

Penrith Selective High School Mathematics Extension 1 Trial HSC 2019

General Instructions:

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Calculators approved by NESA may be used
- No correction tape or white out to be used
- A reference sheet is provided with this paper
- In Questions 11-14, show relevant mathematical reasoning and/ or calculations

| | Prelim | Series/
 Induction | Calculus |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- |

Student Number: \qquad

Teacher's Name: \qquad

Section I (10 marks)

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Green multiple-choice answer sheet for Questions 1-10.

1. The polynomial $3 x^{3}+5 x^{2}-7 x-10$ has zeros α, β and γ.

What is the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$?
A. $\frac{7}{10}$
B. $\quad-\frac{7}{10}$
C. $\frac{1}{2}$
D. $\quad-\frac{1}{2}$
2. Solve $6|x+3|-2|x+1|=0$.
A. $\quad-4$ or -2.5
B. 4 or 2.5
C. $\quad-4$ or 2.5
D. 4 or -2.5
3. For what value of c will the line $5 x-12 y+c=0$ be a tangent to the circle $x^{2}+y^{2}=4$?
A. 78
B. 13
C. 52
D. 26
4. Using Simpson's Rule with three functional values evaluate $\int_{0}^{1} \sin ^{-1} x d x$
A. $\frac{7 \pi}{18}$
B. $\frac{\pi}{9}$
C. $\frac{7 \pi}{6}$
D. $\frac{7 \pi}{36}$
5. The derivative of $\ln (\sin 2 x)$ is:
A. $2 \cot 2 x$
B. $2 \tan 2 x$
C. $\cot 2 x$
D. $\tan 2 x$
6. What is the exact value of $\tan 105^{\circ}$?
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\quad-2-\sqrt{3}$
D. $-2+\sqrt{3}$
7. Three men and three boys are seating at a round table.

What is the probability that they are alternating?
A. $\frac{1}{30}$
B. $\frac{3}{10}$
C. $\frac{1}{5}$
D. $\frac{1}{10}$
8. A particle moves so that at time t seconds, its displacement x metres from a fixed point O is given by $x=\pi+\sin \left(\frac{\pi}{3} t\right)$. When does the particle first return to its starting point?
A. 1.5
B. 3
C. 4.5
D. 6
9. Express 0.233223322 332....... as a fraction in its simplest form.
A. $\frac{233}{999}$
B. $\frac{233}{909}$
C. $\quad \frac{212}{909}$
D. $\frac{232}{999}$
10. The rate of decay of a radioactive substance is proportional to the mass of the substance present at any time. If a quarter of the substance decomposed in 100 years, what percentage of the original amount remains after 500 years?
A. 9.8%
B. 8.8%
C. 31.6%
D. 23.7%

Section II - 60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section
- Answer each question in the appropriate writing booklet.
- Extra writing booklets are available.
- In Questions 11-14, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks)

Marks
(a) Solve $\frac{2 x+1}{2 x-1}>2$
(b) How many terms are there in the geometric series:

$$
3^{7 m}+3^{5 m}+3^{3 m}+\ldots \ldots+3^{(1-2 k) m} ?
$$

(c) From the digits 1, 2, 3, 4 and 5 a five digit number is formed.

What is the probability that it is divisible by 2 ?
(d) A particle moves with a constant acceleration of $-3 \mathrm{~m} / \mathrm{s}^{2}$.

