- 1. Solve the inequation $\frac{4}{5-x} \le 1$.
 - (A) 1 < x < 5
 - $(B) \qquad 1 \le x \le 5$
 - (C) $x \le 1 \text{ or } x \ge 5$
 - (D) $x \le 1 \text{ or } x > 5$
- 2. Find the constant term in $\left(x \frac{2}{x}\right)^6$.
 - (A) -8
 - (B) –160
 - (C) 8
 - (D) 160
- 3. For what value of p is the expression $4x^3 x + p$ divisible by x + 3?
 - (A) 105
 (B) -105
 (C) 108
 (D) -108

4. Find $\int \sin x \cos^3 x \, dx$.

- (A) $4\cos^{4} x + C$ (B) $-4\cos^{4} x + C$ (C) $\frac{1}{4}\cos^{4} x + C$
- (D) $\frac{-1}{4}\cos^4 x + C$

5.
$$\frac{d}{dx}(\sin^{-1}2x) =$$

(A) $\frac{2}{\sqrt{1-x^2}}$
(B) $\frac{4}{\sqrt{1-4x^2}}$
(C) $\frac{2}{\sqrt{1-4x^2}}$
(D) $\frac{2}{\sqrt{1-2x^2}}$

$$6. \quad \text{Find } \int \sin^2 x \, dx.$$

(A)
$$x - \frac{1}{2}\sin 2x + c$$

(B) $\frac{1}{4}(2x - \sin 2x) + c$
(C) $\frac{1}{2}(x - \sin 2x) + c$
(D) $\frac{1}{2}(x - 2\sin 2x) + c$

7. Evaluate
$$\int_{-1}^{0} x\sqrt{1+x} \, dx$$
, using the substitution $u = 1+x$.
(A) $\frac{-4}{15}$
(B) $\frac{4}{15}$
(C) $\frac{-15}{4}$
(D) $\frac{15}{4}$

Multiple Choice (continued).

- 8. The equation $\sin x = 1 2x$ has a root near x = 0.3Using one application of Newton's method to obtain a better approximation, correct to two decimal places, gives:
 - (A) 0.33
 (B) 0.34
 (C) 0.43
 - (D) 0.71

9. If α, β and γ are the roots of the equation $x^3 - x^2 + 4x - 1 = 0$, the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$ is:

- (A) -5
 (B) -1
 (C) 3
 (D) 7
- 10. Water is running out of a conical funnel at the rate of $5 \text{ cm}^3/\text{s}$. At any time *t* seconds, the depth of water is *h* cm and the volume of water in the funnel is $V \text{ cm}^3$.

Given that $V = \frac{\pi h^3}{12}$, find the rate at which the water level is changing when it is 5 cm from the top.

(A)
$$\frac{4}{45\pi} \text{ cm/s}$$

(B)
$$\frac{-4}{45\pi} \text{ cm/s}$$

(C)
$$\frac{4}{5\pi} \text{ cm/s}$$

(D)
$$\frac{-4}{5\pi} \text{ cm/s}$$

(a) The interval AB, where A is (-3,3) and B is (5,-1) is divided internally in the ratio m:n by 2 the point P(-1,2). Find the values of m and n.

- (b) Newton's law of cooling states that a body cools according to the equation $\frac{dT}{dt} = -k(T-S)$, where *T* is the temperature of the body in degrees Celsius at time *t* minutes, *S* is the temperature, in degrees Celsius, of the surroundings and *k* is a constant.
 - (i) Show that $T = S + Ae^{-kt}$ satisfies the equation, where A is a constant.
 - (ii) A metal rod has an initial temperature of 470° C and cools to 250° C in 10 minutes. The surrounding temperature is 30° C.

(a) Find the value of A and show that
$$k = \frac{1}{10} \log_e 2$$
. 2

(β) How long will it take the rod to cool to 70°C, giving your answer 2 correct to the nearest minute?

Question 11 continued on page 5.

(c)

(d)

2

In the diagram above, two circles touch one another externally at point W. A straight line through W meets one of the circles at T and the other at S. The tangents at T and S meet the common tangent at the point W, at X and Y respectively.

Let $\theta = \angle XTW$.

(i)	Explain why $\angle XWT$ is θ .	1

(ii) Prove that $TX \parallel YS$.

