

Penrith Selective High School

2012

Higher School Certificate Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Circle the correct answer to Questions 1-10 on the multiple choice answer sheet provided at the back of this paper
- Show all necessary working in Questions 11-14

Total Marks – 70

Section I Pages 2-4

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 5-9

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Student Number: _____

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2012 Higher School Certificate Examination.

Q1. y = f(x) is a linear function with slope $\frac{1}{3}$, find the slope of $y = f^{-1}(x)$. (A) 3
(B) $\frac{1}{3}$ (C) -3
(D) $-\frac{1}{3}$

Q2. The interval joining the points A(-3, 2) and B(-9, y) is divided externally in the ratio 5 : 3 by the point P(x, -13). What are the values of x and y?

(A) x = -27, y = 22 (B) x = 27, y = 4

(C)
$$x = 6, y = 12$$
 (D) $x = -18, y = -4$

Q3. The value of
$$\lim_{x \to 0} \frac{\sin \frac{\pi x}{5} \cos \frac{\pi x}{5}}{4x} =$$
(A) $\frac{5\pi}{4}$
(B) $\frac{20}{\pi}$
(C) $\frac{4}{5\pi}$
(D) $\frac{\pi}{20}$

Q4. Part of the graph of y = P(x), where P(x) is a polynomial of degree five, is shown below. This graph could be part of which of the following polynomials?

- (A) $P(x) = (x+5)^3(x-5)^2$ (B) $P(x) = (x+1)(x+5)^4$
- (C) $P(x) = (x-5)^5$ (D) $P(x) = (x-1)^4(x+5)$

Q5. Using $u = x^2 + 1$, the value that is equal to $\int_0^1 3x(x^2 + 1)^5 dx$ is

(A)
$$\frac{1}{4}$$
 (B) $\frac{16}{3}$

(C)
$$\frac{63}{4}$$
 (D) 32

Q6. The number N of animals in a population at time t years is given by $N = 250 + Ae^{kt}$ for constants A > 0 and k > 0. Which of the following is the correct differential equation?

(A)
$$\frac{dN}{dt} = k(N - 250)$$
 (B) $\frac{dN}{dt} = k(N + 250)$

(C)
$$\frac{dN}{dt} = -k(N - 250)$$
 (D) $\frac{dN}{dt} = -k(N + 250)$

Q7. Which of the following represents
$$f'(x)$$
 if $(x) = \cos^{-1} 3x + x \cos^{-1} 3x$?

(A)
$$\cos^{-1} 3x - \frac{x+1}{\sqrt{9-x^2}}$$
 (B) $\cos^{-1} 3x - \frac{3(x+1)}{\sqrt{1-9x^2}}$

(C)
$$\cos^{-1} 3x + \frac{x-1}{\sqrt{9-x^2}}$$
 (D) $\cos^{-1} 3x + \frac{3(x-1)}{\sqrt{1-9x^2}}$

Q8. AC is a tangent to the circle at the point N, AB is a tangent to the circle at the point M and BC is a tangent to the circle at the point L. Find the exact length of AM if CL is 6 cm and BL is 2 cm.

Q9. A football is kicked at an angle of φ to the horizontal. The position of the ball at time t seconds is given by $x = Vt \cos \varphi$ and $y = Vt \sin \varphi - \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity and V m/s is the initial velocity of projection. What is the maximum height reached by the ball?

(A)
$$\frac{V\sin\varphi}{g}$$
 (B) $\frac{g\sin\varphi}{V}$

(C)
$$\frac{V^2 \sin^2 \varphi}{2g}$$
 (D) $\frac{g \sin^2 \varphi}{2V^2}$

Q10. What is the term that is independent of x in the expansion of $\left(5x^2 - \frac{3}{x}\right)^{12}$?

