Mr Antonio
Mrs Collett
Mrs Kerr
Ms Lau
Mrs Soutar

Name: \qquad
Teacher: \qquad

2011

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Start each question in a new booklet
- Marks may be deducted for careless or untidy work

Mark	$/ 84$
Rank	$/$
Highest Mark	184

(a) Find $\int \frac{2}{\sqrt{36-x^{2}}} d x$.
(b) Differentiate $\tan ^{-1}(\ln x)$ with respect to x.
(c) Find the coordinates of the point P that divides the interval joining $\mathrm{A}(-3,8)$ 2 and $B(7,-3)$ internally in the ratio $2: 3$.
(d) Solve $\frac{4}{x-2} \leq 2$.
(e) The acute angle between the lines $2 x-y=4$ and $y=m x+3$ is 45°.

Find the two possible values of m.
(f) Use the substitution $u=x-3$ to evaluate $\int_{4}^{5} \frac{x}{\sqrt{x-3}} d x$.

Question 2 (12 Marks) Use a SEPARATE Writing Booklet.
(a) Let $f(x)=3 \sin ^{-1} 2 x$.

Sketch the graph of $y=f(x)$, clearly indicating the endpoints for the domain and the range.
(b) (i) Differentiate $x \cos ^{2} x$ with respect to x.
(ii) Hence, or otherwise, find $\int x \sin 2 x d x$.

2
(c) The polynomial $P(x)=x^{3}+a x^{2}-2 x+b$ has $(x+1)$ as a factor. $P(x)$ has a 3 remainder of 4 when divided by $(x-3)$.

Find the values of a and b.
(d) The function $f(x)=x-e^{-2 x}$ has one root between $x=0$ and $x=1$.

Use one application of Newtons' method, starting at $x=0.3$, to find another approximation for this root.

Write your answer correct to 2 decimal places.
(a) Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{2-7 x-5 x^{2}}$.
(b) (i) Express $\sqrt{3} \cos \theta-\sin \theta$ in the form $r \cos (\theta+\alpha)$, where $r>0$, and $0<\alpha<\frac{\pi}{2}$, giving r and α as exact values.
(ii) Solve $\sqrt{3} \cos \theta-\sin \theta=-1$, for $0 \leq \theta \leq 2 \pi$, giving your answers as exact values.
(c) In the diagram below, AD is perpendicular to BC . $\mathrm{CD}=4, \mathrm{BD}=2$ and $\mathrm{AD}=3 . \quad \angle \mathrm{CAD}=\alpha$ and $\angle \mathrm{BAD}=\beta$.

C
Find the exact value of $\sin (\alpha-\beta)$.
(d) WZ and XY are tangents to the circles WXY and WYZ respectively. The circles share two common points, W and Y .
Copy or trace the diagram into your Writing Booklet.

Prove that $W X \| Y Z$.
(a) Find the exact value of $\int_{0}^{\ln 3} \frac{e^{x}}{e^{x}+9} d x$.
(b) Find the constant term in the expansion $\left(2 x-\frac{1}{x}\right)^{6}$.

2
(c) Prove by induction that $4 p+3 p^{2}+2 p^{3}$ is divisible by 3 for $p=1,2,3 \ldots$
(d) The temperature $\left(T^{\circ} \mathrm{C}\right)$ of steel, after it has been removed from a hot furnace, after t minutes, satisfies the differential equation:

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(T-22) \quad \text { where } k \text { is a constant. }
$$

Initially, the temperature (T) of the steel is $100^{\circ} \mathrm{C}$ and when $t=15$ minutes, $\mathrm{T}=70^{\circ} \mathrm{C}$.
(i) Use this information to find the exact values of A and k.
(ii) Hence find the value of t when $T=40^{\circ} \mathrm{C}$ to the nearest minute.
(e) Show that:

$$
\sqrt{\frac{1+\sin 2 \theta}{1-\sin 2 \theta}}=\frac{1+\tan \theta}{1-\tan \theta} .
$$

(a) The speed $V \mathrm{~cm} / \mathrm{s}$ of a particle moving along the x - axis is given by

$$
V^{2}=27+18 x-9 x^{2} \text { where } x \text { is in } \mathrm{cm} .
$$

(i) Prove that the motion is Simple Harmonic. Find the period and amplitude of the motion.
(ii) Find the acceleration of the particle when it is 1 cm away from the centre of motion.
(b) A stone is projected upwards from the edge of a cliff with a speed of $30 \mathrm{~m} / \mathrm{s}$. It hits an object 120 m horizontally from the edge and 35 m vertically below it.

