2}}}$
(C) $\cos ^{-1} 3 x+\frac{x-1}{\sqrt{9-x^{2}}}$
(D) $\cos ^{-1} 3 x+\frac{3(x-1)}{\sqrt{1-9 x^{2}}}$

Q8. $\quad A C$ is a tangent to the circle at the point $N, A B$ is a tangent to the circle at the point M and $B C$ is a tangent to the circle at the point L. Find the exact length of $A M$ if $C L$ is 6 cm and $B L$ is 2 cm .

(A) 3 cm
(B) 4 cm
(C) 5 cm
(D) 6 cm

Q9. A football is kicked at an angle of φ to the horizontal. The position of the ball at time t seconds is given by $x=V t \cos \varphi$ and $y=V t \sin \varphi-\frac{1}{2} g t^{2}$ where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity and $V \mathrm{~m} / \mathrm{s}$ is the initial velocity of projection. What is the maximum height reached by the ball?
(A) $\frac{V \sin \varphi}{g}$
(B) $\frac{g \sin \varphi}{V}$
(C) $\frac{V^{2} \sin ^{2} \varphi}{2 g}$
(D) $\frac{g \sin ^{2} \varphi}{2 V^{2}}$

Q10. What is the term that is independent of x in the expansion of $\left(5 x^{2}-\frac{3}{x}\right)^{12}$?
(A) ${ }^{12} C_{4} \times 5^{8} \times(-3)^{4}$
(B) ${ }^{12} C_{4} \times 5^{4} \times(-3)^{8}$
(C) ${ }^{12} C_{8} \times 5^{8} \times(-3)^{4}$
(D) ${ }^{12} C_{8} \times 5^{4} \times(-3)^{8}$

SECTION 2

Question 1
a) Solve $\frac{2 x+3}{x-5} \geq 1$ for all real x.
b) For $f(x)=-4 \sin ^{-1}\left(\frac{2 x}{3}\right)$
i) State the domain and range
ii) Hence or otherwise, sketch $f(x)$, marking clearly any end points.
c) Find the reminder when $P(x)=5 x^{3}-12 x+7$ is divided by $x+3$.
d) Find the area between the curve $y=\cos ^{2} 2 x$ and the x-axis from $x=0$ and $\quad x=\frac{\pi}{6}$
e) Use the substitution $u=e^{x}$ to find: $\int \frac{d x}{e^{x}+9 e^{-x}}$
f) i) Find the equation of the tangent to the curve $y=e^{\sin x}+x^{2}$ at the point where $x=\pi$.
ii) Find the obtuse angle between the line $\frac{x}{2}+\frac{y}{5}=1$ and the tangent 2 found in part i). Give your answer to the nearest minute.
a) A particle moves in a straight line and its position at a time t is given by $x=a \cos (9 t+\theta)$. The particle is initially at the origin moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ in the negative direction.
i) Show that the particle is undergoing simple harmonic motion.

1
iii) Find the value of the constants a and θ.
iv) Find the position of the particle after 6 seconds, correct your answer to 2 decimal places.
b) A curve is defined by the parametric equations $x=t-5, y=t^{2}-25$.
i) Find $\frac{d y}{d x}$ in terms of t.
ii) Find the equation of the tangent to the curve at the point where $t=-6$.
iii) Express the equation of this curve in the simplest Cartesian form.
c) Taking $x=3$ as the first approximation for the root of $\tan x=1-\log _{e} x$, use Newton's method to find a second approximation and correct your answer to 4 significant figures.
d) Two of the roots of the cubic polynomial $P(x)=4 x^{3}-b x^{2}-64 x-16$ are reciprocals of each other, and two of the roots of $P(x)$ are of opposite signs of each other.
i) Find the value of b.
ii) Factorise $P(x)$ completely.
e) Find the greatest coefficient in the expansion of $(4 a+9)^{17}$. Express your answer in index form.
a) A large industrial container is in the shape of a paraboloid, which is formed by rotating the parabola $y=\frac{1}{4} x^{2}$ around the y-axis.
Liquid is poured into the container at the rate of $6 \mathrm{~m}^{3}$ per minute.