- (A) ${}^{12}C_4 \times 5^8 \times (-3)^4$ (B) ${}^{12}C_4 \times 5^4 \times (-3)^8$
- (C) ${}^{12}C_8 \times 5^8 \times (-3)^4$ (D) ${}^{12}C_8 \times 5^4 \times (-3)^8$

SECTION 2

Question 1(15 marks) Start on a new pageMarksa)Solve $\frac{2x+3}{x-5} \ge 1$ for all real x.2b)For $f(x) = -4 \sin^{-1} \left(\frac{2x}{3}\right)$

i)	State the domain and range	2
1)	State the domain and range	-

ii) Hence or otherwise, sketch f(x), marking clearly any end points. 1

c) Find the reminder when
$$P(x) = 5x^3 - 12x + 7$$
 is divided by $x + 3$.

d) Find the area between the curve $y = \cos^2 2x$ and the x-axis from x = 0 2 and $x = \frac{\pi}{6}$

e) Use the substitution
$$u = e^x$$
 to find: $\int \frac{dx}{e^x + 9e^{-x}}$ 3

f) i) Find the equation of the tangent to the curve $y = e^{\sin x} + x^2$ at the point where $x = \pi$.

ii) Find the obtuse angle between the line $\frac{x}{2} + \frac{y}{5} = 1$ and the tangent 2 found in part i). Give your answer to the nearest minute.

Question 2		(15 marks) Start on a new page			
a)	A particle moves in a straight line and its position at a time t is given by $x = a \cos(9t + \theta)$. The particle is initially at the origin moving with a velocity of 15 m/s in the negative direction.				
	i)	Show that the particle is undergoing simple harmonic motion.	1		
	ii)	Find the period of the motion.	1		
	iii)	Find the value of the constants a and θ .	2		
	iv)	iv) Find the position of the particle after 6 seconds, correct your answe to 2 decimal places.			
b)	A curve is defined by the parametric equations $x = t - 5$, $y = t^2 - 25$.				
	i)	Find $\frac{dy}{dx}$ in terms of <i>t</i> .	1		
	ii)	Find the equation of the tangent to the curve at the point where $t = -6$.	1		
	iii)	Express the equation of this curve in the simplest Cartesian form.	1		
c)	Taking $x = 3$ as the first approximation for the root of $\tan x = 1 - \log_e x$, use Newton's method to find a second approximation and correct your answer to 4 significant figures.				
d)	Two of the roots of the cubic polynomial $P(x) = 4x^3 - bx^2 - 64x - 16$ are reciprocals of each other, and two of the roots of $P(x)$ are of opposite signs of each other.				
	i)	Find the value of <i>b</i> .	2		
	ii)	Factorise $P(x)$ completely.	1		
e)	Find	the greatest coefficient in the expansion of $(4a + 9)^{17}$. Express your	2		

-6-

answer in index form.

Question 3 (15 marks) Start on a new page

a) A large industrial container is in the shape of a paraboloid, which is formed by rotating the parabola $y = \frac{1}{4}x^2$ around the y-axis. Liquid is poured into the container at the rate of 6 m³ per minute.

- i) Prove that the volume V of liquid in the container when the depth of 1 liquid is h, is given by $V = 2\pi h^2$.
- ii) At what rate is the height of the liquid rising when the depth is 5 m?2 Leave your answer in exact form.
- iii) If the container is 12 m high, how long will it take to fill the container? Leave your answer to two decimal places.

b) i) Use mathematical induction to prove
$$3$$

 $4(1^3 + 2^3 + 3^3 + \dots + n^3) = n^2(n+1)^2$
for all positive integers *n*.

ii) Hence find the value of
$$\lim_{n \to \infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right)$$
 1

Question 3 continued

c) In the diagram below, *AB* is the diameter of a circle with centre *O*. The radius *OC* is drawn perpendicular to *AB*. The chords *CD* and *CE* intersect the diameter at the points *X* and *Y* respectively.

Copy the diagram before attempting this question.