Assume that t seconds after the release, the position of the stone is given by

$$
x=30 t \cos \alpha \text { and } y=-5 t^{2}+30 t \sin \alpha .
$$

(i) Find α, the angle of projection, to the nearest minute.
(ii) Find the time taken for the stone to hit the object.
(c) (i) Sketch the curve $y=x+\frac{4}{x}$ showing clearly all stationary points and asymptotes.
(ii) Hence, find the values of k such that $x+\frac{4}{x}=k$ has no real roots.

(a)

In the above diagram, the points A, B and O are in the same horizontal plane.
A and B are 50 m apart and $\angle \mathrm{AOB}=60^{\circ}$. OT is a vertical tower of height h metres.
The angles of elevation of T from A and B respectively are 45° and $\alpha^{\circ}(\alpha$ is acute).
(i) Explain why $\mathrm{AO}=h$.
(ii) Prove $h^{2} \cot ^{2} \alpha-h^{2} \cot \alpha+h^{2}=50^{2}$.
(iii) Given that the tower is 30 m high, find the angle α correct to the nearest degree.
(b) (i) Verify that $\frac{d}{d x}\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right)=\sin ^{-1} x$.
(ii) Hence, using a similar expression, find a primitive of $\cos ^{-1} x$.
(iii) The curves $y=\sin ^{-1} x$ and $\cos ^{-1} x$ intersect at P. The curve $y=\cos ^{-1} x$ also intersects the x axis at Q .

Show that P has co-ordinates $\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}\right)$.
(iv) Find the area enclosed by the x-axis and the arcs $O P$ and $P Q$.
(a) A particle is moving in a straight line with acceleration given by

$$
\frac{d^{2} x}{d t^{2}}=9(x-2)
$$

where x is the displacement in metres, from the origin O after t seconds. Initially the particle is 4 m to the right of O and it has a velocity of $V=6 \mathrm{~m} / \mathrm{s}$.
(i) Show that $V^{2}=9(x-2)^{2}$.
(ii) Find an expression for V and hence find x as a function of t.
(b) $\quad \mathrm{PQ}$ is a variable chord of the parabola $x^{2}=4 a y$ which subtends a right angle at the vertex.
(i) If p and q are the parameters corresponding to the points P and Q , prove that $p q=-4$.
(ii) Show that the equation of the normal at P is

$$
x+p y=2 a p+a p^{3} .
$$

(iii) Hence prove that the locus of the point of intersection of the normals

2 at P and Q is the parabola $x^{2}=16 a(y-6 a)$.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Quaction:
a). $\int \frac{2}{\sqrt{36-x^{2}}} d x$.

$$
=\frac{2 \sin ^{-1} \frac{x}{6}+c}{}
$$

d) $\frac{4}{x-2} \leq 2$.
C.P $\quad x=2$
..Consider $\frac{4}{x-2}=2$

$$
1 r / \omega
$$

$$
\begin{aligned}
2 x-4 & =4 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

b) $\quad d / d x\left(\tan ^{-1}(\ln x)\right)$.

$$
=\frac{1 / x}{1+(\ln x)^{2}}
$$

c) $A(-3, z) \quad$ and $\quad B(7,-3) \quad \begin{gathered}x_{1} \\ y_{2}, y_{2}\end{gathered} \quad \begin{aligned} & m \\ & 2\end{aligned}$

$$
\begin{align*}
x & =\frac{n x_{1}+m x_{2}}{m+n} \\
\therefore & =\frac{3 \times(-3)+2 \times 7}{2+3} \\
& =\frac{5}{5} \tag{1}
\end{align*}
$$

$$
=1
$$

$$
\therefore \frac{P_{o i n}+15(1,18 / 5)}{P(1)}
$$

Sin $x<2$
$f) \quad n=x-3 \quad \int_{4}^{5} \frac{x}{\sqrt{x-3}} d x$ When $x=5$

