Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 The expansion of $(2 x-y)^{3}$ is
(A) $8 x^{3}-4 x^{2} y+4 x y^{2}-y^{3}$
(B) $8 x^{3}-12 x^{2} y+6 x y^{2}-y^{3}$
(C) $8 x^{3}-4 x^{2} y-2 x y^{2}-y^{3}$
(D) $8 x^{3}-12 x^{2} y-6 x y^{2}+y^{3}$
$2 O$ is the centre of the circle. If $O M=O N$, which of the following is true?
(I) $\quad U V=V W$
(A) (I) only
(B) (II) only
(C) Both (I) and (II).

(D) Neither (I) nor (II).

3 The exact value of $\tan \left(\sin ^{-1}\left(\frac{-2}{3}\right)\right)$ is:
(A) $\frac{-2}{\sqrt{5}}$
(B) $\frac{2}{\sqrt{5}}$
(C) $\frac{-2}{3}$
(D) $\frac{2}{5}$
$4 \quad \int \frac{2}{\sqrt{4-25 x^{2}}} d x$ is:
(A) $\frac{2}{5} \sin ^{-1} \frac{x}{2}+C$
(B) $\frac{2}{5} \sin ^{-1} \frac{5 x}{2}+C$
(C) $\frac{2}{5} \sin ^{-1} \frac{x}{10}+C$
(D) $2 \sin ^{-1} \frac{2 x}{5}+C$

5 A particle moves in a straight line such that its velocity, v is given by $v=\cos 2 x$ when at displacement x from the origin O.
The acceleration of the particle is given by
(A) $-2 \sin 2 x$
(B) $-\sin 2 x \cos 2 x$
(C) $\frac{1}{2} \sin 2 x$
(D) $-\sin 4 x$

6 The horizontal asymptote of the function $y=\frac{2 x^{2}-4 x+3}{3 x^{2}-5}$ is
(A) $y=-\frac{3}{5}$
(B) $y=\frac{2}{3}$
(C) $y=0$
(D) $y=2$

7 The number of solutions of the equation $\cos 3 x=-0.5$ for $0 \leq x \leq 2 \pi$ is
(A) 1
(B) 2
(C) 3
(D) 6

8 At a certain instant, a sphere is of radius 10 cm and the radius is increasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$. The rate of increase of the volume of the sphere, $\mathrm{in} \mathrm{cm}^{3} / \mathrm{s}$ is
(A) 80π
(B) $\frac{800 \pi}{3}$
(C) 800π
(D) 400π

9 The point P divides the interval from $A(-1,4)$ to $B(3,7)$ externally in the ratio 5:2. What is the y co-ordinate of P ?
(A) 2
(B) 6
(C) $\quad 6 \frac{1}{7}$
(D) 9

10 When the polynomial $x^{3}+2 x^{2}-3 x+k$ is divided by $(x+2)$, the remainder is 3 . The value of k is:
(A) -3
(B) -7
(C) 9
(D) 13

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hours and 45 minutes for this section.
Answer each question in the appropriate writing booklet. Extra booklets are available.
In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet.
(a) Factorise $8 x^{3}-y^{3}$.
(b) Find the constant term in the expansion of $\left(x^{2}+\frac{3}{x}\right)^{6}$.
(c) Given $f(x)=\frac{1}{7-x}$,
(i) Find $f^{-1}(x)$.
(ii) State the domain of $f^{-1}(x)$.
(iii) State the range of $f^{-1}(x)$.
(d) Solve $\frac{x^{2}-4}{x}>0$
(e) Evaluate $\int_{1}^{\sqrt{2}} x \sqrt{x^{2}-1} d x$ using the substitution $u=x^{2}-1$.
(f) From a point A , the top of a tower BD, which is directly north of A, has an angle of elevation of 15°. After walking 500 metres on a bearing of 090°, the top of the tower has an angle of elevation of 12°.

Find the height of the tower, to the nearest metre.