1)	Prove that $\angle CBA = \angle CAB = 45^{\circ}$.	1
ii)	Prove that $\angle CBD = \angle CXB$.	2

1

3

iii) Prove that *XYED* is a cyclic quadrilateral.

d) Assume that the rate at which a body cools in air is proportional to the difference between its temperature T and the constant temperature P of the surrounding air.

The body of the murder victim is discovered at 1am when its temperature is 33.5° C. Two hours later its temperature has fallen to 28° C. The body is cooling according to the equation $T = P + Ae^{kt}$, where t is the time in minutes and k and A are constants. If the room temperature remains constant at 22°C and assuming normal body temperature is 37°C, calculate the time the victim passed away to the nearest minute.

Question 4

i)

a)

2

2

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \ddot{x}$$

When considering motion in a straight line, prove that

- An object moving in a straight line has an acceleration given by ii) $\ddot{x} = x^2(4 - x^{-3})$ where x is the displacement in metres. When the object is 1 metre to the right of the origin, it has a speed of 3 m/s. Find its speed to 2 decimal places when it is 5 metres to the right of the origin.
- An object is projected with velocity $V \text{ ms}^{-1}$ from a point O at an angle of b) elevation α . Axes x and y are taken horizontally and vertically through 0. The object just clears two vertical chimneys of height h meters at horizontal distance of m metres and n metres from 0. The acceleration due to gravity is taken as 10 ms^{-2} and air resistance is ignored.

Show that the expression of the particle after time *t* seconds for the i) 2 horizontal displacement is $x = Vt \cos \alpha$ and the vertical displacement is $y = Vt \sin \alpha - \frac{1}{2}gt^2$.

ii) Show that
$$V^2 = \frac{5m^2(1 + \tan^2 \alpha)}{m \tan \alpha - h}$$
 2

iii) Show that
$$\tan \alpha = \frac{h(m+n)}{mn}$$
 3

c) It is given that
$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$$
. Show that

i)
$$\sum_{k=0}^{2n} {2n \choose k} = 4^n$$
 1
ii) $\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$ 3

-End of Paper-

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$				
$\int \frac{1}{x} dx$	$=\ln x, x > 0$				
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$				
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$				
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, a \neq 0$				
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$				
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$				
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a \neq 0$				
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$				
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$				
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$				
NOTE : $\ln x = \log_e x$, $x > 0$					

Multiple Choice Answer Sheet

1.	А	В	С	D
2.	А	В	С	D
3.	А	В	С	D
4.	А	В	С	D
5.	А	В	С	D
6.	А	В	С	D
7.	А	В	С	D
8.	А	В	С	D
9.	А	В	С	D
10.	А	В	С	D

Section 1

Q1. A y = mx + b $y = \frac{1}{3}x + b$ inverse function $x = \frac{1}{3}y + b$ y = 3x - b $\therefore m = 3 \text{ for } f^{-1}(x)$

Q2. D A(-3,2) B(-9,y)ratio -5:3 (externally) P(x,-13) $x = \frac{-5 \times -9 + 3 \times -3}{-5+3}$ x = -18 $-13 = \frac{-5 \times y + 3 \times 2}{-5+3}$ 26 = -5y + 6y = -4

Q3. D

$$\lim_{x \to 0} \frac{\sin \frac{\pi x}{5} \cos \frac{\pi x}{5}}{4x}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \sin \frac{2\pi x}{5}}{4x}$$

$$= \frac{1}{2} \times \frac{2\pi}{20}$$

$$= \frac{\pi}{20}$$

Q4. B

Q5. C

$$u = x^{2} + 1$$
 $du = 2xdx$
 $x = 1$ $u = 2$
 $x = 0$ $u = 1$
 $\int_{0}^{1} 3x(x^{2} + 1)^{5}dx$
 $= \frac{3}{2} \int_{0}^{1} (x^{2} + 1)^{5} \times 2xdx$
 $= \frac{3}{2} \int_{1}^{2} u^{5}du$
 $= \frac{3}{2} \left[\frac{u^{6}}{6}\right]_{1}^{2}$
 $= \frac{63}{4}$