$$
u=5-3
$$

$=\int_{1}^{2} \frac{u+3}{\sqrt{u}} d u$

$$
=2
$$ $x=4$

$$
u=4-3
$$

$=\int_{1}^{2} u^{1 / 2}+3 n^{-1 / 2} d u$

$$
=1
$$

$u=x-3$
d he $=d x$
$=\left[\frac{2 u^{3 / 2}}{3}+\frac{3 u^{1 / 2}}{1 / 2}\right]_{1}^{2}$
$=\frac{2}{3} \times 2^{3 / 2}+6 \sqrt{2}-\frac{2}{3}-6$

$$
=\frac{2}{3} \times(\sqrt{2})^{3}+6 \sqrt{2}-\frac{2}{3}-6
$$

$=\frac{2}{3} \times 2 \sqrt{2}+6 \sqrt{2}-\frac{20}{3}$
$=\frac{4}{3} \sqrt{2}+6 \sqrt{2}-\frac{20}{3}$

$$
\therefore \quad 22 \sqrt{2}-20 .=2(11 \sqrt{2}-10)
$$

(1) correct integral ond limits
(i) Correct integratio-.
(2) Correct 5mbstatution. and attempt ant tidy'g ouswer
e)
$b) \quad j \quad d / d x\left(x \cos ^{2} x\right)$

$$
=x \times 2 \cos x(-\sin x)+\cos ^{2} x
$$

(1) Correct product nule.
(1) Comect derivativ of $\cos ^{2} x$
… - !

$$
\frac{-x \sin 2 x+c s^{2} x}{\int x \sin 2 x d x}
$$

$$
\int\left(\cos ^{2}-x \sin 2 x\right) d x=x+\cos ^{2} x \text { foom }
$$

$$
\therefore \int \cos ^{2} x-\int x \sin x d x=x \cos ^{2} x
$$

Qun87:02 2
a)

$$
f(x)=3 \sin ^{-1} 2 x
$$

$$
\begin{array}{ll}
-\pi / 2 \leq \frac{y}{3} \leq \pi / 2 & -1 \leq 2 x \leq 1 \\
-\frac{3 \pi}{2} \leq y \leq 3 \pi / 2 & -1 / 2 \leq x \leq 1 / 2
\end{array}
$$

(1) shape
(1)-domain range

$$
=\frac{x}{2}+\frac{\sin 2 x}{4}-x \cos x+C
$$

.c.) $P(x)=x^{3}+a x^{2}-2 x+b \quad x+1$

$$
\begin{gather*}
P(-1)=0 \\
P(3)=4 \quad \therefore \quad \therefore+1)^{3}+a(-1)^{2}-2(-1)+b=0 \\
-1+2+b=0 \\
\therefore(3)^{3}+a(3)^{2}-2(3)+b=4
\end{gather*}
$$

$$
\therefore \quad 27+9 a-b+b=4
$$

$$
9 a+b=-17
$$

$$
\begin{align*}
& 2 x-y-4=0 \\
& y=m x+3 \quad \theta=45^{\circ} \\
& \tan \theta=\left(\frac{m_{i}-m_{2}}{1+m_{1} m_{2}}\right) \\
& y=2 x-4 \\
& \therefore \quad \tan 45=\left|\frac{2-m-}{1+2 n}\right| \\
& \therefore\left|\frac{2-m}{1+2 m}\right| \ldots=1 \tag{1}\\
& \therefore \frac{2-m}{1+2 m}=1 \quad \text { or } \quad \frac{2-m}{1+2 m}=-1 \\
& 2-m=1+2 m \text {...nor } 2-m=-1-2 m \\
& 3 m=1 \\
& 3=-m \\
& m=1 / 3 \tag{1}
\end{align*}
$$

d)

$$
\begin{array}{rlrl}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \quad(1) f^{\prime}\left(x_{0}\right) & =1+2 e^{-2 x} \\
\therefore x_{1} & =0.3-\frac{0.3-e^{-0.6}}{1+2 e^{-0.6}}(1) \text {-usb } & \left.f^{\prime}(0.3)=0.3-3\right)=1+2 e^{-0.6} \\
& \doteqdot 0.4186 .15978 \\
& =0.42(2 d p) & \text { (1)-comectly nomoled answer }
\end{array}
$$