i) Prove that the volume V of liquid in the container when the depth of liquid is h, is given by $V=2 \pi h^{2}$.
ii) At what rate is the height of the liquid rising when the depth is 5 m ? Leave your answer in exact form.
iii) If the container is 12 m high, how long will it take to fill the container? Leave your answer to two decimal places.
b) i) Use mathematical induction to prove

$$
4\left(1^{3}+2^{3}+3^{3}+\cdots+n^{3}\right)=n^{2}(n+1)^{2}
$$

for all positive integers n.
ii) Hence find the value of $\lim _{n \rightarrow \infty}\left(\frac{1^{3}+2^{3}+3^{3}+\cdots+n^{3}}{n^{4}}\right)$

Question 3 continued

c) In the diagram below, $A B$ is the diameter of a circle with centre O. The radius $O C$ is drawn perpendicular to $A B$. The chords $C D$ and $C E$ intersect the diameter at the points X and Y respectively.

Copy the diagram before attempting this question.
i) Prove that $\angle C B A=\angle C A B=45^{\circ}$.
ii) Prove that $\angle C B D=\angle C X B$.
iii) Prove that $X Y E D$ is a cyclic quadrilateral.
d) Assume that the rate at which a body cools in air is proportional to the difference between its temperature T and the constant temperature P of the surrounding air.

The body of the murder victim is discovered at 1am when its temperature is $33.5^{\circ} \mathrm{C}$. Two hours later its temperature has fallen to $28^{\circ} \mathrm{C}$. The body is cooling according to the equation $T=P+A e^{k t}$, where t is the time in minutes and k and A are constants. If the room temperature remains constant at $22^{\circ} \mathrm{C}$ and assuming normal body temperature is $37^{\circ} \mathrm{C}$, calculate the time the victim passed away to the nearest minute.
a) i) When considering motion in a straight line, prove that

$$
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\ddot{x}
$$

ii) An object moving in a straight line has an acceleration given by $\ddot{x}=x^{2}\left(4-x^{-3}\right)$ where x is the displacement in metres. When the object is 1 metre to the right of the origin, it has a speed of $3 \mathrm{~m} / \mathrm{s}$. Find its speed to 2 decimal places when it is 5 metres to the right of the origin.
b) An object is projected with velocity $V \mathrm{~ms}^{-1}$ from a point O at an angle of elevation α. Axes x and y are taken horizontally and vertically through 0 . The object just clears two vertical chimneys of height h meters at horizontal distance of m metres and n metres from O. The acceleration due to gravity is taken as $10 \mathrm{~ms}^{-2}$ and air resistance is ignored.

i) Show that the expression of the particle after time t seconds for the horizontal displacement is $x=V t \cos \alpha$ and the vertical displacement is $y=V t \sin \alpha-\frac{1}{2} g t^{2}$.
ii) Show that $V^{2}=\frac{5 m^{2}\left(1+\tan ^{2} \alpha\right)}{m \tan \alpha-h}$
iii) Show that $\tan \alpha=\frac{h(m+n)}{m n}$
c) It is given that $(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{k}$. Show that
i) $\quad \sum_{k=0}^{2 n}\binom{2 n}{k}=4^{n}$
ii) $\quad \sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{4^{n+1}-2}{4 n+2}$

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Multiple Choice Answer Sheet

1.

A
B
C
D
2.
A
B
C
D
3.
A
B
C
D
4.
A
B
C
D
5.
A
B
C
D
6.
A
B
C
D
7.
7.
A
B
C
D
8.
9.
A
B
C
D
10.
A
B
C
D

Section 1

Q1. A
$y=m x+b$
$y=\frac{1}{3} x+b$
inverse function
$x=\frac{1}{3} y+b$
$y=3 x-b$
$\therefore m=3$ for $f^{-1}(x)$
Q2. D
$A(-3,2) \quad B(-9, y)$
ratio -5 : 3 (externally)
$P(x,-13)$
$x=\frac{-5 \times-9+3 \times-3}{-5+3}$
$x=-18$
$-13=\frac{-5 \times y+3 \times 2}{-5+3}$
$26=-5 y+6$
$y=-4$
Q3. D
$\lim _{x \rightarrow 0} \frac{\sin \frac{\pi x}{5} \cos \frac{\pi x}{5}}{4 x}$
$=\lim _{x \rightarrow 0} \frac{\frac{1}{2} \sin \frac{2 \pi x}{5}}{4 x}$
$=\frac{1}{2} \times \frac{2 \pi}{20}$
$=\frac{\pi}{20}$
Q4. B
Q5. C
$u=x^{2}+1 \quad d u=2 x d x$
$x=1 \quad u=2$
$x=0 \quad u=1$
$\int_{0}^{1} 3 x\left(x^{2}+1\right)^{5} d x$
$=\frac{3}{2} \int_{0}^{1}\left(x^{2}+1\right)^{5} \times 2 x d x$
$=\frac{3}{2} \int_{1}^{2} u^{5} d u$
$=\frac{3}{2}\left[\frac{u^{6}}{6}\right]_{1}^{2}$
$=\frac{63}{4}$