Q6. A

$$N = 250 + Ae^{kt}$$

$$\frac{dN}{dt} = kAe^{kt}$$

$$\frac{dN}{dt} = k(N - 250)$$
Q7. B

$$f(x) = \cos^{-1} 3x + x \cos^{-1} 3x$$

$$f'(x) = \frac{-3}{\sqrt{1 - 9x^2}} + \frac{-3x}{\sqrt{1 - 9x^2}} + \cos^{-1} 3x$$

$$f'(x) = \cos^{-1} 3x - \frac{3(x + 1)}{\sqrt{1 - 9x^2}}$$
Q8. B

$$CL = CN = 6 \text{ cm}$$

$$LB = BM = 2 \text{ cm}$$

$$AN = AM = x \text{ cm}$$

$$(x + 2)^2 + 8^2 = (x + 6)^2$$

$$x^2 + 4x + 4 + 64 = x^2 + 12x + 36$$

$$8x = 32$$

$$x = 4$$
Q9. C
Maximum height when $\dot{y} = 0$

$$y = Vt \sin \varphi - \frac{1}{2}gt^2$$

$$\dot{y} = V \sin \varphi - gt$$

$$V \sin \varphi - gt = 0$$

$$t = \frac{V \sin \varphi}{g}$$
Maximum height

$$y = V \times \frac{V \sin \varphi}{g} \times \sin \varphi - \frac{1}{2}g\left(\frac{V \sin \varphi}{g}\right)^2$$

$$y = \frac{V^2 \sin^2 \varphi}{2g}$$
Q10. D

$$\begin{pmatrix} 5x^2 - \frac{3}{x} \end{pmatrix}^{12} \\ T_{r+1} = {}^{12}C_r (5x^2)^{12-r} \times \left(-\frac{3}{x}\right)^r \\ T_{r+1} = {}^{12}C_r \times 5^{12-r} \times (-3)^r \times x^{24-2r} \times x^{-r} \\ T_{r+1} = {}^{12}C_r \times 5^{12-r} \times (-3)^r \times x^{24-3r} \\ \text{Term independent of } x, \text{ so } 24 - 3r = 0 \\ r = 8 \\ T_9 = {}^{12}C_8 \times 5^4 \times (-3)^8$$

Section 2 Q1. a) $\frac{2x+3}{x-5} \ge 1$ $(2x+3)(x-5) \ge (x-5)^2$ $x \ne 5$ $2x^2 - 7x - 15 \ge x^2 - 10x + 25$ $x^2 + 3x - 40 \ge 0$ $(x+8)(x-5) \ge 0$ $x \le -8, x > 5$ b) i) $f(x) = -4\sin^{-1}\left(\frac{2x}{3}\right)$ Domain: $-1 \le \frac{2x}{3} \le 1$ $-\frac{3}{2} \le x \le \frac{3}{2}$ Range: $-2\pi \le y \le 2\pi$ ii) -2 -15 -1 -05 0.5 1 15 c) $P(x) = 5x^3 - 12x + 7$ is divided by x + 3 $R(x) = P(-3) = 5 \times (-3)^3 - 12 \times (-3) + 7$ R(x) = -92d) $A = \int_{0}^{\frac{\pi}{6}} \cos^2 2x \, dx$ $A = \frac{1}{2} \int_0^{\frac{n}{6}} (\cos 4x + 1) dx$ $V = \frac{1}{2} \left[\frac{1}{4} \sin 4x + x \right]_{0}^{\frac{\pi}{6}}$ $V = \frac{1}{2} \left[\frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{6} \right]$ $V = \frac{\sqrt{3}}{16} + \frac{\pi}{12}$ units³

e)