Question 3

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{2-7 x-5 x^{2}} \\
&= \lim _{x \rightarrow \infty} \\
&=\lim _{x \rightarrow \infty} \frac{3 x^{2} / x^{2}+1 / x^{2}}{2 / x^{2}-7 / x^{2}-5 x^{2} / x^{2}} \\
&= \frac{3+1 / x^{2}}{2}
\end{aligned}
$$

$$
=\frac{-3 / 5}{}: \quad \sin \lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

b) 1) $\sqrt{3} \cos \theta-\sin \theta \quad-\cos (\theta+\alpha)$

$$
\begin{aligned}
& r \cos (\theta+\alpha)=r(\cos \theta \cos \alpha-\sin \theta \sin \alpha) \\
& \sqrt{3} \cos \theta-\sin \theta=r(\cos \theta \cos \alpha-\sin \theta \sin \alpha)
\end{aligned}
$$

Equating coefficients

$$
-\cos \alpha=\sqrt{3}
$$

(2) correct with Mark correct notation
(1)-Incortect use of notation with correct answer Incorrect answer with minor errol! since $\operatorname{tin} \cdot \frac{1}{x}=0$. $\quad \therefore \quad \theta=\pi / 2,7 \pi / 6$ $\theta+\pi / 6=2 \pi / 3,4 \pi / 3$

$$
r \sin \alpha=1
$$

Squar...g and adding

$$
\begin{aligned}
& r^{2} \cos ^{2} \alpha+r^{2} \sin ^{2} \alpha=3+1 \\
& -\cdots r^{2}=4 \\
& \cdots r=2, r>0
\end{aligned}
$$

$\cdots \quad 2 \cos \alpha=\sqrt{3}$
$2 \sin \alpha=1$
$\cos \alpha=\sqrt{3} / 2$

$$
\sin x=1 / 2
$$

$\operatorname{since} 0<\alpha<\pi / 2$

$$
\alpha=\pi / 6 \cdots
$$

ii) $2 \cos (\theta+\pi / 6)=-1$ $\cos (\theta+\pi / 6)=-1 / 2$

$$
\theta=\pi / 2,7 \pi / 6 \text { (2) - correct an }
$$

(1). - ' error, toomany angles,
c): $\quad \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$ one incorrect angle.
In $\triangle A D C$ $A C=5$ by Pigmagoras'TM~ SAc $\triangle A D C$ is right angled.
In $\triangle A D B \quad A B=\sqrt{2^{2}+3^{2}}$
$=\sqrt{13}$ also by Pinnagora: $T_{n,}{ }^{m}$
Since $\triangle M C D 15-g^{t h}$ angled

$$
\begin{aligned}
& \sin \alpha=4 / 5 \cos \alpha=3 / 5 \\
&-a-31-\quad 0-2 / \sqrt{2}
\end{aligned}
$$

$$
\begin{align*}
& \sin (\alpha-f)=\frac{4}{5} \times \frac{3}{\sqrt{13}}-\frac{3}{5} \times \frac{2}{\sqrt{13}} \\
&=\frac{12-6}{5 \sqrt{13}} \\
&=\frac{6}{5 \sqrt{13}} \times \frac{\sqrt{13}}{\sqrt{13}} \\
&=\frac{6 \sqrt{13}}{65} \tag{1}\\
& \\
& \text { d }
\end{align*}
$$

a) $\frac{\text { Question } 4}{\ln 3} \frac{e^{x}}{e^{x}+9} d x$
$=\left[\ln \left(e^{x}+9\right)\right]_{0}^{\ln 3}$
$=\ln \left(e^{\ln 3}+9\right)-\ln \left(e^{2}+9\right)$
$=\ln 12-\ln 10$
$=\ln 1.2$
b). $\binom{6}{r} 2^{6-r} x^{6-r},(-1)^{r}, x^{-7}$

$$
\text { where } \begin{align*}
6-2 r & =0 \\
r & =3 \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \therefore \quad{ }^{6} c_{3} 8 x^{3} \times-\frac{1}{x^{3}} \\
&=-160 \tag{1.}
\end{align*}
$$

(c) Show statement is the for $p=1$
$4(1)+3(1)^{2}+2(1)^{3}$

$$
\therefore 4(1)+3(1)^{2}+2(1)^{3}=9
$$

$$
\begin{gathered}
\text { which is diw by } 3 \\
\text { staterent is }
\end{gathered}
$$

$$
\begin{align*}
& \text { Stetenent is the by for pil } 3 \tag{1}
\end{align*}
$$