If the velocity is $-12 \mathrm{~m} / \mathrm{s}$ at two seconds, find the velocity when $t=3$.
(e) Find the primitive of the following functions:
(i) $1+x^{2}$
(ii) $\frac{3 x}{\sqrt{1+x^{2}}}$
(iii) $\frac{3 x}{1+x^{2}}$
(a) Water is flowing into an inverted cone of base radius 6 cm and perpendicular height 14 cm , at a rate of $21 \mathrm{~cm}^{3} / \mathrm{s}$.
(i) Show that $\frac{d r}{d t}=\frac{9}{\pi r^{2}}$
(ii) Find the rate at which the surface area of the water is increasing when the depth of water is 8 cm .
(b) Find the exact value of $\cos \left(\sin ^{-1} \frac{3}{4}+\cos ^{-1} \frac{2}{3}\right)$ giving justifications.
(c) An object is thrown from the top of the library block 5 m above the level ground. It is thrown at an angle of 30° to the horizontal with a velocity of $50 \mathrm{~m} / \mathrm{s}$. (Take g as $10 \mathrm{~m} / \mathrm{s}^{2}$)
(i) Write down the 6 equations of motion.
(ii) Find the greatest height reached.
(iii) A person standing on the ground 225 m away from the foot of the library. Will the person be hit by the object? Give reasons for your answer.
(a) Prove by Mathematical Induction that $5^{2 n}-2^{3 n}$ is always divisible by 17 for $n \geq 1$.
(b) The area under the curve $y=\sin ^{-1} x$ from $x=0$ to $x=\frac{1}{2}$ bounded by the x-axis is rotated about the y-axis. Find the exact volume of the solid of revolution.
(c) Evaluate exactly $\int_{0}^{\frac{1}{4}} \frac{10 d x}{\sqrt{1-16 x^{2}}}$
(d) An event has a probability of success of $\frac{1}{3}$ in a single trial. If n trials are conducted, find the least value of n for which the probability of obtaining exactly four successes exceeds triple the probability of obtaining exactly three successes.
(e) Show that the derivative of $y=\tan ^{-1} \sqrt{x}$ is $\frac{1}{2 \sqrt{x}(1+x)}$

Question 14 (15 marks)
Start a new booklet
Marks
(a) Neatly graph $y=\sin ^{-1}(\cos x)$ for $0 \leq x \leq 3 \pi$
(b) The tangent at $P\left(2 a p, a p^{2}\right)$ to $x^{2}=4 a y$ meets the x-axis at R.

The tangent at $Q\left(2 a q, a q^{2}\right)$ meets the y-axis at S. Find the locus of the midpoint $R S$, given that $p q=-2$. (You may assume that the tangent is in the form $y=t x-a t^{2}$).
(c) A particle is moving on a straight line such that $x=12-2^{1-t}$ where x is in metres and t is the time in seconds. Describe the motion.
(d) $A O B$ is a quadrant of a circle of radius 30 cm .
P is a particle that moves on the $\operatorname{arc} A B$ about O at a constant rate.
It moves from A to B in 15 minutes.
$\angle A O P=\theta$
If Y is the total area of $\triangle O A P$ and $\triangle O B P$, find the rate at which Y is changing when $\theta=\frac{\pi}{6}$.
(e) $A B$ is the common chord.

PNXQM is a straight line.
X is the point of intersection of $A B$ with $P N Q M$.
Copy the diagram into your booklet. Prove that $\frac{P N}{N X}=\frac{M Q}{Q X}$ Giving reasons.

Examination: Trial HSC 2019
Level: Maths Ext. I

Penvith Selective High Ext 1 Trad HSC 2019
Qi
a) i)

$$
\begin{align*}
\frac{r}{h} & =\frac{6}{14} \\
6 h & =14 r \\
h & =\frac{7 r}{3} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \text { Given } \frac{d V}{d t}=21 \\
& \begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d r} \times \frac{d r}{d t} \\
21 & =\frac{7 \pi}{3} r^{2} \times \frac{d r}{d t} \\
\frac{d r}{d t} & =21 \times \frac{3}{7 \pi r^{2}} \\
& =\frac{9}{\pi r^{2}}
\end{aligned}
\end{aligned}
$$

Perinth Selective Ex +1 Thai HSC 2019.
QR.
b) i) Let $\alpha=\sin ^{-1} \frac{3}{4}$

$$
\sin \alpha=\frac{3}{4}
$$

$$
\begin{aligned}
& -\frac{\pi}{2} \leqslant \alpha \leqslant \frac{\pi}{2} \\
& \text { but } \sin \alpha>0 \\
& \therefore \quad 0<\alpha<\frac{\pi}{2}
\end{aligned}
$$