$$u = e^{x}$$

$$du = e^{x} dx$$

$$dx = \frac{1}{u} du$$

$$\int \frac{dx}{e^{x} + 9e^{-x}}$$

$$= \int \frac{1}{u + \frac{9}{u}} \times \frac{1}{u} du$$

$$= \int \frac{u}{u^{2} + 9} \times \frac{1}{u} du$$

$$= \int \frac{du}{u^{2} + 9}$$

$$= \frac{1}{3} \tan^{-1} \left(\frac{u}{3}\right) + C$$

$$= \frac{1}{3} \tan^{-1} \left(\frac{e^{x}}{3}\right) + C$$

f) i)

$$y = e^{\sin x} + x^2$$

 $\frac{dy}{dx} = \cos x e^{\sin x} + 2x$
at $x = \pi, y = 1 + \pi^2$
 $\frac{dy}{dx} = \cos \pi e^{\sin \pi} + 2\pi$
 $\frac{dy}{dx} = 2\pi - 1$
Equation of tangent is
 $(y - 1 - \pi^2) = (2\pi - 1)(x - \pi)$
 $y = (2\pi - 1)x - 2\pi^2 + \pi + \pi^2 + 1$
 $y = (2\pi - 1)x - \pi^2 + \pi + 1$

ii)

$$\frac{x}{2} + \frac{y}{5} = 1$$

$$5x + 2y = 10$$

$$y = -\frac{5}{2}x + 10$$

$$m_1 = -\frac{5}{2} \quad m_2 = 2\pi - 1$$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

$$\tan \theta = \left| \frac{-\frac{5}{2} - (2\pi - 1)}{1 + (-\frac{5}{2}) \times (2\pi - 1)} \right|$$

$$\theta = 32^{\circ}31' \text{ (nearest minute)}$$

obtuse angle = $147^{\circ}29'$ (nearest minute)

Q2.

a) i) $x = a \cos(9t + \theta)$ $\dot{x} = -9a \sin(9t + \theta)$ $\ddot{x} = -81a \cos(9t + \theta)$ $\ddot{x} = -81x$ As the particle's motion can be described in the

form $\ddot{x} = -n^2 x$, where n = 9, it is undergoing simple harmonic motion.

ii)

The period of the motion is $\frac{2\pi}{n} = \frac{2\pi}{9}$

iii)

$$x = a \cos(9t + \theta)$$
When $t = 0, x = 0$

$$0 = a \cos \theta$$

$$\theta = \frac{\pi}{2}$$

$$\therefore x = a \cos\left(9t + \frac{\pi}{2}\right)$$

$$\dot{x} = -9a \sin\left(9t + \frac{\pi}{2}\right)$$
When $t = 0, v = -15$

$$-15 = -9a \sin\left(\frac{\pi}{2}\right)$$

$$a = \frac{5}{3} \text{ m}$$

iv) $x = \frac{5}{3}\cos\left(9t + \frac{\pi}{2}\right)$ When t = 6 $x = \frac{5}{3}\cos\left(54 + \frac{\pi}{2}\right)$ x = 0.93 m (2 d.p.)The particle is about 0.93 m to the right of origin.

b) i)

$$x = t - 5, \quad y = t^{2} - 25$$

$$\frac{dx}{dt} = 1, \quad \frac{dy}{dt} = 2t$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2t$$
ii)

$$t = -6$$

$$\frac{dy}{dx} = 2 \times -6 = -12$$

$$x = -11, \quad y = 11$$

$$y - 11 = -12(x + 11)$$

$$12x + y + 121 = 0$$

iii) t = x + 5 $y = (x + 5)^2 - 25$ $y = x^2 + 10x + 25 - 25$ $y = x^2 + 10x$

c)