(a) Prove $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$.
(b)

Let $A B C D$ be a cyclic quadrilateral. The tangents from Q touch the circle at A and B. The diagonal $D B$ is a parallel to the tangent $A Q$ and $Q A$ produced intersects with $C D$ produced at P . Copy this diagram into your booklet.
Let $\angle Q A B=\alpha$.
(i) Prove that $\triangle B A D$ is isosceles.
(ii) Explain why $\angle B C D=2 \alpha$.
(iii) Show that P, Q, B and C are concyclic points.
(c) The graph below represents the relationship between T, the temperature in ${ }^{\circ} \mathrm{C}$ of a cooling cup of tea, and t, the time in minutes.

The rate of cooling of this tea is given by $\frac{d T}{d t}=-k(T-A)$ where k and A are constants and $k>0$.

(i) Show that $T=A+B e^{-k t}$ is a solution to the differential equation where B is a constant.
(ii) By considering the graph at $t=0$ and when $t \rightarrow \infty$, find the values of A and B.
(iii) If the temperature of the tea is $40^{\circ} \mathrm{C}$ after 75 minutes, show that

$$
k=-\frac{1}{75} \ln \left(\frac{4}{19}\right) .
$$

(iv) Hence, find the rate at which the tea is cooling after 75 minutes.
(a) The graph of a polynomial, $P(x)$ is shown below.

Write down a possible equation for $P(x)$.

(b) The polynomial equation $x^{3}-11 x^{2}+c x-36=0$ has 3 positive roots. One root is the product of the other two roots.
(i) Show that 6 is a root of the polynomial
(ii) Hence, find the value of c.
(c) Consider the function $f(x)=x^{2}+3 \ln (x-2)$
(i) By sketching $y=-x^{2}$ and $y=3 \ln (x-2)$ on the same axes, show that $f(x)=0$ has exactly one solution, α, where $2<\alpha<3$.
(ii) Taking $x=2.2$ as the first approximation, use one application of Newton's method to find a second approximation to α. Give your answer to 3 decimal places.
(d) (i) Show that the equation of the normal to the parabola $x^{2}=16 y$ at the point $P\left(8 p, 4 p^{2}\right)$ is given by $x+p y=8 p+4 p^{3}$.
(ii) Find, in terms of p, the distance $S N$, where S is the focus of the parabola and N is the point where the normal intersects the y -axis.
(iii) Hence find the area of $\triangle P S N$ in terms of p.
(a) $\quad f(x)=\cos ^{-1}(\cos x),-\pi \leq x \leq \pi$.
(i) Differentiate $f(x)$ and hence find the possible values of $f^{\prime}(x)$.
(ii) Hence or otherwise, sketch $f(x)$.
(b) The temperature $T^{\circ} \mathrm{C}$ of an unheated building is modelled using the equation $T=23+2 \cos \left(\frac{\pi t}{12}\right)+5 \sin \left(\frac{\pi t}{12}\right), 0 \leq t \leq 24$ where t is the number of hours after midday.
(i) Express $2 \cos \theta+5 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give the values of R and α to 3 significant figures.
(ii) Hence, calculate the minimum temperature of the building and the time when 2 this minimum occurs.

Question 14 continued on next page.
(c) An athlete releases a javelin with speed $25 \mathrm{~m} / \mathrm{s}$ at an angle θ to the horizontal from a height 1.5 m above the ground.

Take the origin to be the point on the ground directly below the point of release, as shown. You may assume the horizontal position of the javelin, at time t, is given by $x=25 t \cos \theta$. DO NOT PROVE THIS.
(take $g=10 \mathrm{~ms}^{-2}$).

(i) Show that the height, y of the javelin at time t is given by

$$
y=-5 t^{2}+25 t \sin \theta+1.5
$$

(ii) The school record for the javelin throw is 60 m . Show that the athlete achieves a school record throw when

$$
288 \tan ^{2} \theta-600 \tan \theta+273=0 .
$$

(iii) Hence, calculate in what range θ must lie for the athlete to exceed the school record.