Q6. A
$N=250+A e^{k t}$
$\frac{d N}{d t}=k A e^{k t}$
$\frac{d N}{d t}=k(N-250)$
Q7. B
$f(x)=\cos ^{-1} 3 x+x \cos ^{-1} 3 x$
$f^{\prime}(x)=\frac{-3}{\sqrt{1-9 x^{2}}}+\frac{-3 x}{\sqrt{1-9 x^{2}}}+\cos ^{-1} 3 x$
$f^{\prime}(x)=\cos ^{-1} 3 x-\frac{3(x+1)}{\sqrt{1-9 x^{2}}}$
Q8. B
$C L=C N=6 \mathrm{~cm}$
$L B=B M=2 \mathrm{~cm}$
$A N=A M=x \mathrm{~cm}$
$(x+2)^{2}+8^{2}=(x+6)^{2}$
$x^{2}+4 x+4+64=x^{2}+12 x+36$
$8 x=32$
$x=4$
Q9. C
Maximum height when $\dot{y}=0$
$y=V t \sin \varphi-\frac{1}{2} g t^{2}$
$\dot{y}=V \sin \varphi-g t$
$V \sin \varphi-g t=0$
$t=\frac{V \sin \varphi}{g}$
Maximum height
$y=V \times \frac{V \sin \varphi}{g} \times \sin \varphi-\frac{1}{2} g\left(\frac{V \sin \varphi}{g}\right)^{2}$
$y=\frac{V^{2} \sin ^{2} \varphi}{2 g}$
Q10. D
$\left(5 x^{2}-\frac{3}{x}\right)^{12}$
$T_{r+1}={ }^{12} C_{r}\left(5 x^{2}\right)^{12-r} \times\left(-\frac{3}{x}\right)^{r}$
$T_{r+1}={ }^{12} C_{r} \times 5^{12-r} \times(-3)^{r} \times x^{24-2 r} \times x^{-r}$
$T_{r+1}={ }^{12} C_{r} \times 5^{12-r} \times(-3)^{r} \times x^{24-3 r}$
Term independent of x, so $24-3 r=0$
$r=8$
$T_{9}={ }^{12} C_{8} \times 5^{4} \times(-3)^{8}$

Section 2

Q1.
a)
$\frac{2 x+3}{x-5} \geq 1$
$(2 x+3)(x-5) \geq(x-5)^{2} \quad x \neq 5$
$2 x^{2}-7 x-15 \geq x^{2}-10 x+25$
$x^{2}+3 x-40 \geq 0$
$(x+8)(x-5) \geq 0$
$x \leq-8, x>5$
b) i)
$f(x)=-4 \sin ^{-1}\left(\frac{2 x}{3}\right)$
Domain:
$-1 \leq \frac{2 x}{3} \leq 1$
$-\frac{3}{2} \leq x \leq \frac{3}{2}$
Range:
$-2 \pi \leq y \leq 2 \pi$
ii)