(i)Rewrite $\cos x + \sqrt{3} \sin x$ in the form of $r \cos(x - \alpha)$.1(ii)Hence, or otherwise, solve $\cos x + \sqrt{3} \sin x = 1$ for $0 \le x \le 2\pi$.2(iii)Sketch $y = \cos x + \sqrt{3} \sin x$ for $0 \le x \le 2\pi$.1(iv)Find the possible *positive* values of *m* such that $\cos x + \sqrt{3} \sin x = mx$ has1

2 solutions for $0 \le x \le 2\pi$.

(a) Find the exact value of
$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$$
. 3

(b) In the diagram below, PQ is a vertical tower standing on horizontal ground. A point *R* is due west of the tower *PQ*. From the base of the tower, *Q*, another point *S* is on a bearing of 150° .

The angles of elevation to the top of the tower *P* from *R* and *S* are 30° and 45° respectively. *R* and *S* are 65 m apart. Let *h* be the height of the tower *PQ*.

- (i) Copy and complete the diagram, with all the given information, in your answer booklet. Show that $\angle RQS$ is 120°.
- (ii) Show that $RQ = \sqrt{3} h$ m. 1

(iii) Hence show that the height of the tower
$$h = \frac{65}{\sqrt{4 + \sqrt{3}}}$$
 m. 3

Question 12 continued on page 7.

- (d) A particle moves in a straight line and its displacement, x cm, from a fixed origin after t seconds, is given by $x = \sin t \sin t \cos t 2t$.
 - (i) Let $v \text{ cm s}^{-1}$ be the velocity of this particle. Show that $v = -2\cos^2 t + \cos t 1$. 1
 - (ii) Hence show that the particle never comes to rest and always moves in one 2 particular direction.

The graph of the curve $f(x) = \frac{\pi}{2} - 2 \tan^{-1} x$ is drawn above. It cuts the y-axis at $\left(0, \frac{\pi}{2}\right)$.

- (i) Write down the domain of the inverse function of $f(x) = \frac{\pi}{2} 2 \tan^{-1} x$. 1
- (ii) Find the equation of the inverse function of $f(x) = \frac{\pi}{2} 2 \tan^{-1} x$. 1
- (iii) Find the volume generated when the shaded region is rotated about the *y*-axis.

Question 13 continued on page 9.

(b) Two curves $y = e^x - 1$ and $y = 2e^{-x}$ intersect at the point *P*.

(i)	Sketch these two curves on the same number plane.	
(ii)	Show that the coordinates of P are $(\ln 2, 1)$.	2
(iii)	Find the acute angle between the two curves at the point <i>P</i> . Give your answer correct to the nearest degree.	2
(iv)	Find the area bound by these two curves and the <i>y</i> -axis.	2

(c) The normal at any point $P(2at, at^2)$ on the parabola $x^2 = 4ay$ cuts the y-axis at Q. 3 This normal is produced to a point R such that PQ=QR.

By first finding the equation of the normal at *P*, show that *R* has the coordinates $(-2at, at^2 + 4a)$.

2

1

- (a) A particle undergoing simple harmonic motion has equation d²x/dt² = -4(x-2) where x metres is the displacement of the particle from the origin O at time t seconds. The particle is at rest at the origin.
 (i) Show that v² = -4x² + 16x, where v ms⁻¹ is the velocity of the particle.
 - (ii) Find the period and amplitude of the motion.
 - (iii) Find the distance travelled by the particle in the first π minutes of its motion.

(b) If $2^x = 5^y = 10^z$, show that $\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$.

Question 14 continued on page 11.

2

(c)

2

3

The diagram above shows a sketch of the curve with equation $y = \frac{2 \sin 2x}{1 + \cos x}, 0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in the diagram, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2 \sin 2x}{1 + \cos x}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
У	0		1.17157	1.02280	0

⁽i) Copy and complete the table in your answer booklet, giving the missing value1 of y correct to 5 decimal places.

(ii) Use the trapezoidal rule to obtain an estimate for the area *R*, giving your answer correct to 4 decimal places.

(iii) By using the substitution
$$u = 1 + \cos x$$
, or otherwise, show that

$$\frac{2\sin 2x}{(1+\cos x)} dx = 4\ln(1+\cos x) - 4\cos x + k \text{ where } k \text{ is a constant.}$$

(iv) Hence, calculate the error of the estimate in part (ii), giving your answer2 correct to 2 significant figures.

End of paper