End of Paper

MATHEMATICS EXT - TRIAL 2013
SOUTIONS

1. B
2. C
3. A
4. B
5. D
6. B
7. D
8.
9. P
10. A

Question 11

$$
=(2 x-y)\left(4 x^{2}+2 x y+y^{2}\right)
$$

(b) $\left(x^{2}+\frac{3}{x}\right)^{6}$

General term $=C_{k}\left(x^{2}\right)^{6-k}\left(\frac{3}{x}\right)^{k}$

$$
\begin{aligned}
& ={ }^{6} C_{k} x^{12-2 k} 3^{k} x^{-k} \\
& ={ }^{6} C_{k} x^{12-3 k} 3^{k}
\end{aligned}
$$

For... constent tem, $\quad 12-3 k=0$

$$
\begin{align*}
& \\
& \therefore \text { constant tem }={ }^{6} C_{4} 3^{4} \\
&=1215
\end{align*}
$$

\qquad

Quesmon 11 (cont)
(2) $\int_{1}^{\sqrt{2}} x \sqrt{x^{2}-1} d x$

Let $\quad u=x^{2}-1$
When $x=1 \quad u=0$

$$
\begin{aligned}
& \frac{d u}{d x}=2 x \\
& \therefore \int_{1} x \sqrt{x^{2}-1} d x \\
& =\frac{1}{2} \int_{1}^{\sqrt{2}} \sqrt{x^{2}-1} 2 x d x \\
& =\frac{1}{2} \int_{0}^{1} u^{1 / 2} d u \\
& =\frac{1}{2}\left[\frac{2 u}{3}\right]_{0}^{1 / 2} \\
& =\frac{1}{2}\left[-\frac{2}{3}\right] \\
& =\frac{1}{3}
\end{aligned}
$$

Let $\quad x=\tan ^{-1} \frac{1}{4} \quad$ and $\quad y=\tan ^{-1} \frac{3}{5}$

$$
x=\sqrt{2} \quad u=1
$$

$$
\tan y=\frac{3}{5}
$$

\qquad

$$
=\frac{\frac{1}{4}+\frac{3}{5}}{1-\frac{1}{4} \cdot \frac{3}{5}}
$$

$$
-\frac{\pi}{2}<x, y<\frac{\pi}{2}
$$ then

Im - comect limils

$$
=1
$$

(f)
(1)

$$
\tan x=-\frac{1}{4}
$$

(1) $-\frac{\pi}{2}<x, y<\frac{\pi}{2}$
\sin ie $\tan x>0$ tany >0

$$
0 \leqslant x, y<\frac{\pi}{2}
$$

$$
=\frac{\frac{5}{20}+\frac{12}{20}}{1-3 / 20}
$$

$\operatorname{lin}-$ set up + restriciss or domavilinge
In - comect inlegral in lems of us

$$
+
$$

(b)

$$
\begin{align*}
& \tan 15^{\circ}=\frac{h}{A B} \quad \operatorname{ta} 12=\frac{h}{B C} \tag{1}\\
& A B=h \cot 15^{\circ} \quad \cdots \quad B C=h \cot 12^{\circ}
\end{align*}
$$

In $\triangle A B C$, using pylhagras $500^{2}+h^{2} \cot ^{2} 15=h^{2} \cot ^{2} 12$

$$
\begin{gather*}
h^{2}\left(\cot ^{2} 12-\cot ^{2} 15\right)=500^{2} \\
h^{2}=\frac{500^{2}}{\cot ^{2} 12-\cot ^{2} 15} \tag{1}\\
12-7-1.4-908 a
\end{gather*}
$$ $1 m$ - Correat subst $1 m$ - correct Subst $1 m$ - Conchsion.

(1)
Im - mleqrakug t evcluating.

$$
\begin{aligned}
\therefore \quad & \tan (x+y)=1 \\
x+y & =\frac{\pi}{4} \\
\therefore \quad \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{3}{5} & =\frac{\pi}{4}
\end{aligned}
$$

(since $0<x+y<\pi$)
\qquad

(2) - both reasons and conclusion (1) - one reasen and conclusion.
(i) $\angle A B D=\angle Q A B=\alpha$ (allernate angles on parallel lines $P Q \| D B$, equal) $\angle A D B=\angle Q A B=\alpha$ (ongle tengent $Q A$ moves with chord $A B$ at point
\qquad of contact equal bo aqle at aromference inaltenale segmant)
$\therefore \triangle A B D$ isosceles