Let $f(x) = \tan x + \log_e x - 1$ $f'(x) = \sec^2 x + \frac{1}{x}$ Let $x_1 = 3$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $x_2 = 3 - \frac{f(3)}{f'(3)}$ $x_2 = 3 - \frac{\tan 3 + \log_e 3 - 1}{\sec^2 3 + \frac{1}{3}}$ $x_2 = 3.032$ (4 sig figs)

d) i)

$$P(x) = 4x^{3} - bx^{2} - 64x - 16$$

$$P(x) = 4\left(x^{3} - \frac{b}{4}x^{2} - 16x - 4\right)$$
Let the roots be $\alpha, \frac{1}{\alpha}$ and β
 $\alpha \times \frac{1}{\alpha} \times \beta = 4$
 $\beta = 4$
 $\alpha = -4, \quad \frac{1}{\alpha} = -\frac{1}{4}$
 $\alpha + \beta + \frac{1}{\alpha} = \frac{b}{4}$
 $b = -1$

ii)

$$P(x) = 4(x-4)(x+4)\left(x+\frac{1}{4}\right)$$
$$P(x) = (x-4)(x+4)(4x+1)$$

e)
d)
$$(4a + 9)^{17}$$

 $T_{k+1} = {\binom{17}{k}} (4a)^{17-k} (9)^k$
 $T_{k+1} = {\binom{17}{k}} 4^{17-k} \cdot 9^k \cdot a^{17-k}$
 $T_k = {\binom{17}{k-1}} (4a)^{17-(k-1)} (9)^{k-1}$
 $T_k = {\binom{17}{k-1}} 4^{18-k} \cdot 7^{k-1} \cdot a^{18-k}$
Compare coefficients
 $\frac{t_{k+1}}{t_k} = \frac{{\binom{17}{k}} 4^{17-k} \cdot 9^k}{{\binom{17}{k-1}} 4^{18-k} \cdot 9^{k-1}}$
 $\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{\frac{17!}{(17-k)! k!}}{\frac{17!}{(17-(k-1))! (k-1)!}}$
 $\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{(18-k)! (k-1)!}{(17-k)! k!}$
 $\frac{t_{k+1}}{t_k} = \frac{9}{4} \times \frac{18-k}{k}$
For the greatest coefficient,
 $\frac{t_{k+1}}{t_k} = 1$
 $\frac{162-9k}{4k} > 1$
 $162-9k > 4k$
 $-13k > -162$
 $k < 12\frac{6}{13}$

So the term with the greatest coefficient occurs when k = 12.

$$T_{13} = {\binom{17}{12}} 4^{17-12} \cdot 9^{12} \cdot a^{17-12}$$
$$= {\binom{17}{12}} 4^5 \cdot 9^{12} \cdot a^5$$
So the greatest coefficient is ${\binom{17}{12}} 4^5 \cdot 9^{12}$

a) i)

$$V = \pi \int_{0}^{h} x^{2} dy$$

$$V = \pi \int_{0}^{h} 4y dy$$

$$V = \pi [2y^{2}]_{0}^{h}$$

$$V = 2\pi h^{2}$$
ii)

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$

$$\frac{dV}{dt} = 4\pi h \times \frac{dh}{dt}$$

$$\frac{dV}{dt} = 6, h = 5$$

$$6 = 4\pi \times 5 \times \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{3}{10\pi} \text{ m/min}$$
iii)

$$\frac{dh}{dt} = \frac{3}{2\pi h}$$

$$t = \int_{0}^{12} \frac{2\pi h}{3} dh$$

$$t = \left[\frac{\pi h^{2}}{3}\right]_{0}^{12}$$

$$t = \frac{144\pi}{3} \text{ min} \approx 150.80 \text{ min}$$
b) i)

02

 $4(1^{3} + 2^{3} + 3^{3} + \dots + n^{3}) = n^{2}(n + 1)^{2}$ Step 1: for n = 1 $LHS = 4 \times 1^{3} = 4$ $RHS = 1^{2} \times (1 + 1)^{2} = 4$ LHS = RHS \therefore Statement is true for n = 1Step 2: Assume statement is true for n = k $4(1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) = k^{2}(k + 1)^{2}$

Step 3: Prove statement is true for n = k + 1i.e. $4(1^3 + 2^3 + 3^3 + \dots + k^3 + (k + 1)^3)$ $= (k + 1)^2(k + 2)^2$ $LHS = 4(1^3 + 2^3 + 3^3 + \dots + k^3 + (k + 1)^3)$ $LHS = 4(1^3 + 2^3 + 3^3 + \dots + k^3) + 4(k + 1)^3$ $LHS = k^2(k + 1)^2 + 4(k + 1)^3$ (from step 2) $LHS = (k + 1)^2(k^2 + 4(k + 1))$ $LHS = (k + 1)^2(k^2 + 4k + 4)$ $LHS = (k + 1)^2(k + 2)^2 = RHS$ \therefore Statement is true for all positive integers n by mathematical induction.