c)
$P(x)=5 x^{3}-12 x+7$ is divided by $x+3$
$R(x)=P(-3)=5 \times(-3)^{3}-12 \times(-3)+7$
$R(x)=-92$
d)
$A=\int_{0}^{\frac{\pi}{6}} \cos ^{2} 2 x d x$
$A=\frac{1}{2} \int_{0}^{\frac{\pi}{6}}(\cos 4 x+1) d x$
$V=\frac{1}{2}\left[\frac{1}{4} \sin 4 x+x\right]_{0}^{\frac{\pi}{6}}$
$V=\frac{1}{2}\left[\frac{1}{4} \times \frac{\sqrt{3}}{2}+\frac{\pi}{6}\right]$
$V=\frac{\sqrt{3}}{16}+\frac{\pi}{12}$ units 3
e)
$u=e^{x}$
$d u=e^{x} d x$
$d x=\frac{1}{u} d u$
$\int \frac{d x}{e^{x}+9 e^{-x}}$
$=\int \frac{1}{u+\frac{9}{u}} \times \frac{1}{u} d u$
$=\int \frac{u}{u^{2}+9} \times \frac{1}{u} d u$
$=\int_{1} \frac{d u}{u^{2}+9}$
$=\frac{1}{3} \tan ^{-1}\left(\frac{u}{3}\right)+C$
$=\frac{1}{3} \tan ^{-1}\left(\frac{e^{x}}{3}\right)+C$
f) i)
$y=e^{\sin x}+x^{2}$
$\frac{d y}{d x}=\cos x e^{\sin x}+2 x$
at $x=\pi, y=1+\pi^{2}$
$\frac{d y}{d x}=\cos \pi e^{\sin \pi}+2 \pi$
$\frac{d y}{d x}=2 \pi-1$
Equation of tangent is
$\left(y-1-\pi^{2}\right)=(2 \pi-1)(x-\pi)$
$y=(2 \pi-1) x-2 \pi^{2}+\pi+\pi^{2}+1$
$y=(2 \pi-1) x-\pi^{2}+\pi+1$
ii)
$\frac{x}{2}+\frac{y}{5}=1$
$5 x+2 y=10$
$y=-\frac{5}{2} x+10$
$m_{1}=-\frac{5}{2} \quad m_{2}=2 \pi-1$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\left|\frac{-\frac{5}{2}-(2 \pi-1)}{1+\left(-\frac{5}{2}\right) \times(2 \pi-1)}\right|$
$\theta=32^{\circ} 31^{\prime}$ (nearest minute)
obtuse angle $=147^{\circ} 29^{\prime}$ (nearest minute)

Q2.
a) i)
$x=a \cos (9 t+\theta)$
$\dot{x}=-9 a \sin (9 t+\theta)$
$\ddot{x}=-81 a \cos (9 t+\theta)$
$\ddot{x}=-81 x$
As the particle's motion can be described in the form $\ddot{x}=-n^{2} x$, where $n=9$, it is undergoing simple harmonic motion.
ii)

The period of the motion is $\frac{2 \pi}{n}=\frac{2 \pi}{9}$
iii)
$x=a \cos (9 t+\theta)$
When $t=0, x=0$
$0=a \cos \theta$
$\theta=\frac{\pi}{2}$
$\therefore x=a \cos \left(9 t+\frac{\pi}{2}\right)$
$\dot{x}=-9 a \sin \left(9 t+\frac{\pi}{2}\right)$
When $t=0, v=-15$
$-15=-9 a \sin \left(\frac{\pi}{2}\right)$
$a=\frac{5}{3} \mathrm{~m}$
iv)
$x=\frac{5}{3} \cos \left(9 t+\frac{\pi}{2}\right)$
When $t=6$
$x=\frac{5}{3} \cos \left(54+\frac{\pi}{2}\right)$
$x=0.93 \mathrm{~m}$ (2 d.p.)
The particle is about 0.93 m to the right of origin.
b) i)
$x=t-5, \quad y=t^{2}-25$
$\frac{d x}{d t}=1, \quad \frac{d y}{d t}=2 t$
$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=2 t$
ii)
$t=-6$
$\frac{d y}{d x}=2 \times-6=-12$
$x=-11, \quad y=11$
$y-11=-12(x+11)$
$12 x+y+121=0$
iii)
$t=x+5$
$y=(x+5)^{2}-25$
$y=x^{2}+10 x+25-25$
$y=x^{2}+10 x$
c)