Quesion 12 (CONT)
(b) (i) $\therefore \quad \therefore D=A B \quad$ (equal sides opposir equal aqies
$\therefore A B D$ isosceles in $\triangle A B D)$

$$
\angle D A B=160-\angle A D B=\angle A B D
$$

(ii)

$$
\begin{aligned}
\angle D A B & \left.=180-\alpha-\alpha \quad \text { (ogje sum of } \triangle B A D=180^{\circ}\right) \\
& =180-2 \alpha-(1)
\end{aligned}
$$

$\angle B C D=180-\angle D A B \quad$ (Opposile angles of cyclic quadrilatoal $A B C D$ are supplematey)

$$
=180-(180-2 \alpha)
$$

$$
=2 \alpha \text { as required. }
$$

(iii)

$$
\begin{aligned}
\angle B C D & =\angle B C P \quad \text { (common) } \\
& =2 \alpha \text { (fom ii) }
\end{aligned}
$$

$A Q=G B$ (tengents fom extenal point Q to circle at A and B are equal)
$\therefore \triangle B A Q$ is isosceles.
$\angle Q A B=\angle Q B A=\alpha$ (ongles opposie equal sides in $\triangle B A Q$)
$\therefore \quad \angle A Q B=180-2 \alpha$ (agqe sum of $\triangle A Q B=180^{\circ}$) - (1)
$=\angle P O B$ (commor)
nan
$\angle P Q B+\angle P C B$
$=180-2 \alpha+2 \alpha$

$$
\begin{equation*}
=180 \tag{1}
\end{equation*}
$$

$\therefore \angle P Q B$ and $\angle P C B$ ore supplamantey
$\therefore P Q B C$ ar concyctic Copporile agpes an ayclic quadrilaloal ae supplemetery)

Quesilion 12 (CONT)
(c) (i) $T=A+B e^{-k t}$

$$
\begin{equation*}
\frac{d T}{d t}=-k B e^{-k t} \tag{1}
\end{equation*}
$$

Fom (D) $B e^{-k E}=T-A \Leftrightarrow$ must show this or

$$
\therefore \frac{d T}{d t}=-k(T-A)
$$

\therefore it is a solution of differtial equation.
(ii) Whe $t=0, \quad T=A+B \quad$ (from (0)
fromgraph. $\quad T=100$

$$
\therefore A+B=100
$$

As $t \rightarrow \infty \quad T \rightarrow A \quad$ (from (1))
Fromaraph, $\quad T \rightarrow 24$

$$
\begin{array}{ll}
\therefore & A=24 \\
B & \text { - (1) } \tag{1}\\
\therefore & \text { (1) }
\end{array}
$$

(iii)

$$
T=24+76 e^{-k t}
$$

Wha $t=75 \quad T=40$

$$
\begin{align*}
& 40=24+76 e^{-75 k} \\
& \frac{16}{76}=e^{-75 k} \\
& -75 k=\ln \left(\frac{16}{76}\right) \tag{1}\\
& k=-\frac{1}{75} \ln \left(\frac{4}{19}\right)
\end{align*}
$$

Quesmon 12 (CONT)
(iv) $\frac{d T}{d t}=-k(T \div 24)$

$$
=-k \times(40-24)
$$

$$
=\frac{1}{75} \ln \left(\frac{4}{19}\right) \times 16
$$

$$
=\frac{16}{75} \ln \left(\frac{4}{19}\right) \text { deqrees } / \text { minule }
$$

$$
=-0.332(3 s f) \text { dequeas } / \mathrm{min} \text {. }
$$

\therefore rate of cooling o. 0.332 dghin.

Question 13
(a) $P(x)=-k(x-a)^{2}(x-b)$ (any equation of this fom) Im RIW.
$0^{r} k(x-a)^{2}(p-x)$
(b) $x^{3}-11 x^{2}+c x-36=0$
\qquad
Rools $\alpha, \beta, \alpha \beta \quad \alpha, \beta>0$
(i) Sum of rots $\alpha+\beta+\alpha \beta=11 \quad(-b / a)$

Sum(inpars) $\quad \alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}=c \quad(c / a)$
$\operatorname{sum}(n$ thees $) \quad \alpha^{2} \beta^{2}=36 \quad(-d / a)$
-9

$$
\therefore \quad \alpha^{2} \beta^{2}=36
$$

$$
\alpha \beta=6
$$ since $\alpha \beta>0$

$\therefore \quad b$ is a root of polynomial.
(ii) Subst mb (D) $\alpha+\beta+6=11$

$$
\begin{equation*}
\alpha+\beta=5 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\alpha \beta(1+\alpha+\beta) & =c \\
6(1+5) & =c \\
c & =36 \tag{1}
\end{align*}
$$