Atsure stateren is the $f=n=k$
$4 k+3 k^{2}+2 k^{3}=34$

RTP the stenten, "time for $p=1,1$
e) Lus $=\frac{\sqrt{1+\sin 2 \theta}}{\sqrt{1-\sin 2 \theta}}$
$=\sqrt{\frac{1+2 \cos \theta \sin \theta}{1-2 \cos \theta \sin \theta}} \div \cos ^{2} \theta$

$$
=\sqrt{\frac{\sec ^{2} \theta+\frac{2 \cos \sin \theta}{\cos ^{2} \theta}}{\sec ^{2} \theta-\frac{-2 \cos \theta \sin \theta}{\cos \theta}}}
$$

$$
\begin{equation*}
=\sqrt{\frac{\sec ^{2} \theta+2 \tan \theta}{\sec ^{2} \theta-2 \tan \theta}} \tag{1}
\end{equation*}
$$

$=\sqrt{\frac{1+\tan 2 \theta+2 \tan \theta}{1+\tan ^{2} \theta-2 \tan \theta}}$
$=\sqrt{\frac{(1+\tan \theta)^{2}}{(1-\tan \theta)^{2}}}$

$$
\begin{aligned}
& \text { Now } 4(k+1)+3(k+1)^{2}+2(k+1)^{3} \\
& =(k+1)\left(4+3(k+1)+2(k+1)^{2}\right) \\
& =(k+1)\left(4+3 k+3+2 k^{2}+9 k+2\right) \\
& =(k+1)\left(2 k^{2}+7 k+9\right) \\
& =2 k^{3}+7 k^{2}+9 k+2 k^{2}+7 k+9 \\
& =2 k^{3}+9 k^{2}+16 k+9 \\
& \text { ii) } \begin{aligned}
\text { When } t & =0 \quad \begin{aligned}
T & =100^{\circ} \mathrm{C} . \\
2 & =15
\end{aligned} \quad=70^{\circ} \mathrm{C}
\end{aligned} \\
& 100=A e^{k \times 0}+22 \\
& 100=A+22 \\
& A=78 \\
& 70=78 e^{15 k}+22=\text { (1) } \\
& 78 e^{15 K}=48 \\
& e^{15 k}=8 / 13 \quad 15 k=\ln 8 / 13
\end{aligned}
$$

Qwertions
i

$$
\begin{align*}
& y^{2}=27+17 x-9 x^{2} \\
& \frac{1}{2} v^{2}=\frac{1}{2}\left(27+18=-9 x^{2}\right) \\
& \left.d / d x(2 v)=0 / 2 x+\frac{1}{2}\left(27+18 x-9 x^{2}\right)\right\} \\
& =9-\frac{9}{2} \times 2 . \\
& \text { d }=9-9 x \\
& \begin{aligned}
d / d x\left(1 / y^{2}\right) & =9(1-x) \\
& =-9(x-1)
\end{aligned} \tag{1}\\
& \operatorname{since} \quad x=\pi / d+\left(1 / 2 v^{2}\right) \text {. }
\end{align*}
$$

 $15 \mathrm{~S} . \mathrm{H}$
Th centre of motion is 1 and the peried is ert
miver $\quad y=0$

$$
\begin{aligned}
& 2-3-18 x-9 x^{2}=0 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x-2 x=-1
\end{aligned}
$$

Paritcte oscillats bexuscem -1 anmen! 5
\therefore amplitmole is 2. (1).
11) $\quad \ddot{x}=-3^{2}(x-1)$

Whan $y=2$ (lem fom centre ormot:on)

$$
\begin{aligned}
\ddot{x} & =-9(2-1) \\
& =-9 \mathrm{cn} / \mathrm{s}^{2}
\end{aligned}
$$

When $x=0$.

$$
\ddot{x}=-9(-1)
$$

$$
=9 \mathrm{~cm} / 5
$$

(1) forth
 cases
b)

$$
\begin{align*}
& x=30 t \cos \alpha \tag{1}\\
& y=-5 t^{2}+30 t \sin
\end{align*}
$$

