

Penrith Selective High School Mathematics Extension 1 Trial HSC 2019

General Instructions:

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- No correction tape or white out to be used
- A reference sheet is provided with this paper
- In Questions 11–14, show relevant mathematical reasoning and/ or calculations

	Prelim	Series/ Induction	Calculus	Inverse Fns	Rates of Change Growth & decay	Prob.	Motion	Total
M/C	/4	/1	/2		/1	/1	/1	/10
Q11	/3	/3	/5			/2	/2	/15
Q12				/3	/5		/7	/15
Q13		/4		/8		/3		/15
Q14	/6			/4	/3		/2	/15
Total	/13	/8	/7	/15	/9	/6	/12	/70

Student Number:_____

Teacher's Name:_____

Section I (10 marks)

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the Green multiple-choice answer sheet for Questions 1–10.

1. The polynomial $3x^3 + 5x^2 - 7x - 10$ has zeros α , β and γ .

What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$?

A. $\frac{7}{10}$ B. $-\frac{7}{10}$ C. $\frac{1}{2}$ D. $-\frac{1}{2}$

- 2. Solve 6|x+3| 2|x+1| = 0.
 - A. -4 or 2.5
 - B. 4 or 2.5
 - C. 4 or 2.5
 - D. 4 or − 2.5

3. For what value of c will the line 5x - 12y + c = 0 be a tangent to the circle $x^2 + y^2 = 4$?

- A. 78
- B. 13
- C. 52
- D. 26

- 4. Using Simpson's Rule with three functional values evaluate $\int_0^1 \sin^{-1} x \, dx$
 - $\frac{7\pi}{18}$ Α.
 - Β.
 - $\frac{\pi}{9}$
 - $\frac{7\pi}{6}$ C.
 - $\frac{7\pi}{36}$ D.
- 5. The derivative of $\ln(\sin 2x)$ is:
 - $2\cot 2x$ Α.
 - 2tan*2x* Β.
 - C. cot2*x*
 - tan2x D.
- 6. What is the exact value of tan105°?
 - $2 \sqrt{3}$ A.
 - B. $2 + \sqrt{3}$
 - C. $-2 \sqrt{3}$
 - $-2 + \sqrt{3}$ D.
- 7. Three men and three boys are seating at a round table.

What is the probability that they are alternating?

A.	$\frac{1}{30}$
В.	$\frac{3}{10}$
C.	<u>1</u> 5
D.	$\frac{1}{10}$

- 8. A particle moves so that at time t seconds, its displacement x metres from a fixed point O is given by $x = \pi + \sin(\frac{\pi}{3}t)$. When does the particle first return to its starting point?
 - A. 1.5
 - B. 3
 - C. 4.5
 - D. 6
- 9. Express 0.233 223 322 332...... as a fraction in its simplest form.

A.	233 999
В.	233 909
C.	212 909
D.	232 999

- 10. The rate of decay of a radioactive substance is proportional to the mass of the substance present at any time. If a quarter of the substance decomposed in 100 years, what percentage of the original amount remains after 500 years?
 - A. 9.8%
 - B. 8.8%
 - C. 31.6%
 - D. 23.7%

Section II – 60 marks

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section
- Answer each question in the appropriate writing booklet.
- Extra writing booklets are available.
- In Questions 11–14, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks)	Marks
(a) Solve $\frac{2x+1}{2x-1} > 2$	3
(b) How many terms are there in the geometric series:	
$3^{7m} + 3^{5m} + 3^{3m} + \dots + 3^{(1-2k)m}$?	3
(c) From the digits 1, 2, 3, 4 and 5 a five digit number is formed.	
What is the probability that it is divisible by 2?	2
(d) A particle moves with a constant acceleration of $-3m/s^2$.	
If the velocity is -12 m/s at two seconds, find the velocity when $t = 3$.	2
(e) Find the primitive of the following functions:	
(i) $1 + x^2$	1
(ii) $\frac{3x}{\sqrt{1+x^2}}$	2
(iii) $\frac{3x}{1+x^2}$	2

Question 12 (15 marks)

(a) Water is flowing into an inverted cone of base radius 6cm and perpendicular height 14cm, at a rate of $21 \text{cm}^3/\text{s}$.

