Multiple Choice.

1. Solve the inequation $\frac{4}{5-x} \leq 1$.
(A) $1<x<5$
(B) $1 \leq x \leq 5$
(C) $\quad x \leq 1$ or $x \geq 5$
(D) $x \leq 1$ or $x>5$
2. Find the constant term in $\left(x-\frac{2}{x}\right)^{6}$.
(A) $\quad-8$
(B) $\quad-160$
(C) 8
(D) 160
3. For what value of p is the expression $4 x^{3}-x+p$ divisible by $x+3$?
(A) 105
(B) -105
(C) 108
(D) -108
4. Find $\int \sin x \cos ^{3} x d x$.
(A) $4 \cos ^{4} x+C$
(B) $\quad-4 \cos ^{4} x+C$
(C) $\frac{1}{4} \cos ^{4} x+C$
(D) $\quad \frac{-1}{4} \cos ^{4} x+C$
5. $\frac{d}{d x}\left(\sin ^{-1} 2 x\right)=$
(A) $\frac{2}{\sqrt{1-x^{2}}}$
(B) $\frac{4}{\sqrt{1-4 x^{2}}}$
(C) $\frac{2}{\sqrt{1-4 x^{2}}}$
(D) $\frac{2}{\sqrt{1-2 x^{2}}}$
6. Find $\int \sin ^{2} x d x$.
(A) $x-\frac{1}{2} \sin 2 x+c$
(B) $\frac{1}{4}(2 x-\sin 2 x)+c$
(C) $\quad \frac{1}{2}(x-\sin 2 x)+c$
(D) $\quad \frac{1}{2}(x-2 \sin 2 x)+c$
7. Evaluate $\int_{-1}^{0} x \sqrt{1+x} d x$, using the substitution $u=1+x$.
(A) $\frac{-4}{15}$
(B) $\frac{4}{15}$
(C) $\frac{-15}{4}$
(D) $\frac{15}{4}$

Multiple Choice (continued).
8. The equation $\sin x=1-2 x$ has a root near $x=0.3$

Using one application of Newton's method to obtain a better approximation, correct to two decimal places, gives:
(A) 0.33
(B) 0.34
(C) 0.43
(D) 0.71
9. If α, β and γ are the roots of the equation $x^{3}-x^{2}+4 x-1=0$, the value of $(\alpha+1)(\beta+1)(\gamma+1)$ is:
(A) $\quad-5$
(B) -1
(C) 3
(D) 7
10. Water is running out of a conical funnel at the rate of $5 \mathrm{~cm}^{3} / \mathrm{s}$. At any time t seconds, the depth of water is $h \mathrm{~cm}$ and the volume of water in the funnel is $V \mathrm{~cm}^{3}$.
Given that $V=\frac{\pi h^{3}}{12}$, find the rate at which the water level is changing when it is 5 cm from the top.
(A) $\frac{4}{45 \pi} \mathrm{~cm} / \mathrm{s}$
(B) $\frac{-4}{45 \pi} \mathrm{~cm} / \mathrm{s}$
(C) $\frac{4}{5 \pi} \mathrm{~cm} / \mathrm{s}$

(D) $\frac{-4}{5 \pi} \mathrm{~cm} / \mathrm{s}$
(a) The interval $A B$, where A is $(-3,3)$ and B is $(5,-1)$ is divided internally in the ratio $m: n$ by the point $P(-1,2)$. Find the values of m and n.
(b) Newton's law of cooling states that a body cools according to the equation $\frac{d T}{d t}=-k(T-S)$, where T is the temperature of the body in degrees Celsius at time t minutes, S is the temperature, in degrees Celsius, of the surroundings and k is a constant.
(i) Show that $T=S+A e^{-k t}$ satisfies the equation, where A is a constant.
(ii) A metal rod has an initial temperature of $470^{\circ} \mathrm{C}$ and cools to $250^{\circ} \mathrm{C}$ in 10 minutes. The surrounding temperature is $30^{\circ} \mathrm{C}$.
(α) Find the value of A and show that $k=\frac{1}{10} \log _{e} 2$.
(β) How long will it take the rod to cool to $70^{\circ} \mathrm{C}$, giving your answer correct to the nearest minute?

Question 11 continued on page 5.
(c)

In the diagram above, two circles touch one another externally at point W.
A straight line through W meets one of the circles at T and the other at S. The tangents at T and S meet the common tangent at the point W, at X and Y respectively.