Let $f(x)=\tan x+\log _{e} x-1$
$f^{\prime}(x)=\sec ^{2} x+\frac{1}{x}$
Let $x_{1}=3$
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$
$x_{2}=3-\frac{f(3)}{f^{\prime}(3)}$
$x_{2}=3-\frac{\tan 3+\log _{e} 3-1}{\sec ^{2} 3+\frac{1}{3}}$
$x_{2}=3.032(4 \mathrm{sig} \mathrm{figs})$
d) i)
$P(x)=4 x^{3}-b x^{2}-64 x-16$
$P(x)=4\left(x^{3}-\frac{b}{4} x^{2}-16 x-4\right)$
Let the roots be $\alpha, \frac{1}{\alpha}$ and β
$\alpha \times \frac{1}{\alpha} \times \beta=4$
$\beta=4$
$\alpha=-4, \frac{1}{\alpha}=-\frac{1}{4}$
$\alpha+\beta+\frac{1}{\alpha}=\frac{b}{4}$
$b=-1$
ii)
$P(x)=4(x-4)(x+4)\left(x+\frac{1}{4}\right)$
$P(x)=(x-4)(x+4)(4 x+1)$
e)
d) $(4 a+9)^{17}$
$T_{k+1}=\binom{17}{k}(4 a)^{17-k}(9)^{k}$
$T_{k+1}=\binom{17}{k} 4^{17-k} \cdot 9^{k} \cdot a^{17-k}$
$T_{k}=\binom{17}{k-1}(4 a)^{17-(k-1)}(9)^{k-1}$
$T_{k}=\binom{17}{k-1} 4^{18-k} \cdot 7^{k-1} \cdot a^{18-k}$
Compare coefficients
$\frac{t_{k+1}}{t_{k}}=\frac{\binom{17}{k} 4^{17-k} \cdot 9^{k}}{\binom{17}{k-1} 4^{18-k} \cdot 9^{k-1}}$
$\frac{t_{k+1}}{t_{k}}=\frac{\binom{17}{k} \cdot 9}{\binom{17}{k-1} \cdot 4}$
$\frac{t_{k+1}}{t_{k}}=\frac{9}{4} \times \frac{\frac{17!}{(17-k)!k!}}{\frac{17!}{(17-(k-1))!(k-1)!}}$
$\frac{t_{k+1}}{t_{k}}=\frac{9}{4} \times \frac{(18-k)!(k-1)!}{(17-k)!k!}$
$\frac{t_{k+1}}{t_{k}}=\frac{9}{4} \times \frac{18-k}{k}$
$\frac{t_{k+1}}{t_{k}}=\frac{162-9 k}{4 k}$
For the greatest coefficient,
$\frac{t_{k+1}}{t_{k}}>1$
$\frac{162-9 k}{4 k}>1$
$162-9 k>4 k$
$-13 k>-162$
$k<12 \frac{6}{13}$
So the term with the greatest coefficient occurs when $k=12$.
$T_{13}=\binom{17}{12} 4^{17-12} \cdot 9^{12} \cdot a^{17-12}$

$$
=\binom{17}{12} 4^{5} \cdot 9^{12} \cdot a^{5}
$$

So the greatest coefficient is $\binom{17}{12} 4^{5} \cdot 9^{12}$

Q3.
a) i)
$V=\pi \int_{0}^{h} x^{2} d y$
$V=\pi \int_{0}^{h} 4 y d y$
$V=\pi\left[2 y^{2}\right]_{0}^{h}$
$V=2 \pi h^{2}$
ii)
$\frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t}$
$\frac{d V}{d t}=4 \pi h \times \frac{d h}{d t}$
$\frac{d V}{d t}=6, \quad h=5$
$6=4 \pi \times 5 \times \frac{d h}{d t}$
$\frac{d h}{d t}=\frac{3}{10 \pi} \mathrm{~m} / \mathrm{min}$
iii)
$\frac{d h}{d t}=\frac{3}{2 \pi h}$
$t=\int_{0}^{12} \frac{2 \pi h}{3} d h$
$t=\left[\frac{\pi h^{2}}{3}\right]_{0}^{12}$
$t=\frac{144 \pi}{3} \min \approx 150.80 \mathrm{~min}$
b) i)
$4\left(1^{3}+2^{3}+3^{3}+\cdots+n^{3}\right)=n^{2}(n+1)^{2}$
Step 1: for $n=1$
LHS $=4 \times 1^{3}=4$
$R H S=1^{2} \times(1+1)^{2}=4$
$L H S=R H S$
\therefore Statement is true for $n=1$
Step 2: Assume statement is true for $n=k$
$4\left(1^{3}+2^{3}+3^{3}+\cdots+k^{3}\right)=k^{2}(k+1)^{2}$
Step 3: Prove statement is true for $n=k+1$
i.e. $4\left(1^{3}+2^{3}+3^{3}+\cdots+k^{3}+(k+1)^{3}\right)$
$=(k+1)^{2}(k+2)^{2}$
LHS $=4\left(1^{3}+2^{3}+3^{3}+\cdots+k^{3}+(k+1)^{3}\right)$
LHS $=4\left(1^{3}+2^{3}+3^{3}+\cdots+k^{3}\right)+4(k+1)^{3}$
LHS $=k^{2}(k+1)^{2}+4(k+1)^{3}$ (from step 2)
LHS $=(k+1)^{2}\left(k^{2}+4(k+1)\right)$
LHS $=(k+1)^{2}\left(k^{2}+4 k+4\right)$
LHS $=(k+1)^{2}(k+2)^{2}=$ RHS
\therefore Statement is true for all positive integers n by mathematical induction.
ii)
$\lim _{n \rightarrow \infty}\left(\frac{1^{3}+2^{3}+3^{3}+\cdots+n^{3}}{n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{n^{2}(n+1)^{2}}{4 n^{4}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{4}\right)$
$=\frac{1}{4}$