Join AC

 $\angle CBA = \frac{1}{2} \angle AOC = 45^{\circ}$ (angle at the centre is twice the angle at the circumference) $\angle CAB = \frac{1}{2} \angle AOC = 45^{\circ}$ (angle at the centre is twice the angle at the circumference) $\therefore \angle CBA = \angle CAB = 45^{\circ}$

ii)

Join DB $\angle DBA = \angle DCA$ (angles at the circumference standing on the same arc AD) Let $\angle DBA = \angle DCA = \alpha$ $\angle DBC = \angle DBA + \angle ABC = \alpha + 45^{\circ}$ (adjacent angles) $\angle BXC = \angle BAC + \angle DCA = \alpha + 45^{\circ}$ (exterior angle of $\triangle AXC$ equals to sum of the opposite interior angles) $\therefore \angle DBC = \angle BXC$

iii)

Join DE $\angle DBC = \angle DEC = \alpha + 45^{\circ}$ (angles at the circumference standing on the same arc *CD*) $\therefore \angle DEC = \angle BXC = \alpha + 45^{\circ}$ $\therefore XYED$ is a cyclic quadrilateral as the exterior angle equals to opposite interior angle) d) $T = P + Ae^{kt}$ Let 1am be time zero $P = 22^{\circ}C, t = 0, T = 33.5^{\circ}C$ $33.5 = 22 + Ae^{0}$ A = 11.5

2 hours after 1am, $t = 120, T = 28^{\circ}C$ $28 = 22 + 11.5e^{120k}$ $\frac{6}{11.5} = e^{120k}$ $k = \frac{\ln\left(\frac{6}{11.5}\right)}{120}$

Body temperature was originally 37°C $37 = 22 + 11.5e^{kt}$ $15 = 11.5e^{kt}$ $kt = \ln\left(\frac{15}{11.5}\right)$ $t = \frac{\ln\left(\frac{15}{11.5}\right)}{k}$ $t = -49.00859092 \dots$ $t \approx -49$

 \therefore The victim passed away 49 min before 1am, so the time would be 12: 11am in the morning.

Q4.
a) i)

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{1}{2} \times 2 \times v \times \frac{dv}{dx}$$

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = v\frac{dv}{dx}$$

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{dx}{dt} \times \frac{dv}{dx}$$

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{dv}{dt}$$

$$\therefore \frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{d^{2}x}{dt^{2}}$$

ii)

$$\ddot{x} = x^{2}(4 - x^{-3})$$

$$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = x^{2}(4 - x^{-3})$$

$$\frac{1}{2}v^{2} = \int \left(4x^{2} - \frac{1}{x}\right)dx$$

$$\frac{1}{2}v^{2} = \frac{4x^{3}}{3} - \ln x + C$$

$$v^{2} = \frac{8x^{3}}{3} - 2\ln x + C$$
When $x = 1, v = 3$

$$9 = \frac{8}{3} + C$$

$$C = 6\frac{1}{3}$$

$$\therefore v^{2} = \frac{8x^{3}}{3} - 2\ln x + 6\frac{1}{3}$$

$$x = 5$$

$$v^{2} = \frac{8}{3} \times 5^{3} - 2\ln 5 + 6\frac{1}{3}$$

$$v = \pm 18.34 \text{ m/s} (2 \text{ d.p.})$$

The speed is 18.34 m/s when the particle is 5 metres to the right of the origin.