$\alpha+\beta=5$

From graph $y=-x^{2}$ and $y=3 \ln (x-2)$ have one point of mlusechon.
$\therefore \quad 3 \ln (x-2)=-x^{2} \quad$ hos one rout
se. $3 \ln (x-2)+x^{2}=f(x)$ has one 2 ero
i.e...f(x) $=0$ has one soluhion.

Tron oraph Sowhion lies belva 2 ad 3

$$
\therefore \quad \text { If } \quad f(\alpha)=0 \quad 2<\alpha<3
$$

(ii)

$$
\begin{align*}
f(2.2) & =2 \cdot 2^{2}+3 \ln (2.2-2) \\
& =4 \cdot 84+3 \ln (0.2) \\
f^{\prime}(x) & =2 x+\frac{3}{x-2} \tag{1}\\
f^{\prime}(2.2) & =4 \cdot 4+\frac{3}{0.2} \\
& =19.4 .
\end{align*}
$$

(ii)
usina neplon's method, second appormaion $=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

$$
\begin{align*}
& =2.2-\frac{4.84+3 \ln (0.2)}{19.4} \\
& =2.19939 \ldots \ldots \tag{1}\\
& =2.199(3 d p)
\end{align*}
$$

N is whe $x=0$

$$
\begin{align*}
& \text { Subst in } \quad p, \quad p y=8 p+4 p^{3} \\
& \begin{array}{l}
\quad y=8+4 p^{2} \\
N=\left(0,8+4 p^{2}\right) \\
\therefore \quad 5 n=8+4 p^{2}-4 \\
\\
=4+4 p^{2}
\end{array} \tag{1}\\
& \begin{array}{l}
\quad y=8+4 p^{2} \\
N=\left(0,8+4 p^{2}\right) \\
\therefore \quad 5 n=8+4 p^{2}-4 \\
\\
=4+4 p^{2}
\end{array} \\
& \begin{aligned}
& y=8+4 p^{2} \\
N= & \left(0,8+4 p^{2}\right) \\
\therefore \quad s y & =8+4 p^{2}-4 \\
& =4+4 p^{2}
\end{aligned} \\
& \begin{array}{l}
\quad y=8+4 p^{2} \\
N=\left(0,8+4 p^{2}\right) \\
\therefore \quad 5 n=8+4 p^{2}-4 \\
\\
=4+4 p^{2}
\end{array} \\
& a r a \quad \triangle P S N=\frac{1}{2} \times b \times h \\
& \begin{array}{l}
=\frac{1}{2} \times 5 N \times 8 p \\
=4 p\left(4+4 p^{2}\right)=16 p\left(1+p^{2}\right)
\end{array} \\
& \begin{array}{l}
=\frac{1}{2} \times 5 N \times 8 p \\
=4 p\left(4+4 p^{2}\right)=16 p\left(1+p^{2}\right)
\end{array}
\end{align*}
$$

(iii)
(as requred)

(1) Riw

QubTION 14
(a) $f(x)=\cos ^{-1}(\cos x) \quad-\pi \leq x \leq \pi$
(i) $\quad f^{\prime}(x)=\frac{-1}{\sqrt{1-\cos ^{2} x}} \times-\sin x$

$f^{\prime}(x) \frac{\text { not detined wa } x=0 \pm 1-\frac{1}{n o t} d o n e}{\text { by ptandy all. }}$

(b)
(i)

$$
\therefore \quad \tan \alpha=\frac{5}{2}
$$

$$
\alpha=1 \cdot 19 \quad(35 f)
$$

$$
0.379 \pi
$$

$$
\begin{aligned}
& 2 \cos \theta+5 \sin \theta=R \cos (\theta-\alpha) \\
& =R \cos \theta \cos \alpha+R \sin \theta \sin \alpha \\
& \therefore \quad R \cos \alpha=2 \quad R=\sqrt{2^{2}+5^{2}} \\
& R \sin \alpha=5 \quad=\sqrt{29} \\
& =5.39 \quad(3.5 . f)
\end{aligned}
$$