* Need to justify why α and β is in first
Let $\beta=\cos ^{-1} \frac{2}{3}$ quadrant
$0 \leqslant \beta \leqslant \pi$ but $\cos \beta>0$

$$
\therefore 0<\beta<\frac{\pi}{2}
$$

$$
\begin{align*}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& =\frac{\sqrt{7}}{4} \times \frac{2}{3}-\frac{3}{4} \times \frac{\sqrt{5}}{3} \tag{}\\
& =\frac{\sqrt{7}}{6}-\frac{\sqrt{5}}{4} \\
& =\frac{2 \sqrt{7}-3 \sqrt{5}}{12}
\end{align*}
$$

$$
\begin{align*}
A & =\pi r^{2} \\
\frac{d A}{d r} & =2 \pi r \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} \\
& =2 \pi r \times \frac{9}{\pi r^{2}} \tag{0}\\
& =\frac{18}{r}
\end{align*}
$$

* This question was very poorly attempted.

Using similar triangles to find $h=\frac{7 r}{3}$
ii)

$$
\begin{aligned}
& \begin{array}{l|l}
\text { when } h=8, & \frac{d A}{d t}=18 \times \frac{7}{24} \\
s=\frac{7 r}{3}
\end{array} \\
& =\frac{21}{4} \\
& \therefore \text { rising at } \\
& \frac{21}{4} \mathrm{~cm}^{2} / \mathrm{s} \\
& \begin{array}{l}
r=8 \times \frac{3}{7} \\
r=\frac{24}{7} /(1)
\end{array}
\end{aligned}
$$

* poorly attempted
* Most students failed to find the correct 'r'.

Reinrith selective Trial Ext HSC 2019 $Q 12$
c)
(i)

$$
\left.\begin{array}{l}
\ddot{x}=0 \\
\dot{x}=50 \cos 30^{\circ}=25 \sqrt{3} \\
x=25 \sqrt{3} t \tag{1}\\
\ddot{y}=-10 \\
\dot{y}=-10 t+25 \\
y=-5 t^{2}+25 t+5
\end{array}\right\}
$$

* Working out not necessary forth question.
ii) Max height when $y=0$

$$
\begin{aligned}
& -10 t+25=0 \\
& 10 t=25 \\
& t=2.5 \\
& y=-5(2.5)^{2}+25(2.5)+5 \\
& y=36.25 \mathrm{~m}
\end{aligned}
$$

* Well done.
* Carked forward marks was awaroled if t was incorrect or equation ' y ' was wrong in part (i).

Penith Selective Ext 1 Trial HSC 2019
$Q 12$
c)
iii)

$$
\begin{align*}
& \text { Let } y=0 \\
& -5 t^{2}+25 t+5=0 \\
& t^{2}-5 t-1=0 \\
& t=\frac{5 \pm \sqrt{25-(4)(-1)}}{2} \\
& =\frac{5 \pm \sqrt{29}}{2} \tag{1}
\end{align*}
$$

but $t \geq 0$

$$
\begin{align*}
x & =25 \sqrt{3} t \\
& =25 \sqrt{3} \times \frac{5+\sqrt{29}}{2} \\
& =224.85 \mathrm{~m} \tag{1}
\end{align*}
$$

- The person will not be hit by the object since $224.85<225 \mathrm{~m} /$ (1)
* common err: quadratic equation

$$
t=\frac{5 \pm \sqrt{24}}{2}
$$

CFE marks ivan awarded if t was wrong

* part (c) was the best attempted in Q/2.

Rennithfelective Trial EXT I MSC 2019. Q 13

1) Step 1: Prove true for $n=1$

$$
5^{2}-2^{3}=17
$$

\therefore True for $n=1$

Penith Selective Ext 2019 Trial HSC.
Q 13
b)

Step 2: Assume true for $n=k$

$$
\begin{aligned}
& 5^{2 k}-2^{3 k}=17 p \text { where } p \\
\therefore & 5^{2 k}=17 P+2^{3 k} \text { is an interger }
\end{aligned}
$$