i)

Join $A C$
$\angle C B A=\frac{1}{2} \angle A O C=45^{\circ}$ (angle at the centre is twice the angle at the circumference)
$\angle C A B=\frac{1}{2} \angle A O C=45^{\circ}$ (angle at the centre is twice the angle at the circumference)
$\therefore \angle C B A=\angle C A B=45^{\circ}$
ii)

Join DB
$\angle D B A=\angle D C A$ (angles at the circumference
standing on the same arc $A D$)
Let $\angle D B A=\angle D C A=\alpha$
$\angle D B C=\angle D B A+\angle A B C=\alpha+45^{\circ}$ (adjacent angles)
$\angle B X C=\angle B A C+\angle D C A=\alpha+45^{\circ}$ (exterior angle of $\triangle A X C$ equals to sum of the opposite interior angles)
$\therefore \angle D B C=\angle B X C$
iii)

Join DE
$\angle D B C=\angle D E C=\alpha+45^{\circ}$ (angles at the circumference standing on the same arc $C D$)
$\therefore \angle D E C=\angle B X C=\alpha+45^{\circ}$
$\therefore X Y E D$ is a cyclic quadrilateral as the exterior angle equals to opposite interior angle)
d)
$T=P+A e^{k t}$
Let 1 am be time zero
$P=22^{\circ} \mathrm{C}, \quad t=0, \quad T=33.5^{\circ} \mathrm{C}$
$33.5=22+A e^{0}$
$A=11.5$
2 hours after $1 \mathrm{am}, t=120, T=28^{\circ} \mathrm{C}$
$28=22+11.5 e^{120 k}$
$\frac{6}{11.5}=e^{120 k}$
$k=\frac{\ln \left(\frac{6}{11.5}\right)}{120}$
Body temperature was originally $37^{\circ} \mathrm{C}$
$37=22+11.5 e^{k t}$
$15=11.5 e^{k t}$
$k t=\ln \left(\frac{15}{11.5}\right)$
$t=\frac{\ln \left(\frac{15}{11.5}\right)}{k}$
$t=-49.00859092 \ldots$
$t \approx-49$
\therefore The victim passed away 49 min before 1 am , so the time would be 12: 11am in the morning.

Q4.
a) i)
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{1}{2} \times 2 \times v \times \frac{d v}{d x}$
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=v \frac{d v}{d x}$
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d x}{d t} \times \frac{d v}{d x}$
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d v}{d t}$
$\therefore \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d^{2} x}{d t^{2}}$
ii)
$\ddot{x}=x^{2}\left(4-x^{-3}\right)$
$\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=x^{2}\left(4-x^{-3}\right)$
$\frac{1}{2} v^{2}=\int\left(4 x^{2}-\frac{1}{x}\right) d x$
$\frac{1}{2} v^{2}=\frac{4 x^{3}}{3}-\ln x+C$
$v^{2}=\frac{8 x^{3}}{3}-2 \ln x+C$
When $x=1, v=3$
$9=\frac{8}{3}+C$
$C=6 \frac{1}{3}$
$\therefore v^{2}=\frac{8 x^{3}}{3}-2 \ln x+6 \frac{1}{3}$
$x=5$
$v^{2}=\frac{8}{3} \times 5^{3}-2 \ln 5+6 \frac{1}{3}$
$v= \pm 18.34 \mathrm{~m} / \mathrm{s}$ (2 d.p.)
The speed is $18.34 \mathrm{~m} / \mathrm{s}$ when the particle is 5 metres to the right of the origin.
b) i)