Let $\theta=\angle X T W$.
(i) Explain why $\angle X W T$ is θ.
(ii) Prove that $T X \| Y$.
(d) (i) Rewrite $\cos x+\sqrt{3} \sin x$ in the form of $r \cos (x-\alpha)$.
(ii) Hence, or otherwise, solve $\cos x+\sqrt{3} \sin x=1$ for $0 \leq x \leq 2 \pi$.
(iii) Sketch $y=\cos x+\sqrt{3} \sin x$ for $0 \leq x \leq 2 \pi$.
(iv) Find the possible positive values of m such that $\cos x+\sqrt{3} \sin x=m x$ has 2 solutions for $0 \leq x \leq 2 \pi$.
(a) Find the exact value of $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)$.
(b) In the diagram below, $P Q$ is a vertical tower standing on horizontal ground.

A point R is due west of the tower $P Q$. From the base of the tower, Q, another point S is on a bearing of 150°.
The angles of elevation to the top of the tower P from R and S are 30° and 45° respectively. R and S are 65 m apart. Let h be the height of the tower $P Q$.

(i) Copy and complete the diagram, with all the given information, in your answer booklet. Show that $\angle R Q S$ is 120°.
(ii) Show that $R Q=\sqrt{3} h \mathrm{~m}$.
(iii) Hence show that the height of the tower $h=\frac{65}{\sqrt{4+\sqrt{3}}} \mathrm{~m}$.

Question 12 continued on page 7.
(c) Using the principal of Mathematical Induction, show that $3^{3 n}+2^{n+2}$ is divisible by 5 for all positive integers n.
(d) A particle moves in a straight line and its displacement, $x \mathrm{~cm}$, from a fixed origin after t seconds, is given by $x=\sin t-\sin t \cos t-2 t$.
(i) Let $v \mathrm{~cm} \mathrm{~s}^{-1}$ be the velocity of this particle. Show that $v=-2 \cos ^{2} t+\cos t-1$.
(ii) Hence show that the particle never comes to rest and always moves in one 2 particular direction.
(a)

The graph of the curve $f(x)=\frac{\pi}{2}-2 \tan ^{-1} x$ is drawn above. It cuts the y-axis at $\left(0, \frac{\pi}{2}\right)$.
(i) Write down the domain of the inverse function of $f(x)=\frac{\pi}{2}-2 \tan ^{-1} x$.
(ii) Find the equation of the inverse function of $f(x)=\frac{\pi}{2}-2 \tan ^{-1} x$.
(iii) Find the volume generated when the shaded region is rotated about the y-axis.
(b) Two curves $y=e^{x}-1$ and $y=2 e^{-x}$ intersect at the point P.
(i) Sketch these two curves on the same number plane. $\mathbf{2}$
(ii) Show that the coordinates of P are $(\ln 2,1)$. $\mathbf{2}$
(iii) Find the acute angle between the two curves at the point P. Give your answer $\mathbf{2}$ correct to the nearest degree.
(iv) Find the area bound by these two curves and the y-axis.
(c) The normal at any point $P\left(2 a t, a t^{2}\right)$ on the parabola $x^{2}=4 a y$ cuts the y-axis at Q.

This normal is produced to a point R such that $P Q=Q R$.
By first finding the equation of the normal at P, show that R has the coordinates $\left(-2 a t, a t^{2}+4 a\right)$.
(a) A particle undergoing simple harmonic motion has equation $\frac{d^{2} x}{d t^{2}}=-4(x-2)$ where x metres is the displacement of the particle from the origin O at time t seconds. The particle is at rest at the origin.
(i) Show that $v^{2}=-4 x^{2}+16 x$, where $v \mathrm{~ms}^{-1}$ is the velocity of the particle.
(ii) Find the period and amplitude of the motion.
(iii) Find the distance travelled by the particle in the first π minutes of its motion.
(b) If $2^{x}=5^{y}=10^{z}$, show that $\frac{1}{z}=\frac{1}{x}+\frac{1}{y}$.
(c)

The diagram above shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{1+\cos x}, 0 \leq x \leq \frac{\pi}{2}$.
The finite region R, shown shaded in the diagram, is bounded by the curve and the x-axis.
The table below shows corresponding values of x and y for $y=\frac{2 \sin 2 x}{1+\cos x}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(i) Copy and complete the table in your answer booklet, giving the missing value of y correct to 5 decimal places.
(ii) Use the trapezoidal rule to obtain an estimate for the area R, giving your answer correct to 4 decimal places.
(iii) By using the substitution $u=1+\cos x$, or otherwise, show that

$$
\int \frac{2 \sin 2 x}{(1+\cos x)} d x=4 \ln (1+\cos x)-4 \cos x+k \text { where } k \text { is a constant. }
$$

(iv) Hence, calculate the error of the estimate in part (ii), giving your answer correct to 2 significant figures.

End of paper