Start a new booklet

(i) Show that
$$\frac{dr}{dt} = \frac{9}{\pi r^2}$$
 3

(ii) Find the rate at which the surface area of the water is increasing when the depth of water is 8cm.

- (b) Find the exact value of cos($\sin^{-1}\frac{3}{4} + \cos^{-1}\frac{2}{3}$) giving justifications. **3**
- (c) An object is thrown from the top of the library block 5m above the level ground. It is thrown at an angle of 30° to the horizontal with a velocity of 50m/s. (Take g as $10m/s^2$)

2

(a) Prove by Mathematical Induction that $5^{2n} - 2^{3n}$ is always divisible by 17 for $n \ge 1$.

Start a new booklet

(b) The area under the curve $y = \sin^{-1} x$ from x = 0 to $x = \frac{1}{2}$ bounded by the x-axis is rotated about the y –axis. Find the exact volume of the solid of revolution.

(c) Evaluate exactly
$$\int_0^{\frac{1}{4}} \frac{10dx}{\sqrt{1-16x^2}}$$
 3

(d) An event has a probability of success of $\frac{1}{3}$ in a single trial. If *n* trials are conducted, find the least value of *n* for which the probability of obtaining exactly four successes exceeds triple the probability of obtaining exactly three successes.

(e) Show that the derivative of
$$y = \tan^{-1} \sqrt{x}$$
 is $\frac{1}{2\sqrt{x}(1+x)}$ 2

Question 14 (15 marks)	Start a new booklet	Marks
------------------------	---------------------	-------

- (a) Neatly graph $y = \sin^{-1}(\cos x)$ for $0 \le x \le 3\pi$ 4
- (b) The tangent at P (2ap, ap^2) to $x^2 = 4ay$ meets the x-axis at R. The tangent at Q (2aq, aq^2) meets the y-axis at S. Find the locus of the midpoint RS, given that pq = -2. (You may assume that the tangent is in the form $y = tx - at^2$). 3

4

3

3

(c) A particle is moving on a straight line such that $x = 12 - 2^{1-t}$ where x is in metres and t is the time in seconds. Describe the motion.

2

3

(d) AOB is a quadrant of a circle of radius 30cm.

P is a particle that moves on the arc *AB* about *O* at a constant rate.

It moves from A to B in 15 minutes.

$$\angle AOP = \theta$$

If Y is the total area of $\triangle OAP$ and $\triangle OBP$, find the rate at which Y is changing when $\theta = \frac{\pi}{6}$. 3

(e) AB is the common chord.

PNXQM is a straight line.

X is the point of intersection of AB with PNQM.

Copy the diagram into your booklet. Prove that $\frac{PN}{NX} = \frac{MQ}{QX}$ Giving reasons.

END OF EXAMINATION PAPER

Examination: Trial HSC 2019				
Level: Maths Ext. 1				
Year: 12 M/C 1.B 2.A	3.0 4.0 5A (.c 7	188 9.C	10.0	
QUESTION: //	Markers Comments	QUESTION:	ii	Markers Comments
$ \begin{array}{c} (1/a) \frac{\partial x+1}{2x-1} > 2 \qquad x \neq \frac{1}{2} \\ & \text{Multiply both sides by } (2x-1)^2 \\ (2x+1)(2x-1) > 2(2x-1)^2 \\ (2x+1)(2x-1) > 2(2x-1)^2 \\ & 4x^2-1 > 8x^2-8x+2 \\ & 4x^2-8x+3 < 0 \\ (1) (\partial x-3)(2x-1) < 0 \\ & \vdots \frac{1}{2} < x < \frac{3}{2} (2) \end{array} $	$\frac{2x+1}{2x-1} > 2$ $\frac{2x+1>4x-2}{3>2x}$ $\frac{3>2x}{x<\frac{3}{2}} \text{ mark only}$	$ e \rangle$ $) \int ($ $) ($ $) \int ($ $) \int ($ $) \int ($ $) ($ $ $	$(1+x^{2}) dx = x + \frac{x^{3}}{3} + c$ $\frac{3x}{\sqrt{1+x^{2}}} dx \qquad Let u = 1+x^{2}$ $\int \frac{1}{\sqrt{1+x^{2}}} du \qquad (1) \qquad \frac{du}{dx} = 2\pi c$ $(\sqrt{2}u^{\frac{1}{2}}) + c \qquad \frac{1}{2}du = x dz$ $\overline{(\sqrt{2}u^{\frac{1}{2}})} + c \qquad (1)$	() * Some students got mixed up with sin'tx
b) $G_{i} = 2^{T_{m}}$, $r = 3^{-2m}$, $n = ?$, $T_{n} = 3^{(1-2k)m}$, G_{n} ? $T_{n} = G_{1}r^{n-1}$ $3^{(1-2k)m} = 3^{T_{m}} \cdot (3^{-2m})^{n-1}$ $3^{(1-2k)m} = 3^{T_{m}-2m}(n-1)$ (1-2k)m = 7m - 2m(n-1) 2m(n-1) = 7m - m + 2km n-1 = 3 + k $\therefore n = 4 + k$ terms (1)	# Alternative $a=7m$, $d=-2m$, $T_n = (1-2k)m$, AR. $T_n = a + (n-1)d$ (1-2k)m = 7m + (n-1)(-2m) 1-2k = 7 - 2(n-1) 1-2k = 9 - 2n 2n = 2k+8 n = k+4		$\int \frac{3x}{1+x^2} dx$ $= \int \frac{2x}{1+x^2} dx$	* Some students got mixed With towitx.
c) Ending with $\alpha = 4!$ Ending with $4 = 4!$ $p(divisible by 2) = \frac{4!+4!}{5!}$ (1) $= \frac{2}{5}$ (1)				
d) $\ddot{\chi} = -3$ $\dot{\chi} = -3t + C$ $t=2$ $\chi = -6$ (1) $\dot{\chi} = -3t - 6$ Sub $t=3$, $\dot{\chi} = -9 - 6$ = -15 m/s (1)				

h

Permith Selective Ext 1 That HSC 2019.
Q12.
b) i) Let
$$\alpha = \sin^{-1}\frac{3}{4}$$

Sin $\alpha = \frac{3}{4}$ $-\frac{\pi}{4} \le \alpha \le \frac{\pi}{2}$
but $\sin \alpha > 0$
 $\therefore 0 \le \alpha \le \frac{\pi}{2}$ $\therefore Need to$
justify why
 α and β
in in first
 $\cos \beta = \frac{2}{3}$ $0 \le \beta \le \pi$ to get I may
but $\cos \beta > 0$
 $\therefore 0 \le \beta \le \frac{\pi}{2}$
 1
 $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$
 $= \frac{\sqrt{7}}{4} \times \frac{2}{3} - \frac{3}{4} \times \frac{\sqrt{5}}{3}$
 $= \frac{\sqrt{7}}{4} - \frac{\sqrt{5}}{4}$
 $= \frac{2\sqrt{7} - 3\sqrt{5}}{\sqrt{1}}$

* Most students found the exact value but did not justify thy & and B was in first guadrant, I mark was penalised.

Peninth Selective Exit I Trial MSC 2019 Q12.

c) iii) Let
$$y=0$$

 $-5t^{2}+25t+5=0$
 $t^{2}-5t-1=0$
 $t=5\pm\sqrt{25}-(4)(4)$
 2
 $=5\pm\sqrt{29}$
but $t \ge 0$
 $\chi = 25\sqrt{3} + t$
 $= 25\sqrt{3} \times \frac{5+\sqrt{29}}{2}$
 $= 22.4.85m$ (D)
The person will not be hit by the object since $224.85 < 225m$ (D)
 \therefore The person will not be hit by the object since $224.85 < 225m$ (D)
 \Rightarrow common error : quadrahi equation
 $t = 5\pm\sqrt{24}$
 2
CFE marks was awarded if t was avong \Rightarrow part (c) was the best attempted in $8/2$.

Remith delective Trial EXT 1 HSC 2019.
Big 3) Step 1: Prove true for n=1
Step 2: Assume true for n=1

$$5^{2k} - 2^{3} = 177$$

 \therefore True for n=1
 $5^{2k} - 2^{3k} = 17P$
 \therefore $5^{2k} - 2^{3k} = 17P$ where P
 $\therefore 5^{2k} - 2^{3k} = 17P$ where P
 $\therefore 5^{2k} - 2^{3k} = 17P$ where P
 $\therefore 5^{2k} = 17P + 2^{2k}$
 $Must write.
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= \frac{\pi}{2} \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$
 $= 170 \sum_{i=1}^{\infty} (1 - \cos 2y) \, dy$$

* This question was very nell done, marks are penalised if students didn't state 'P is an integer!

Remitten Jekectire Ext 2 2019 Trial HSC.
Q13
b)
$$y = \sin^{-1} x$$
 when $x = 0$ $y = 0$
 $x = \sin y$ $x = \frac{1}{2}$ $y = \frac{\pi}{6}$
 $V = \pi \int_{-\infty}^{\frac{\pi}{6}} \sin^{2} y \, dy$ $V = \pi r^{2}h$
 $= \frac{\pi}{2} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2y) \, dy$ $\frac{\pi}{24}$
 $= \frac{\pi}{2} \left[\left(\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} \right) - \left(0 - \frac{1}{2} \sin 0 \right) \right]$
 $= \frac{\pi}{2} \left[\left(\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} \right) - \left(0 - \frac{1}{2} \sin 0 \right) \right]$
 $= \frac{\pi}{2} \left[\left(\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} \right) - \left(0 - \frac{1}{2} \sin 0 \right) \right]$
 $= \frac{\pi}{2} \left[\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} \right] 0$
 $= \frac{\pi}{2} \left[\frac{\pi}{6} - \frac{1}{2} \sin \frac{\pi}{3} \right] 0$
 $\frac{\pi}{24} \left[\frac{\pi}{6} - \frac{1}{24} \right] 0$
 $= \frac{\pi}{24} \left[\frac{\pi}{6} - \frac{1}{24} \right] 0$
 $\frac{\pi}{24} \left[\frac{\pi}{6} - \frac{1}{24} \right] 0$
 $\frac{\pi}{24} \left[\frac{\pi}{6} - \frac{1}{24} + \frac{2}{24} \right] = \frac{313\pi - \pi^{2}}{24} c$
 $\frac{\pi}{24} common envos, forgot to change $x = \frac{1}{2} h g = \frac{\pi}{6}$
 $\frac{\pi}{6} integrated 1 - \cos 2y$ incorrectly.
 $\frac{\pi}{10} integrated 1 - \cos 2y$ incorrectly.
 $\frac{\pi}{10} integrated s only found volume of the area bounded by the yramis.$$

Peinth Selketive That HSC Ext 2 2019.
(0)
$$\int_{0}^{4} \frac{10}{\sqrt{1-16x^{2}}} dx = \frac{10}{4} \int_{0}^{4} \frac{1}{\sqrt{16-x^{2}}}$$

 $= \frac{10}{4} \left[\sin^{-1} \left(\frac{2c}{4} \right) \right]_{0}^{4}$
 $= \frac{10}{4} \left[\sin^{-1} (4x) \right]_{0}^{4}$ (D)
 $= \frac{5}{2} \left(\sin^{-1} (-\sin^{-1} 0) \right)$ (D)
 $= \frac{5}{2} \left(\frac{\pi}{2} - 0 \right)$
 $= \frac{5\pi}{4}$ (D) Well done
d) $P(r=3) = {}^{n} C_{2} \left(\frac{1}{2} \right)^{3} \left(\frac{2}{2} \right)^{n-3}$

$$P(r=4) = n_{4}(\frac{1}{3})^{4}(\frac{2}{3})^{n-4}$$

$$n_{4}(\frac{1}{3})^{4}(\frac{2}{3})^{n-4} > n_{3}(\frac{1}{3})^{3}(\frac{2}{3})^{n-3} \times 3$$

$$\frac{n!}{4!(n-4)!} \times \frac{1}{3} > 3 \times \frac{n!}{3!(n-3)!} \times \frac{2}{3}$$

$$\frac{(n-3)!}{(n-4)!} > 24 \quad \sqrt{11}$$

$$n-3 > 24$$

$$n > 27$$
Smallest value $n = 28 \quad \sqrt{11}$

Pennith Selective ExtI HSC Trial 2019.

Q13

e)
$$y = \tan^{-1} \sqrt{2}$$

 $y = \tan^{-1} u$ Let $u = \sqrt{2}$
 $\frac{du}{dn} = \frac{1}{2\sqrt{2}} \sqrt{D}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{1}{1+\alpha^2} \times \frac{1}{2\sqrt{2}}$$

* This is a show question, hence you must show every step of working out, no matter how trivial it is.

Examination:

Level:

Year:

OUESTION: 14	Markers Comments
QUESTION: 14 $ \begin{array}{rcl} & 4 & a \rangle & y = \sin^{-1} \left(\cos x \right) \\ & = \sin^{-1} \left[\sin \left(\frac{\pi}{2} - x \right) \right] \\ & = \frac{\pi}{2} - x \\ & -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} , \chi = all \text{ real numbers } . \\ & 1) & x - int \\ & 1) & x - int \\ & 1) & Rauge \\ & \hline & 1 & Rauge \\ & \hline & Ruler . \\ & D & Ruler . \\ \end{array} $	Markers Comments # Label the axes # Scales on the x-axis heed to be equally spaced # Some students drew a Curve insecod of a Straight line.
b) Equation of tangent at P, $y = px - ap^2$ sub $y=0$ for R, $0 = px - ap^2$ $x = ap$ $\therefore R(ap, 0)$ Equation of tangent at Q, $y = px - aq^2$ Sub $x=0$ for S, $y = -aq^2$ $\therefore S(0, -aq^2)$ (1) $\therefore M(\frac{ap}{2}, -\frac{aq^2}{2})$ (1) $x = \frac{ap}{2}$, $y = -\frac{aq^2}{2}$ $p = \frac{2x}{a}$ $q^2 = -\frac{2y}{a}$ $p^2 = \frac{4x^2}{a^2}$ $pq^2 = 4$ $-8x^2y = 4a^3$ $y = -\frac{a^3}{2x^2}$ (1)	* Don't need to derive the equation of the tangent by differentiating the curve, it was given in the question. Just replace the parameter t by p and g # Most students worked out the Coordinates of the point R and p and the Unicipoint, but some struggled to get the cartesian equation of the locus by eliminating p and g

Examination:

Level:

Year:

QUESTION:	Markers Comments
14 c) $x = 12 - 2^{1-t}$ I Any two key points I The other two key 10 The particle was initially at $x = 10$, moving to the right. It slows down and approaches to $x = 12$, bit never actually reaches it or stops	pourts the origin O
d) $\frac{d\theta}{dt} = \frac{\pi}{2} t_{ext} / 15 min$ $= \frac{\pi}{30} t_{ext} / 15 min$ $Y = \frac{1}{2} (80)^{2} \sin \theta + \frac{1}{2} (36)^{2} \sin (\frac{\pi}{2} - \theta)$ $= 450 \sin \theta + 450 \cos \theta$ $\frac{dY}{d\theta} = 450 \cos \theta - 450 \sin \theta$ $\frac{dY}{d\theta} = 450 \cos \theta - 450 \sin \theta$ $\frac{dY}{d\theta} = 450 (\cos \theta - \sin \theta) \times \frac{\pi}{30} \qquad (1)$ $When \theta = \frac{\pi}{6}, \frac{dY}{dt} = \frac{450\pi}{30} (\cos \frac{\pi}{6} - \sin \frac{\pi}{6})$ $= 15\pi \left(\frac{45}{2} - \frac{1}{2}\right)$ $= \frac{15\pi}{2} (\sqrt{3} - 1) - c_{m} / min$	 # Poorly done # d0 # 260° or 6°/min. The angle needs to be? in radians # Many students found the area of sectors using 2r20 instead of the two triangles Y= total area of the two D's * I mark was given if you have at least attempted to apply the chain rule in terms of dy and do of de and do

٠

• Examination:

Level:

Year:

QUESTION: 14	Markers Comments
(14 e) (PX)(XQ) = (AX)(XB) (Products of interreg	ots of chords in a circle)
Similarly $(MX)(XN) = (AX)(XB)$ (1)	
$\therefore (P_X)(X \emptyset) = (MX)(X \mathbb{A})$	
(PN + NX)(XQ) = (MQ + QX)(XN)	
(PN)(XO) + (NX)(XO) = (MO)(XA) + (QX)(XN) (1))
$(\mu \times)(\chi \otimes \mu) = (\otimes \chi)(\mu \otimes \eta)$	
Divide both sides by (XN)(XQ) (1)	
$\frac{1}{NX} = \frac{MQ}{QX}$	