$$
\begin{array}{ll}
\text { Horizontal } & \text { Vertically } \\
\ddot{x}=0 & \ddot{y}=-g \\
\dot{x}=V \cos \alpha & \dot{y}=V \sin \alpha-g t \\
x=V t \cos \alpha & y=V t \sin \alpha-\frac{1}{2} g t^{2}
\end{array}
$$

ii)

$$
\begin{aligned}
& \text { at } x=m, y=h, g=10 \\
& m=V t \cos \alpha \\
& t=\frac{m}{V \cos \alpha} \\
& h=V \times \frac{m}{V \cos \alpha} \times \sin \alpha-\frac{1}{2} \times 10 \times\left(\frac{m}{V \cos \alpha}\right)^{2} \\
& h=m \tan \alpha-\frac{5 m^{2}}{V^{2} \cos ^{2} \alpha} \\
& h=m \tan \alpha-\frac{5 m^{2}\left(\tan ^{2} \alpha+1\right)}{V^{2}} \\
& 5 m^{2}\left(\tan ^{2} \alpha+1\right)=V^{2}(m \tan \alpha-h) \\
& V^{2}=\frac{5 m^{2}\left(\tan ^{2} \alpha+1\right)}{m \tan \alpha-h}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& V^{2}=\frac{5 n^{2}\left(\tan ^{2} \alpha+1\right)}{n \tan \alpha-h} \\
& \frac{5 m^{2}\left(\tan ^{2} \alpha+1\right)}{m \tan \alpha-h}=\frac{5 n^{2}\left(\tan ^{2} \alpha+1\right)}{n \tan \alpha-h} \\
& \frac{m^{2}}{m \tan \alpha-h}=\frac{n^{2}}{n \tan \alpha-h} \\
& m^{2}(n \tan \alpha-h)=n^{2}(m \tan \alpha-h) \\
& m^{2} n \tan \alpha-m^{2} h=n^{2} m \tan \alpha-n^{2} h \\
& m^{2} n \tan \alpha-n^{2} m \tan \alpha=m^{2} h-n^{2} h \\
& \left(m^{2} n-n^{2} m\right) \tan \alpha=m^{2} h-n^{2} h \\
& \tan \alpha=\frac{m^{2} h-n^{2} h}{m^{2} n-n^{2} m} \\
& \tan \alpha=\frac{\left(m^{2}-n^{2}\right) h}{m n(n-m)} \\
& \tan \alpha=\frac{(m+n)(m-n) h}{m n(n-m)} \\
& \tan \alpha=\frac{h(m+n)}{m n}
\end{aligned}
$$

c) i)
$(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{k}$
Let $x=1$
$2^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} 1^{k}$
$4^{n}=\sum_{k=0}^{2 n}\binom{2 n}{k}$
ii)

Integrate both sides
$\frac{(1+x)^{2 n+1}}{2 n+1}=\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{x^{k+1}}{k+1}+C$
Let $x=0$
$\frac{1}{2 n+1}=C$
$\frac{(1+x)^{2 n+1}}{2 n+1}=\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{x^{k+1}}{k+1}+\frac{1}{2 n+1}$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{x^{k+1}}{k+1}=\frac{(1+x)^{2 n+1}}{2 n+1}-\frac{1}{2 n+1}$
Let $x=1$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{2^{2 n+1}}{2 n+1}-\frac{1}{2 n+1}$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{2^{2 n+1}-1}{2 n+1}$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{2 \times 2^{2 n}-1}{2 n+1} \times \frac{2}{2}$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{4 \times 4^{n}-2}{4 n+2}$
$\sum_{k=0}^{2 n}\binom{2 n}{k} \frac{1}{k+1}=\frac{4^{n+1}-2}{4 n+2}$