Step 3. Prove the for $n=k+1$
$5^{2(k+1)}-2^{3(k+1)}=17 Q$ where Q is integer

$$
\begin{aligned}
\text { HS } & =5^{2(k+1)}-2^{3(k+1)} \\
& =5^{2}\left(5^{2 k}\right)-2^{3}\left(2^{3 k}\right) \\
& =25\left(17 P+2^{3 k}\right)-8\left(2^{3 k}\right) \\
& =425 P+17\left(2^{3 k}\right) \\
& =17\left(25 P+2^{3 k}\right) \\
& =17 Q \\
& =\text { RUS }
\end{aligned}
$$

Step 4: By the principle of mathematical induction * incorrect substitution. It is true for all integer $n \geq 1$

* This question was very well done, marks are penalised if students didnt state ' P is an integer'.

$$
\begin{align*}
& =\frac{\pi}{2}\left[y-\frac{1}{2} \sin 2 y\right]_{0}^{\frac{\pi}{6}} \\
& =\frac{\pi}{2}\left[\left(\frac{\pi}{6}-\frac{1}{2} \sin \frac{\pi}{3}\right)-\left(0-\frac{1}{2} \sin 0\right)\right] \\
& =\frac{\pi}{2}\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) \\
& =\frac{\pi(2 \pi-3 \sqrt{3})}{24} \text { units }^{3} \tag{i}\\
& \text { * Badly dane } \therefore V=\frac{\pi^{2}}{24}-\frac{2 \pi^{2}}{24}+\frac{3 \sqrt{3}}{24}=\frac{3 \sqrt{3 \pi}-\pi^{2}}{24} \tag{1}
\end{align*}
$$

* common emos, forgot to change $x=\frac{1}{2}$ to $y=\frac{\pi}{6}$.
* integrated $1-\cos 2 y$ incorrectly
* Most students only found volume of the area bounded by the y-axis.

Peinith feckenve Trial HSC Fx+1 2019.
$Q B$
c)

$$
\begin{align*}
\int_{0}^{\frac{1}{4}} \frac{10}{\sqrt{1-16 x^{2}}} d x & =\frac{10}{4} \int_{0}^{\frac{1}{4}} \frac{1}{\sqrt{\frac{1}{16}-x^{2}}} \\
& =\frac{10}{4}\left[\sin ^{-1}\left(\frac{x}{\frac{1}{4}}\right)\right]_{0}^{\frac{1}{4}} \\
& =\frac{10}{4}\left[\sin ^{-1}(4 x)\right]_{0}^{\frac{1}{4}} \tag{1}\\
& =\frac{5}{2}\left(\sin ^{-1} 1-\sin ^{-1} 0\right) \tag{1}\\
& =\frac{5}{2}\left(\frac{\pi}{2}-0\right)
\end{align*}
$$

$$
\begin{aligned}
& P(r=3)={ }^{n} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{n-3} \\
& P(r=4)={ }^{n} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{n-4} \\
& { }^{n} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{n-4}>{ }^{n} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{n-3} \times 3 \\
& \frac{n!}{4!(n-4)!} \times \frac{1}{3}>3 \times \frac{n!}{3!(n-3)!} \times \frac{2}{3} \\
& \frac{(n-3)!}{(n-4)!}>24 \\
& n-3>24 \\
& n>27
\end{aligned}
$$

Well dome!
d)

$$
\begin{aligned}
& =\frac{5 \pi}{4} \\
& ={ }^{n} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{n-3}
\end{aligned}
$$

smallest value $n=28$ (1)

Penvith Selective Ext 1 HSC Trial 2019 .
Q 13
e)

$$
\begin{array}{lr}
y=\tan ^{-1} \sqrt{x} \\
y=\tan ^{-1} u & \text { Let u}=\sqrt{x} \\
\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}
\end{array}
$$

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

$$
=\frac{1}{1+u^{2}} \times \frac{1}{2 \sqrt{x}}
$$

$$
\begin{equation*}
=\frac{1}{1+(\sqrt{x})^{2}} \times \frac{1}{2 \sqrt{x}} \tag{1}
\end{equation*}
$$

$$
=\frac{1}{2 \sqrt{x}(1+x)}
$$

* This is a show question, hence yeumuit show every step of working out, no mather how trivial it is.
* Marka wa penalised if the answer $\frac{1}{2 \sqrt{x}(1+x)}$ just magically appeared in' the final step. withow any justification.