b) i) Horizontal Vertically $\ddot{x} = 0$ $\ddot{y} = -g$ $\dot{x} = V \cos \alpha$ $\dot{y} = V \sin \alpha - gt$ $x = Vt \cos \alpha$ $y = Vt \sin \alpha - \frac{1}{2}gt^2$

at
$$x = m, y = h, g = 10$$

 $m = Vt \cos \alpha$
 $t = \frac{m}{V \cos \alpha}$
 $h = V \times \frac{m}{V \cos \alpha} \times \sin \alpha - \frac{1}{2} \times 10 \times \left(\frac{m}{V \cos \alpha}\right)^2$
 $h = m \tan \alpha - \frac{5m^2}{V^2 \cos^2 \alpha}$
 $h = m \tan \alpha - \frac{5m^2(\tan^2 \alpha + 1)}{V^2}$
 $5m^2(\tan^2 \alpha + 1) = V^2(m \tan \alpha - h)$
 $V^2 = \frac{5m^2(\tan^2 \alpha + 1)}{m \tan \alpha - h}$

iii)

$$V^{2} = \frac{5n^{2}(\tan^{2}\alpha + 1)}{n\tan\alpha - h}$$

$$\frac{5m^{2}(\tan^{2}\alpha + 1)}{m\tan\alpha - h} = \frac{5n^{2}(\tan^{2}\alpha + 1)}{n\tan\alpha - h}$$

$$\frac{m^{2}}{m\tan\alpha - h} = \frac{n^{2}}{n\tan\alpha - h}$$

$$\frac{m^{2}(n\tan\alpha - h)}{m^{2}(n\tan\alpha - h)} = n^{2}(m\tan\alpha - h)$$

$$m^{2}n\tan\alpha - m^{2}h = n^{2}m\tan\alpha - n^{2}h$$

$$m^{2}n\tan\alpha - n^{2}m\tan\alpha = m^{2}h - n^{2}h$$

$$(m^{2}n - n^{2}m)\tan\alpha = m^{2}h - n^{2}h$$

$$\tan\alpha = \frac{m^{2}h - n^{2}h}{m^{2}n - n^{2}m}$$

$$\tan\alpha = \frac{(m^{2} - n^{2})h}{mn(n - m)}$$

$$\tan\alpha = \frac{h(m + n)}{mn}$$

c) i)

$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$$

Let $x = 1$
 $2^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^k$
 $4^n = \sum_{k=0}^{2n} {2n \choose k}$

ii)

Integrate both sides

$$\frac{(1+x)^{2n+1}}{2n+1} = \sum_{k=0}^{2n} {\binom{2n}{k}} \frac{x^{k+1}}{k+1} + C$$

Let x = 0

$$\frac{1}{2n+1} = C$$

$$\frac{(1+x)^{2n+1}}{2n+1} = \sum_{k=0}^{2n} {\binom{2n}{k}} \frac{x^{k+1}}{k+1} + \frac{1}{2n+1}$$
$$\sum_{k=0}^{2n} {\binom{2n}{k}} \frac{x^{k+1}}{k+1} = \frac{(1+x)^{2n+1}}{2n+1} - \frac{1}{2n+1}$$

Let
$$x = 1$$

$$\sum_{k=0}^{2n} \binom{2n}{k} \frac{1}{k+1} = \frac{2^{2n+1}}{2n+1} - \frac{1}{2n+1}$$

$$\sum_{k=0}^{2n} \binom{2n}{k} \frac{1}{k+1} = \frac{2^{2n+1}-1}{2n+1}$$

$$\sum_{k=0}^{2n} \binom{2n}{k} \frac{1}{k+1} = \frac{2 \times 2^{2n}-1}{2n+1} \times \frac{2}{2}$$

$$\sum_{k=0}^{2n} \binom{2n}{k} \frac{1}{k+1} = \frac{4 \times 4^n - 2}{4n+2}$$

$$\sum_{k=0}^{2n} \binom{2n}{k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$$