From (1) $t=\frac{x}{30 \cos \alpha}$ sups. 1140 (3)

$$
y=-5\left(\frac{x}{30 \cos \alpha}\right)^{2}+30\left(\frac{x}{30 \cos \alpha}\right)^{\sin \alpha}
$$

$$
=\frac{-5 x^{2}}{900 \cos ^{2} \alpha}+x+\tan \alpha x
$$

$y \therefore=\frac{-x^{2}}{180} \operatorname{scc}{ }^{2}+x+\cos x$

When $x=120 \quad y=-35$

$$
\begin{aligned}
& \therefore-35=\frac{-120^{2}}{180} \sec ^{2} \alpha+120 \tan \alpha \\
& -6300=-14400\left(1+\tan ^{2} \alpha\right)+21600 \tan \cos \\
& 14400 \tan ^{2} \alpha-21600 \tan \alpha+8100=0 \\
& 48 \tan ^{2} \alpha-72 \tan \alpha+27=0 \\
& 16 \tan ^{2} \alpha-24 \tan \alpha+9=0 \\
& (4 \tan \alpha-3)^{2}=0 \\
& \therefore \tan \alpha=3 / 4
\end{aligned}
$$

1) Wram $\Rightarrow=120 \quad \alpha=36^{\circ} 52^{\prime}$

$$
\begin{aligned}
\therefore \quad 120 & =30 t \cos 36^{\circ} 52^{\prime} . \quad \tan \quad \cos ^{\circ} \\
t & =\frac{120}{30 \cos 36^{\circ} 52^{\prime}} \quad \therefore \frac{4}{2032^{2}} 5
\end{aligned}
$$

$$
\begin{equation*}
=5 \operatorname{secom} \sin 5 \tag{1}
\end{equation*}
$$

(-c) 1.)

When $x+2 . y=2+\frac{y}{2} \ldots x-2-y=-2=\frac{4}{2}$

$$
=4=
$$

\therefore sp,s arc at $(2,4)$ and $(-2,-4)$
when $x=2 \frac{d^{2} y}{d x^{2}}=\frac{8}{2^{3}}=0-(2,4) 15$ a min S.p When $x=2 \frac{d^{2} y}{d x^{2}}=\frac{8}{(-2)^{3}} \leqslant 0 \therefore(-2,-4)$. is a max sip

When $\frac{d^{2} y}{\theta^{2} x^{2}}=0 \quad \frac{8}{x^{3}}=0 \quad$ when tas moserts \therefore flece are mo inf pts.

$$
\lim _{x \rightarrow \infty} x+4 / x \quad \lim _{x \rightarrow m \rightarrow \infty} x+4 / x
$$

$$
-x \quad=\quad \cdot 1 \quad \sqrt{n} \therefore
$$

$$
\begin{aligned}
& y=x+\frac{i}{x} \quad \cdots \quad \text { whon } \frac{d y}{d x}=0 \\
& \text { ofy }=1-\frac{4}{x^{2}} \cdots \cdots \frac{4}{x^{2}}=0 \\
& \frac{\theta^{2}}{d x^{2}} \div \frac{8}{x^{3}} \\
& \frac{4}{x^{2}}=1 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

$\therefore y=x$ is a skem asymantos at

(1) Asymiptotes
(1) Turwing pts.
(1) Shape
$x=0$ is a Vertical efyptote
-1) $x+\frac{4}{x}=2 \quad \sin \operatorname{y}=x+\frac{4}{6}$ olos 5 met exist Whem $-4 \geq x \pm 4 \quad\{(2,4)$ is anala $\cdots-(-2,-4) 15$ a max 3
$x-\frac{4}{x}=k$ will have no setm if $-4 \lll 4$

2 mextion 6
a) i) $\operatorname{Im} A \Delta A$ OT

$$
\begin{align*}
& \text { tmo } 45^{\circ}=\frac{h}{40} \\
& \therefore 40=\frac{h}{4 \tan 4 s^{2}} \tag{1}
\end{align*}
$$

But 4 an $45^{\circ}=1 \therefore$ A0 $=1+1$
0.2 .2
11)

$$
\begin{align*}
\text { Im } \triangle B O T \quad+\operatorname{An} \alpha & =\frac{h}{O B} \cdots \\
\therefore O B & =\frac{h}{a+\infty} \\
& =h \operatorname{Hac}+\infty \tag{1}
\end{align*}
$$

In $\Delta A B$ by the cosime morile

$$
\begin{align*}
& 50^{2} 0 B^{2}+O A^{2}-2 \times O B \times 0+C \cos 0 \\
& 50^{2}=A^{2} \cot ^{2}+h^{2}-2 h \cot x+x+\frac{1}{2} \tag{10}\\
& 50^{2}=h^{2} \cot ^{2} \alpha+A^{2}-h^{2} \cot \alpha
\end{align*}
$$

i11) \because When $h=30$

$$
\begin{gathered}
50^{2}=30^{2} \cot ^{2} \alpha+30^{2}-30^{2} \cot \alpha \\
900 \cot ^{2} \alpha-900 \cot \alpha+400-2500=0 \\
900 \cot \alpha-900 \cot -1600=0 \\
9 \cot ^{2} \alpha-90+\alpha-16=0 \\
\cot \alpha= \\
=\frac{9 \pm \sqrt{81-4 \times 9 \times-16}}{18}
\end{gathered}
$$

* since a ts acute

$$
\begin{align*}
& \cos +\alpha=\frac{10}{16} \\
& \tan \alpha=\frac{18}{9+\sqrt{67}} \tag{1}
\end{align*}
$$

$\alpha=27^{\circ}$ to noweant etregree.

$$
\begin{align*}
& \text { b) 1) } \frac{y^{1}}{d x}\left(x \sin ^{-1} x+\left(1-x^{2}\right)^{1 / 2}\right) \\
& \cdots \times \frac{1}{\sqrt{1-x^{2}}}+\sin ^{-1} x+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \times-2 x \\
& =\frac{x}{\sqrt{1-x^{2}}}+5 \sin ^{-1} x-\frac{x}{\sqrt{10 x^{2}}} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
=\therefore 510-1 x \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\because \sin ^{-1} x=\cos ^{-1} x \\
\text { when } x=1 / \sqrt{2} \\
\sin ^{-1}(1 / \sqrt{2})=\pi / 4 \\
\cdots \cos ^{-1}(1 / \sqrt{2})=\pi / 4 \\
\therefore \sin ^{-x} x \cos ^{-1} x \tag{1}\\
\therefore x=1 / \sqrt{2}
\end{gather*}
$$

(1)
$\frac{i v j}{y^{2}+d^{t}} \int_{0}^{t / \sqrt{2}} \sin ^{-1} x x^{2} \int_{1 / \sqrt{2}}^{1} \cos ^{-1} x x^{2} x$

$$
\begin{aligned}
& \text { 1t. }
\end{aligned}
$$

$$
\begin{aligned}
& (0)=\frac{1}{\sqrt{2}} \sin ^{-1} \frac{1}{\sqrt{2}}+\sqrt{1-\left(x^{2}\right)}-\left(0 \sin ^{-1} \phi+\sqrt{1-0^{2}}\right)+1.5 \pi^{-1} \\
& -\sqrt{1-(1)^{2}}-\left(1 / 20 x^{-1 / \sqrt{2}}-\sqrt{1-(1))^{2}}\right) \quad \sqrt{2}-1
\end{aligned}
$$

$$
=\frac{2}{\sqrt{2}}-1
$$

$=\sqrt{2}=1$ sis invits
OR $A=\int_{0}^{\pi / 4} \cos y d x-\int_{0}^{\pi / 4} \sin y d y$

$$
\begin{align*}
& =[\sin y]_{0}^{\pi / 4}-[-\cos y]_{0}^{\pi / 4} \\
& =5 \sin -\sin 0+\cos \pi / 4-\cos 0 \tag{1}\\
& =1 / \sqrt{2}-1 \\
& =2 / \sqrt{2}-1 \\
& =\sqrt{2}-1 \tag{i}
\end{align*}
$$

O...es:on?
a) $\ddot{x}=9(x-2)$ whent $t=0 \quad x-1 \quad j=6$
1)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)-9(x-2) \\
& \frac{1}{2} v^{2}-\int 9(x-2) d x \\
& \frac{1}{2} v^{2}=\frac{9 x^{2}-18 \rightarrow+c}{2}
\end{aligned}
$$

when $x=4 \quad y=6$

$$
\begin{gathered}
\therefore \quad \frac{1}{2} \times 6^{2}=\frac{9 x 4}{2}-18 x+C \\
17=72-72+C \\
\therefore C=16 \\
\therefore \quad \frac{1}{2} v^{2}=\frac{2}{2}-18 x+12 \\
v^{2}=9 x^{2}-36 x+36 \\
v^{2}=9\left(x^{2}-4 x+4 j\right. \\
v^{2}=9(x-8)^{2}
\end{gathered}
$$