$$
\begin{aligned}
& \text { QUESTION: } 14 \\
& 14 \text { a) } \begin{aligned}
y & =\sin ^{-1}(\cos x) \\
& =\sin ^{-1}\left[\sin \left(\frac{\pi}{2}-x\right)\right] \\
& =\frac{\pi}{2}-x
\end{aligned}
\end{aligned}
$$

Markers Comments
$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, \quad x=$ all real numbers.

b) Equation of tangent ac $P, y=p x-a p^{2}$

Sub $y=0$ for R,

$$
\begin{aligned}
& 0=p x-\alpha p^{2} \quad \therefore R(a p, 0) \\
& x=a p
\end{aligned} \quad \therefore R\left(\begin{array}{l}
0
\end{array}\right.
$$

Equation of tangent at $Q, y=q x-a q^{2}$
Sub $x=0$ for S,

$$
\begin{equation*}
y=-a q^{2} \quad \therefore s\left(0,-a q^{2}\right) \tag{1}
\end{equation*}
$$

$\therefore M\left(\frac{a p}{2},-\frac{a q^{2}}{2}\right)$
$x=\frac{a p_{p}}{2}, y=-\frac{a q_{i}^{2}}{2}$
$p=\frac{2 x}{a} \quad q^{2}=-\frac{2 y}{a}$
$p^{2}=\frac{4 x^{2}}{a^{2}}$

$$
\begin{gathered}
p q=-2 \\
p^{2} q^{2}=4 \\
\frac{-4 x^{2}}{a^{2}} \times\left(-\frac{2 y}{a}\right)=4 \\
-8 x^{2} y=4 a^{3} \\
y=-\frac{a^{3}}{2 x^{2}}
\end{gathered}
$$

* Dent need to derive the equecrion of the tangent by differentiating the curve, it was given in the question. Just replace the paraincter t by p and q
* Most students worked out the coordinates of the print R and P and the miripont, but sore struggled to get the cartesian equation of the locus by eliminating pandit

Examination:

Year:
QUESTION:
$14 c) \quad x=12-2^{1-t}$

The particle was initially at $x=10$, moving to the right. It slows down and approciches to $x=12$, bit never actually reaches it or stops
d)

$$
\begin{aligned}
\frac{d \theta}{d t} & =\frac{\pi}{2} \mathrm{rad} / 15 \min \\
& =\frac{\pi}{30} \mathrm{rad} / \mathrm{min}
\end{aligned}
$$

$$
Y=\frac{1}{2}(30)^{2} \sin \theta+\frac{1}{2}(30)^{2} \sin \left(\frac{\pi}{2}-\theta\right)
$$

$$
=450 \sin \theta+450 \cos \theta
$$

$$
\begin{equation*}
\frac{d Y}{d \theta}=450 \cos \theta-450 \sin \theta \tag{1}
\end{equation*}
$$

$$
\frac{d Y}{d t}=\frac{d Y}{d \theta} \times \frac{d \theta}{d t}
$$

$$
\begin{equation*}
=400(\cos \theta-\sin \theta) \times \frac{\pi}{30} \tag{1}
\end{equation*}
$$

When $\theta=\frac{\pi}{6}, \frac{d y}{d t}=\frac{450 \pi}{30}\left(\cos \frac{\pi}{6}-\sin \frac{\pi}{6}\right)$

$$
\begin{align*}
& =15 \pi\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right) \\
& =\frac{15 \pi}{2}(\sqrt{3}-1) \mathrm{cm} / \mathrm{min} \tag{1}
\end{align*}
$$

* Poorly done

$$
=\frac{d \theta}{d t} \neq \frac{360^{\circ}}{15 \min } \text { or } 6^{\circ} / \mathrm{min}
$$

The angle need's to bee in radians

* Many students farmed the area of sectors using $\frac{1}{2} r^{2} e$ instead of the two triangles $Y=$ total area of the two Δ 's
* I mark was given if you have at least attempted to apply the chain rule in terms of $\frac{d y}{d t}$ and $\frac{d t}{d t}$

Examination:

Level:
Year:

