

PRESBYTERIAN LADIES' COLLEGE
SYDNEY
1888

2010

TRIAL
HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 84

- Attempt questions 1-7
- All questions are of equal value

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total	\%
Marks									
	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$		$/ 84$

Question 1 (12 marks) Start a new sheet of writing paper.

a) Show that $\lim _{x \rightarrow 0} \frac{3 x}{\tan 2 x}=\frac{3}{2}$.
c) \quad Solve $\frac{4 x-3}{x} \geq 5$
d) Find the acute angle between the lines $y=-x-1$ and $4 x+5 y=2$. Answer to the nearest minute.
e) Using $t=\tan \frac{\theta}{2}$, find the exact value of $\frac{1-\tan ^{2} 15^{\circ}}{1+\tan ^{2} 15^{\circ}}$ showing all working.

End of Question 1

Question 2 (12 marks) Start a new sheet of writing paper.

a) Find the coordinates of the point, P, that divides the interval $A B$ externally in the ratio of $1: 4$ if $\mathrm{A}(3,1)$ and $\mathrm{B}(-1,-5)$.
b) Using the substitution, $u=x^{4}+1$, or otherwise, evaluate $\int_{0}^{1} x^{3} e^{x^{4}+1} d x$.
c) Find the constant term in the expansion of $\left(x^{2}-\frac{1}{2 x^{3}}\right)^{10}$
d) Find the general solution to $2 \cos \theta+\sqrt{3}=0$. Express your answer in terms of π.
e) Find x, giving reasons:

End of Question 2

Question 3 (12 marks) Start a new sheet of writing paper.

a) i) Show that $x^{3}+2 x-17=0$ has a root between $x=2$ and $x=3$
ii) Using an approximation of $x=2 \cdot 4$, use one application of 3
Newton's method to find a better approximation for this root.
Give your answer to two decimal places.
b) i) Express $\sin x-2 \cos x$ in the form $A \sin (x-\alpha)$ where $0 \leq \alpha \leq \frac{\pi}{2}$.

2
ii) Hence, or otherwise, solve $\sin x-2 \cos x=\frac{\sqrt{5}}{2}$ for $0 \leq x \leq 2 \pi$.

Give your answer(s) correct to 2 decimal places.
c) A particle moves on the x axis with velocity $v \mathrm{~m} / \mathrm{s}$. The particle is initially at rest at $x=1 \mathrm{~m}$. Its acceleration is given by $\ddot{x}=2 v \mathrm{~m} / \mathrm{s}^{2}$. Find the velocity and acceleration of the particle at $x=10$ metres.

End of Question 3

Question 4 (12 marks) Start a new sheet of writing paper.

a) Given $y=2 \sin ^{-1} \frac{x}{3}$
i) State the domain and range of this function.
ii) Sketch the curve $y=2 \sin ^{-1} \frac{x}{3}$.
b) Find the exact value of $\int_{0}^{2 \sqrt{3}} \frac{1}{4+x^{2}} d x$
c) Prove that $\frac{2}{\tan A+\cot A}=\sin 2 A$
d) i) For the binomial expansion of $(4+3 x)^{15}$, show that:

$$
\frac{T_{k+1}}{T_{k}}=\frac{16-k}{k} \times \frac{3}{4} \times x .
$$

ii) Hence, find the greatest coefficient of $(4+3 x)^{15}$, leaving your answer in index form.

End of Question 4

Question 5 (12 marks) Start a new sheet of writing paper.

a) The velocity $v \mathrm{~m} / \mathrm{s}$ of a particle moving along the x -axis is given by $v^{2}=16 x-4 x^{2}+20$.
i) Prove that the motion is simple harmonic.
ii) Find the centre of motion.

1
iii) Find the distance travelled in one complete oscillation.
b) i) Show that the equation of the normal at $P\left(2 a p, a p^{2}\right)$ on the parabola

$$
x^{2}=4 a y \text { is } \quad x+p y-a p^{3}-2 a p=0
$$

ii) The normals from $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ on the parabola $x^{2}=4$ ay meet at right angles. Prove that the locus of the points of intersection of these normals is the parabola $x^{2}=a y-3 a^{2}$
c) Prove by mathematical induction that $\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{n}{(n+1)!}=\frac{(n+1)!-1}{(n+1)!}$ for all positive integers n.

End of Question 5

Question 6 (12 marks) Start a new sheet of writing paper.

a) Newton's law of cooling states that a body cools according to the equation $\frac{d T}{d t}=-k(T-S)$,
where T is the temperature of the body at time t, S is the temperature of the surroundings and k is a constant.
i) Show that $T=S+A e^{-k t}$ satisfies the equation, where A is a constant.
ii) A metal rod has an initial temperature of $350^{\circ} \mathrm{C}$ and cools to $100^{\circ} \mathrm{C}$ in 10 minutes. The surrounding temperature is $24^{\circ} \mathrm{C}$.
(α) Find the value of A and show that $k=\frac{-1}{10} \log _{e}\left(\frac{38}{163}\right)$
(β) Find how long it will take from the rod to cool to $25^{\circ} \mathrm{C}$.

Question 6 continues on the next page

Question 6 Continued

b) In the diagram below, ABF and DCE are straight lines.

i) Copy the diagram into your answer booklet.
ii) Prove that $A C$ is parallel to $E F$.
c) Given that $f(x)=\frac{(5-x)(1+x)}{5}$ and $h(x)=\log _{e}\{f(x)\}$
i) Find the largest domain of $y=h(x)$.
ii) Find the equation of the inverse function $y=h^{-1}(x)$.
iii) Find the domain of the inverse function $y=h^{-1}(x)$.

End of Question 6

Question 7 (12 marks) Start a new sheet of writing paper.

a) The polynomial $P(x)=x^{3}-2 x^{2}+a x+b$ has $(x+2)$ and $(x-2)$ as factors, find the
i) values of a and b.
ii) remaining root of $P(x)=x^{3}-2 x^{2}+a x+b$
b) A missile is launched from point A at an angle α and at a speed V towards a target at B, d metres away. Simultaneously a second missile is launched at speed W from B at an angle β, to intercept the first. The angles α and β are measured as in the diagram and are related by $\beta=90^{\circ}-\alpha$.

The horizontal and vertical displacements of the projectiles from A and B are given by the following equations (DO NOT PROVE THESE RESULTS):

Missile from A :

$$
\begin{array}{ll}
x=V t \cos \alpha & x=d-W t \cos \beta \\
y=-\frac{1}{2} g t^{2}+V t \sin \alpha & y=-\frac{1}{2} g t^{2}+W t \sin \beta
\end{array}
$$

Missile from B
i) By equating y-components, show that if the missiles are to intersect, then the second missile must have speed $W=V \tan \alpha$.
ii) Show that the time of intersection is $t=\frac{d \cos \alpha}{V}$ seconds after launch.

Question 7 continues on the next page

Question 7 Continued

c) Consider the function $f(x)=\frac{\log _{e} x}{x}$
i) Find the coordinates of the stationary point on the curve $y=f(x) \quad$ 3
and determine its nature.
ii) Hence show that $\pi^{e}<e^{\pi}$ 2

End of Examination

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Blank Page

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	Ext.1 TRIAL ExAm

Question 1 :
a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3 x}{\tan 2 x} & =\lim _{x \rightarrow 0} 3 \times \frac{x}{\tan 2 x} \\
& =\lim _{x \rightarrow 0} \frac{3}{2} \times \frac{2 x}{\tan 2 x} \\
& =\lim _{x \rightarrow 0} \frac{3}{2}\left(\frac{2 x}{\tan 2 x}\right) \\
& =\frac{3}{2}(1) \\
& =\frac{3}{2} .
\end{aligned}
$$

b) $\int_{0}^{\frac{\pi}{8}} \sin ^{2} 4 x d x$
we know $\cos 8 x=1-2 \sin ^{2} 4 x$

$$
\begin{aligned}
& \therefore \sin ^{2} 4 x=\frac{1}{2}-\frac{1}{2} \cos 8 x \\
& \therefore \int_{0}^{\frac{\pi}{8}}\left(\frac{1}{2}-\frac{1}{2} \cos 8 x\right) d x \\
& =\left[\frac{1}{2} x-\frac{1}{16} \sin 8 x\right]_{0}^{\pi / 8} \\
& =\left(\frac{1}{2}\left(\frac{\pi}{8}\right)-\frac{1}{16} \sin \frac{8 \pi}{8}\right)-(0-0 \\
& =\frac{\pi}{16}
\end{aligned}
$$

c) $\frac{4 x-3}{x} \geq 5$

$$
x^{2}\left(\frac{4 x-3}{x}\right) \geq 5 x^{2}
$$

$$
\therefore \quad x(4 x-3)-5 x^{2} \geqslant 0
$$

$$
x[4 x-3-5 x] \geqslant 0
$$

$$
x(-3-x) \geqslant 0
$$

$$
x(x+3) \leqslant 0
$$

$$
\therefore-3 \leqslant x<0
$$

d)

$$
\begin{array}{ll}
y=-x-1 & 4 x+5 y=2 \\
m=-1 & m=-\frac{4}{5}
\end{array}
$$

$$
\therefore \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
=\left|\frac{-1--\frac{4}{5}}{1+(-1)\left(-\frac{4}{5}\right)}\right|
$$

$$
=\left|\frac{-\frac{1}{5}}{\frac{9}{5}}\right|
$$

$$
\begin{aligned}
& \tan \theta=\frac{1}{9} \\
& \therefore \theta=6^{\circ} 20^{\prime}
\end{aligned}
$$

e)

$$
\begin{aligned}
& t=\tan \frac{\theta}{2} \\
& \therefore \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\
& \therefore \frac{1-\tan ^{2} 15^{\circ}}{1+\tan ^{2} 15^{\circ}}=\cos 30^{\circ} \\
& \therefore \frac{1-\tan ^{2} 15^{\circ}}{1+\tan ^{2} 15^{\circ}}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TRIAL ExAM

Question $2:$

$$
\begin{aligned}
T_{k+1} & ={ }^{10} C_{k} x^{20-2 k}\left(-\frac{1}{2}\right)^{k} x^{-3 k} \\
& ={ }^{10} C_{k}\left(-\frac{1}{2}\right)^{k} x^{20-5 k}
\end{aligned}
$$

for constant term 20-5k=0

$$
\therefore k=4
$$

\therefore constant term is ${ }^{10} C_{4}\left(-\frac{1}{2}\right)^{4}$

$$
\begin{array}{ll}
x=\frac{(-1)(-1)+4(3)}{3}, & y=\frac{(-1)(-5)+4(1)}{3} \\
x=\frac{1+12}{3}, & y=\frac{5+4}{3} \\
x=\frac{13}{3}, & y=3 \\
\therefore P\left(\frac{13}{3}, 3\right)
\end{array}
$$

d)

$$
\begin{aligned}
& =210\left(\frac{1}{16}\right) \\
& =\frac{105}{8}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cos \theta+\sqrt{3}=0 \\
& \cos \theta=-\frac{\sqrt{3}}{2} \\
& \theta=(2 k+1) \pi \pm \frac{\pi}{6}, k \text { integer }
\end{aligned}
$$

e) $(9+x) x=14 \times 8$ (The product of the intercepts of two intersecting secants to a circle from an external point are equal).

$$
\begin{aligned}
& 9 x+x^{2}=112 \\
& x^{2}+9 x-112=0 \\
& (x-7)(x+16)=0 \\
& x=7,-16
\end{aligned}
$$

but $x>0$ as length

$$
\therefore x=7
$$

Solutions for exams and assessment -tasks

Academic Year	Yr 12	Calendar Year	2010
Course	Ext. 1.	Name of task/exam	TRIAL ExAm

Question 3:
a) i)

$$
\begin{aligned}
& P(x)=x^{3}+2 x-17 \\
& P(2)=-5 \\
& P(3)=16
\end{aligned}
$$

Since $P(2)<0$ and $P(3)>0$ and $P(x)$ is continuous,
there exists a root between $x=2$ and $x=3$.
$\therefore A$ better root is $x=2.32$

$$
(2 d p)
$$

b) $\sin x-2 \cos x \equiv A \sin (x-\alpha)$

$$
\sin x-2 \cos x \equiv A \sin x \cos \alpha-A \cos x \sin \alpha
$$

$$
\begin{equation*}
\therefore 1=A \cos \alpha \tag{1}
\end{equation*}
$$

$2=A \sin \alpha$

$$
1+4=A^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)(1)^{2}+(2)^{2}
$$

$$
5=A^{2}
$$

$$
A=\sqrt{5} \quad, \quad A>0
$$

$$
\begin{aligned}
& \text { ii) } P(2.4)=1.624 \\
& P^{\prime}(x)=3 x^{2}+2 \\
& P^{\prime}(2.4)=19.28 \\
& \therefore z_{2}=z_{1}-\frac{p\left(z_{1}\right)}{p^{\prime}\left(z_{1}\right)} \\
& =2.4-\frac{1.624}{19.28} \\
& =2.315 \ldots
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad 2 & =\tan \alpha \\
\alpha & =1,107 \ldots \\
\therefore \quad \sin x-2 \cos x & \equiv \sqrt{5} \sin (x-1.107)
\end{aligned}
$$

ii) $\sin x-2 \cos x=\frac{\sqrt{5}}{2}$

$$
\begin{aligned}
\therefore \sqrt{5} \sin (x-1.107) & =\frac{\sqrt{5}}{2} \\
\sin (x-1.107) & =\frac{1}{2} \\
x-1.107 & =\frac{\pi}{6}, \frac{5 \pi}{6} \\
\therefore x & =1.63,3.73 . \quad\left(2 x_{p}\right)
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
t & =0 \quad v=0 \quad x=1 \mathrm{~m} \\
\ddot{x} & =2 v \\
v \frac{d v}{d x} & =2 v \\
\frac{d v}{d x} & =2 \\
\frac{d x}{d v} & =\frac{1}{2} \\
x & =\int \frac{1}{2} d v \\
x & =\frac{1}{2} v+c \\
1 & =0+c \\
\therefore x & =\frac{1}{2} v+1
\end{aligned}
$$

at $x=10$

$$
\begin{aligned}
10 & =\frac{1}{2} v+1 \\
9 & =\frac{1}{2} v \\
v & =18 \mathrm{~m} / \mathrm{s} \\
\ddot{x} & =36 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Page 3 of 10

Solutions for exams and assessment -tasks

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TRIAL ExAM

Question 4 :
a) $y=2 \sin ^{-1} \frac{x}{3}$
i) Domain: $-1 \leqslant \frac{x}{3} \leqslant 1$

$$
\therefore \quad-3 \leqslant x \leqslant 3
$$

Range: $-\frac{\pi}{2} \leqslant \sin ^{-1} \frac{x}{3} \leqslant \frac{\pi}{2}$

$$
\begin{aligned}
& -\pi \leqslant 2 \sin ^{-1} \frac{x}{3} \leqslant \pi \\
& -\pi \leqslant y \leqslant \pi
\end{aligned}
$$

ii)

$$
\text { b) } \begin{aligned}
& \int_{0}^{2 \sqrt{3}} \frac{1}{4+x^{2}} d x \\
= & \frac{1}{2}\left[\tan ^{-1} \frac{x}{2}\right]_{0}^{2 \sqrt{3}} \\
= & \frac{1}{2}\left[\tan ^{-1} \frac{2 \sqrt{3}}{2}-\tan ^{-1} \frac{0}{2}\right] \\
= & \frac{1}{2}\left[\tan ^{-1} \sqrt{3}\right] \\
= & \frac{1}{2} \cdot \frac{\pi}{3} \\
= & \frac{\pi}{6}
\end{aligned}
$$

c) Prove $\frac{2}{\tan A+\cot A}=\sin 2 A$

$$
\begin{aligned}
\text { LAS } & =\frac{2}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}} \\
& =\frac{2}{\frac{\sin ^{2} A+\cos ^{2} A}{\cos A \sin A}} \\
& =\frac{2}{\frac{1}{\cos A \sin A}} \\
& =2 \cos A \sin A \\
& =\sin 2 A \\
& =\text { RUS } \\
& \therefore \text { Proved }
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) i) }(4+3 x)^{15} \\
& T_{k+1}={ }^{15} C_{k}(4)^{15-k}(3 x)^{k} \\
& T_{k}={ }^{15} C_{k-1}(4)^{15-(k-1)}(3 x)^{k-1}
\end{aligned}
$$

$$
\therefore \frac{T_{k+1}}{T_{k}}=\frac{\frac{15!}{k!(15-k)!} 4^{15-k} 3^{k} x^{k}}{\frac{15!}{(k-1)!(16-k)!} 4^{16-k} 3^{k-1} x^{k-1}}
$$

$$
\begin{aligned}
& =\frac{15!}{k!(15-k)!} \times \frac{(k+)!(16-k)!}{15!} \times 4^{15-k-(16-k)} 3 \cdot(k-(k-1) \\
& =\frac{(16-k)}{k} \times 4^{-1} \times 3^{1} \times x^{1}
\end{aligned}
$$

$$
\frac{T_{k+1}}{T_{k}}=\frac{16-k}{k} \times \frac{3}{4} x
$$

Solutions for exams and assessment tasks

Academic Year	$Y_{r} \cdot 12$	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TRIAL ExAm

ii) for greatest coefficient

$$
\begin{aligned}
& \frac{T_{k+1}}{T_{k}}>1 \\
& \frac{16-k}{k} \times \frac{3}{4}>1 \\
& 48-3 k>4 k \\
& 48>7 k \\
& k<\frac{48}{7} \\
& \therefore k=6,5, \ldots \\
& \therefore k\left.=6 \text { is greatest } k>_{0}\right) \\
& \therefore T_{7}={ }^{15} C_{6}(4)^{15-6}(3)^{6} \\
&=5005 \times 4^{9} \times 3^{6} \\
&=5005 \times 2^{18} \times 3^{6}
\end{aligned}
$$

Question 5:
a) $v^{2}=16 x-4 x^{2}+20$
i) $\frac{1}{2} v^{2}=8 x-2 x^{2}+10$

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{2} r^{2}\right)=\frac{d}{d x}\left(8 x-2 x^{2}+10\right) \\
\ddot{x}=8-4 x \\
\ddot{x}=-4(x-2)
\end{gathered}
$$

which is of the form
$\ddot{x}=-n^{2}(x-L)$ which is s Hm with centre at $x=L$ i.c. $x=2$.
ii) Centre of motion is $x=2$
iii) when $v=0$

$$
\begin{gathered}
0=16 x-4 x^{2}+20 \\
4 x^{2}-16 x-20=0 \\
x^{2}-4 x-5=0 \\
(x+1)(x-5)=0
\end{gathered}
$$

oscillates between $-1 \& 5$
\therefore distance travelled is 12 m .
b) i)

$$
\begin{aligned}
& x^{2}=4 a y \\
& y=\frac{x^{2}}{4 a} \\
& \frac{d y}{d x}=\frac{2 x}{4 a} \\
& \text { at } x=2 a p \\
& m_{\text {tang }}=\frac{4 a p}{4 a} \\
& =\frac{p}{} \\
& \therefore m_{\text {normal }}=-\frac{1}{p}
\end{aligned}
$$

\therefore equation normal:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-a p^{2}=-\frac{1}{p}(x-2 a p) \\
& p y-a p^{3}=-x+2 a p \\
& \therefore x+p y-a p^{3}-2 a p=0
\end{aligned}
$$

ii) If normals meet at right angles then
$-\frac{1}{p} \times-\frac{1}{q}=-1 \quad$ Page 5 of 10

$$
\therefore p q=-1
$$

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TRIAL EXAM

eqn of normals

$$
\begin{gathered}
x+p y-a p^{3}-2 a p=0 \\
x+q y-a q^{3}-2 a q=0 \\
y(p-q)-a p^{3}+a q^{3}-2 a p+2 a q=0 \\
y(p-q)-a\left(p^{3}-q^{3}\right)-2 a(p-q)=0 \\
y(p-q)-a(p-q)\left(p^{2}+p q+q^{2}\right)-2 a(p-q)=0
\end{gathered}
$$

since $p \neq q$ can divide $b_{y}(p-q)$

$$
\begin{aligned}
y & -a\left(p^{2}+p q+q^{2}\right)-2 a=0 \\
y & =a\left(p^{2}+p q+q^{2}\right)+2 a \\
x & =-p y+a p^{3}+2 a p \\
& =-p\left[a\left(p^{2}+p q+q^{2}\right)+2 a\right]+a p^{3}+2 a p \\
& =-a R^{3}-p^{2} q a-a p q^{2}-2 a p+a p^{3}+2 q R \\
x & =-a p q(p+q)
\end{aligned}
$$

\therefore pt intersection of Normals:

$$
\left(-a p q(p+q), a\left(p^{2}+p q+q^{2}+2\right)\right)
$$

Locus:
we know $p q=-1$ and

$$
\begin{aligned}
& \left.x=-a p q(p+q) \quad y=a p^{2}+p q+q^{2}+2\right) \\
& x=-a(-1)(p+q) \\
& x=a(p+q) \\
& \frac{x}{a}=p+q
\end{aligned}
$$

$$
\begin{aligned}
y & =a\left(p^{2}+p q+q^{2}\right)+2 a \\
\frac{y-2 a}{a} & =p^{2}+(-1)+q^{2} \\
\frac{y-2 a}{a}+1 & =p^{2}+q^{2} \\
\frac{y-2 a+a}{a} & =(p+q)^{2}-2 p q \\
\frac{y-a}{a} & =\left(\frac{x}{a}\right)^{2}-2(-1) \\
\frac{y-a}{a} & =\frac{x^{2}}{a^{2}}+2 \\
a(y-a) & =x^{2}+2 a^{2} \\
\therefore x^{2} & =a y-a^{2}-2 a^{2} . \\
x^{2} & =a y-3 a^{2}
\end{aligned}
$$

c) Prove

$$
\frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{n}{(n+1)!}=\frac{(n+1)!-1}{(n+1)!}
$$

for all positive integers n.
Step 1: prove true for $n=1$

$$
\begin{aligned}
& \text { LHS }=\frac{1}{2!} \\
&=\frac{1}{2} \\
&=\frac{2!-1}{2!} \\
&=\frac{2-1}{2} \\
& \therefore \text { CHS }=\text { CHS } \\
&\therefore 1+1)!
\end{aligned}
$$

\therefore true for $n=1$

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TR1AL ExAm

Step 2: Assume true for $n=k$

$$
\therefore \frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}=\frac{(k+1)!-1}{(k+1)!}
$$

Step 3 : Prove true for $n=k+1$ ie. prove,

$$
\begin{aligned}
& \frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k+1}{(k+2)!}=\frac{(k+2)!-1}{(k+2)!} \\
& \text { LHS }=\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{k}{(k+1)!}+\frac{k+1}{(k+2)!} \\
&=\frac{(k+1)!-1+\frac{k+1}{(k+2)!}}{} \\
&=(k+2)[(k+1)!-1]+k+1 \\
&=\frac{(k+2)!-(k+2)+k+1}{(k+2)!} \\
&=\frac{(k+2)!-k-2+k+1}{(k+2)!} \\
&=\frac{(k+2)!-1}{(k+2)!} \\
&=R H S
\end{aligned}
$$

\therefore by the principle of mathematical induction, proved for all positive integers, n.

Question 6:
a) $\frac{d T}{d t}=-k(T-s)$
i)

$$
T=S+A e^{-k t}
$$

$$
T-S=A e^{-k t} \ldots .(\text { (1) }
$$

also

$$
\begin{aligned}
\frac{d T}{d t} & =A e^{-k t}(-k) \\
& =(T-S)(-k) \\
\frac{d T}{d t} & =-k(T-S)
\end{aligned}
$$

$$
=(T-S)(-k) \text { from (1) }
$$

ii)

$$
\begin{aligned}
& t=0 \quad T=350^{\circ} \mathrm{C} \\
& t=10 \mathrm{mis} \quad T=100^{\circ} \mathrm{C} \\
& \mathrm{~s}=24^{\circ} \mathrm{C}
\end{aligned}
$$

(α)

$$
\begin{aligned}
T & =24+A e^{-k t} \\
350 & =24+A e^{0} \\
A & =326
\end{aligned}
$$

$$
\therefore T=24+326 e^{-k t}
$$

$$
100=24+326 e^{-k \times 10}
$$

$$
76=326 e^{-10 k}
$$

$$
\frac{76}{326}=e^{-10 k}
$$

$$
\ln \left(\frac{76}{326}\right)=-10 k
$$

$$
k=-\frac{1}{10} \ln \left(\frac{76}{326}\right)
$$

$k=-\frac{1}{10} \ln \left(\frac{38}{163}\right)$

Academic Year	Yr 12	Calendar Year	2010
Course	Ext.1.	Name of task/exam	TRIAL ExAM

(β)

$$
\begin{aligned}
T & =24+326 e^{-k t} \\
25 & =24+326 e^{-k t} \\
\frac{1}{326} & =e^{-k t} \\
\ln \left(\frac{1}{326}\right) & =-k t \\
t & =-\frac{1}{k} \ln \left(\frac{1}{326}\right) \\
t & =39.7 \mathrm{mins}
\end{aligned}
$$

b) i)

ii) Let $\angle B A C=x$
$\therefore \angle B D C=x \quad \begin{aligned} & \text { (angles standing } \\ & \text { on same are } B C\end{aligned}$ are equal)
$\therefore<B F E=x \quad \begin{aligned} & \text { (angles standing on } \\ & \text { same arc } B E \text { equal) }\end{aligned}$ same arc $B E$ equal)
$\therefore \angle B A C=\angle E F G$ and they are alternate angles.
$\therefore A C \| E F$
c)

$$
\begin{aligned}
& f(x)=\frac{(5-x)(1+x)}{5} \\
& h(x)=\ln \{f(x)\}
\end{aligned}
$$

1)

$$
\begin{array}{r}
D: \quad f(x)>0 \\
\therefore \quad \frac{(5-x)(1+x)}{5}>0 \\
\\
\frac{(5-x)(1+x)}{\sqrt{7}}+0
\end{array}
$$

ii)

$$
\begin{aligned}
& f: y=\ln \left[\frac{(5-x)(1+x)}{5}\right] \\
& f^{-1}: x=\ln \left[\frac{(5-y)(1+y)}{5}\right] \\
& e^{x}=(5-y)(1+y) \\
& 5 e^{x}=(5-y)(1+y) \\
& 5 e^{x}=5+4 y-y^{2} \\
&-5 e^{x}=y^{2}-4 y-5 \\
&-5 e^{x}=y^{2}-4 y+4-9 \\
& 9-5 e^{x}=(y-2)^{2} \\
& 9-2= \pm \sqrt{9-5 e^{x}} \\
& 4-2 \pm \sqrt{9-5 e^{x}} \\
& 5
\end{aligned}
$$

for function, either of these both not both.

Academic Year	Yr 12	Calendar Year	2010
Course	Ext. 1	Name of task/exam	TR AL EXAM

iii) Domain:

$$
\begin{gathered}
9-5 e^{x} \geqslant 0 \\
5 e^{x} \leqslant 9 \\
e^{x} \leqslant \frac{9}{5} \\
x \ln e e \leqslant \ln \frac{9}{5} \\
x \leqslant \ln \frac{9}{5}
\end{gathered}
$$

Question 7 :
a) i)

$$
P(x)=x^{3}-2 x^{2}+a x+b
$$

$$
P(-2)=0 \text { and } P(2)=0
$$

$$
\begin{align*}
\therefore-8-8-2 a+b & =0 \tag{1}\\
8-8+2 a+b & =0 \tag{2}\\
-2 a+b & =16 \tag{1}\\
2 a+b & =0 \tag{2}\\
2 b & =16 \tag{1}\\
b & =8 \\
a & =-4
\end{align*}
$$

$$
\begin{aligned}
\text { ii) } \begin{aligned}
\therefore P(x) & =x^{3}-2 x^{2}-4 x+8 \\
& =(x+2)(x-2)(x-\alpha) \\
x^{2}-4 & \frac{x-2}{x^{3}-2 x^{2}-4 x+8} \\
& \frac{x^{3}-4 x}{-2 x^{2}+8} \\
\ddots \quad & \frac{-2 x^{2}+8}{}
\end{aligned}
\end{aligned}
$$

\therefore other root is $x=2$.
\therefore roots are $2,2,-2$

$$
\text { b) i) } \left.\begin{array}{rl}
y & =-\frac{1}{2} g t^{2}+v t \sin \alpha \\
y & =-\frac{1}{2} g t^{2}
\end{array}\right)=w t \sin \beta \quad \text { (1) } \begin{aligned}
-\frac{1}{2} g t^{2}+v t \sin \alpha & =-\frac{1}{2} g t^{2}+w t \sin \beta \\
v t \sin \alpha & =w t \sin \beta \\
v \sin \alpha & =w \sin \beta \\
\beta & =90-\alpha \\
\therefore v \sin \alpha & =w \sin (90-\alpha) \\
v \sin \alpha & =w \cos \alpha \\
\therefore w & =v \frac{\sin \alpha}{\cos \alpha} \\
w & =v \tan \alpha
\end{aligned}
$$

ii)

$$
\begin{aligned}
& V t \cos \alpha=d-w t \cos \beta \\
& V t \cos \alpha+w t \cos \beta=d \\
& t(V \cos \alpha+w \cos \beta)=d \\
& t=\frac{d}{(v \cos \alpha+v \tan \alpha \cos \beta)} \\
& =\frac{d}{(v \cos \alpha+v \tan \alpha \cos (90-\alpha))} \\
& =\frac{d}{\left(v \cos \alpha+v \frac{\sin -\alpha}{\cos \alpha} \cdot \sin \alpha\right)} \\
& t=\frac{d}{\frac{v \cos ^{2} \alpha+v \sin ^{2} \alpha}{\cos \alpha}}
\end{aligned}
$$

Academic Year	Yr 12	Calendar Year	2010
Course	Ext. 1.	Name of task/exam	Trial Exam

$$
\begin{aligned}
& t=\frac{d \cos \alpha}{v\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)} \\
& t=\frac{d \cos \alpha}{v}
\end{aligned}
$$

c) $f(x)=\frac{\ln x}{x}$
i)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x\left(\frac{1}{x}\right)-\ln x(1)}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

for stat. pts $f^{\prime}(x)=0$

$$
\begin{aligned}
\therefore \frac{1-\ln x}{x^{2}} & =0 \\
1-\ln x & =0 \\
\ln x & =1 \\
\therefore e & =x
\end{aligned}
$$

ulen $x=e \quad y=\frac{\ln e}{e}$

$$
=\frac{1}{e}
$$

\therefore stat. pt $\left(e, \frac{1}{e}\right)$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{x^{2}\left(-\frac{1}{x}\right)-(1-\ln x) 2 x}{x^{4}} \\
& =\frac{-x-2 x+2 x \ln x}{x^{4}}
\end{aligned}
$$

$$
\therefore \quad f^{\prime \prime}(x)=-\frac{3 x+2 x \ln x}{x^{4}}
$$

when $x=e$

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{3 e+2 e \ln e}{e^{4}} \\
& =-\frac{3 e+2 e}{e^{4}} \\
& =-\frac{1}{e^{3}} \\
& <0 \\
& \therefore \max \text { at }\left(e, \frac{1}{e}\right)
\end{aligned}
$$

ii) Since max value is $\frac{1}{e}$ then $\frac{\ln x}{x}<\frac{1}{e}$
at $x=\pi$

$$
\begin{aligned}
& \frac{\ln \pi}{\pi} \\
e \ln _{e} \pi & <\pi \\
& \ln \pi^{e}
\end{aligned}
$$

take e of both sides

$$
\begin{aligned}
& e^{\ln \pi^{e}}<e^{\pi} \\
& \therefore \pi^{e}<e^{\pi}
\end{aligned}
$$