6.16

$$
\begin{aligned}
\frac{Q 7}{x} & =9(x-2) \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =9(x-2) \\
\frac{1}{2} v^{2} & =9 /(x-2) d x \\
\frac{1}{2} v^{2} & =\frac{9}{2}(x-2)^{2}+C
\end{aligned}
$$

When $x=4, V=6$;

$$
\begin{align*}
\frac{1}{2} \times 6^{2} & =\frac{9}{2}(4-2)^{2}+c \\
18 & =18+c \\
\frac{1}{2} & =0 \\
\frac{1}{2} & =\frac{9}{2}(x-2)^{2} \tag{3}\\
& =9(x-2)^{2}
\end{align*}
$$

iii) $V= \pm 3(x-2)$

But when $x=4 ; v=+6>0$
so

$$
\begin{aligned}
& \frac{d^{x}}{d}=3(x-2) \\
& \frac{d t}{d x}=3(x-2) \\
& \frac{t}{x(x-2)} \\
& t=\frac{1}{3} \int \frac{1}{x-2} d x \\
& t \ln (x-2)+c
\end{aligned}
$$

When $t=0, x=4$.

$$
\begin{align*}
& 0=\frac{1}{3} \ln 2+c \\
& \frac{t}{3} \ln 2 \\
& \frac{t}{t}=\frac{1}{3} \ln (x-2)-\frac{1}{3} \ln \left(\frac{x-2}{2}\right) \\
& \frac{x-2}{2}=\frac{e^{3 t}}{2 e^{3 t}+2}
\end{align*}
$$

$b x^{2}=4 a y \quad 1 \quad 1 \quad 1 \quad x^{4}$
Vertex $=(0 ; 0)$
$P=\left(2 a p, a p^{2}\right)$
$Q=\left(2 a q-a q^{2}\right)$
i)

$$
\operatorname{lin}_{\text {PD }}=\frac{a p^{2}-0}{2 a p-0}
$$

$$
=\frac{p}{a}
$$

$$
\text { MOO }=\frac{q_{2}}{2}
$$

Since chord $P Q$ subtends right angle at vertex

$$
\begin{align*}
M P Q \times m Q Q & =-1 \\
\Rightarrow \frac{p}{2} \times \frac{Q}{2} & =-1 \\
=1 q & =-4 \tag{2}
\end{align*}
$$

ii)

$$
\begin{aligned}
& x^{2}=\frac{4 y}{2 a} \\
& y^{\prime}=\frac{x^{2}}{2 a} \\
& y^{\prime}=\frac{x}{2 a} \\
& u_{0}=\frac{2 a p}{2 a}=p
\end{aligned}
$$

m of normal at $p=\frac{-1}{p}$
Eq -of normal at p

$$
\begin{align*}
& \Rightarrow \frac{-1}{p}=y-2 a p \\
& -x+2 a p=p y-p^{2} \tag{2}\\
& x+p y=2 a p+a p^{3}
\end{align*}
$$

iii) Similarly eq of normal at Q
(4) $-(2) \Rightarrow(p-q) y=2 a(p-q)+a\left(p^{3}-q^{3}\right)$

$$
-2 a \pm a\left(p^{2}+p q+q^{2}\right)=(3)
$$

Sub e (3) into (1)

$$
\begin{array}{r}
x+2 a p+a p\left(p^{2}+p q+q^{2}\right)=2 a p+a p^{3}-1+a p^{2}+a p+a q^{2}+2 a p+a p^{3}
\end{array}
$$

$$
x=-a p q(p+q)
$$

Pt. of intersection of the normals at PAQ.

$$
=\left(-a p q(p+q) \rightarrow 2 a+a\left(p^{2}+p q+q^{2}\right)\right)
$$

Since $p q=-4$ from $(i) \rightarrow$

$$
\begin{aligned}
& y-6 a+a\left(p_{1}+q_{2}\right)^{2} \\
& y=6 a\left(\frac{4 a}{4}=-x^{2}\right. \\
& 6 a(y-6 a)=x^{2}
\end{aligned}
$$

-

\qquad
\qquad 4
\qquad
\qquad - .-.
\qquad

$$
\begin{aligned}
& x=4 a(p+q) \Rightarrow p+q=\frac{x}{-4} \\
& y \equiv 2 a+a\left(p^{2} \div 2 p q+q^{2}=p q \ldots\right.
\end{aligned}
$$