Qremon 14 (CONT)
(b) (i) $\quad \therefore 2 \cos \theta+5 \sin \theta=5.39 \cos (\theta-1.19)$
(ii) Minimum temp

$$
\begin{aligned}
T & =23+2 \cos \frac{\pi t}{12}+5 \sin \frac{\pi t}{12} \\
& =23+5.39 \cos \left(\frac{\pi t}{12}-1.19\right)
\end{aligned}
$$

Minimum ocars when $\cos \left(\frac{\pi t}{12}-1.19\right)=-1$

$$
\begin{align*}
\therefore \quad \text { minimumlemp } & =23-5.39 \\
& =17.61^{\circ} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\cos \left(\frac{\pi t}{12}-1.19\right) & =-1 \\
\frac{\pi t}{12}-1.19 & =-\pi, \pi, 3 \pi \ldots
\end{aligned}
$$

Now $0 \leqslant t \leq 24$

$$
-1.19 \leqslant \frac{\pi t}{12}-1.19 \leq 5.093
$$

$$
\therefore \quad \frac{\pi k}{12}-1.19=\pi
$$

$$
\begin{aligned}
\therefore \quad & =16.545 . \text { hows } \\
& =16 \text { hours } 33 \text { mmules (nerest min) }
\end{aligned}
$$

\therefore time mininum occurs $=04: 33$ am.
\qquad

Quenon 14 (conr)
(c) (i)

$$
\begin{aligned}
& \ddot{y}=-10 \\
& \dot{y}=-10 t+c
\end{aligned}
$$

When $t \approx 0 \quad-\quad y=25 \sin e$

$$
\begin{align*}
\therefore \quad c & =25 \sin \theta \\
y & =-10 t+25 \sin \theta \tag{1}\\
y & =-5 t^{2}+25 t \sin \theta+c
\end{align*}
$$

Wha $t=0 \quad y=1.5$

$$
\begin{aligned}
& \therefore=1.5 \\
\therefore \quad & y=-5 t^{2}+25 t \sin \theta+1.5
\end{aligned}
$$

-(1)
must have some sinb

(ii)

When

$$
\begin{align*}
& x=60 \\
& 60=25 t \cos e \\
& t=\frac{60}{25 \operatorname{cose}} \\
& t=\frac{12}{5 \operatorname{cose}}=\frac{12 \sec 0}{5} \tag{I}
\end{align*}
$$

Subst $\quad t=\frac{12 \sec e}{5} \quad y=0 \quad$ inds (x)

$$
\begin{align*}
& 0=-5\left(\frac{12 \sec \theta}{5}\right)^{2}+25\left(\frac{12 \sec \theta)}{5}\right) \sin \theta+1.5 \\
& 0=\frac{-144 \sec ^{2} \theta+60 \operatorname{ten} \theta+15}{5} \tag{1}\\
& 0=-144 \sec ^{2} \theta+300 \operatorname{ten} \theta+75 \\
& 0=-288 \sec ^{2} \theta+600 \tan +15 \\
& 0=-288\left(\tan ^{2} \theta+1\right)+600 \operatorname{ten} \theta+15 \\
& 0=-288 \tan ^{2} 0+600 \tan 0-273 \\
& \therefore 288 \tan ^{2} 0-600 \tan \theta+273=0 .
\end{align*}
$$

\qquad
\qquad

Quesinov 14 (cont)
(c) (ii) $288 \tan ^{2} \theta-600 \tan \theta+273=0$.

$$
\tan \theta=\frac{600 \pm \sqrt{600^{2}-4 \times 288 \times 273}}{2 \times 288}
$$

$$
=\frac{600 \pm 24 \sqrt{79}}{576}
$$

$$
=\frac{25 \pm \sqrt{79}}{24}
$$

$$
\theta=54.693 \ldots \quad \text { or } \quad 33.8744 \ldots \quad\left(0<0 \leq 90^{\circ}\right)
$$

\therefore For athlele to exceed school record

- (1) correct inequality
my notes

33.87445
$1.4+200.8101$
$54^{\circ} 41^{\prime} 36.4^{\prime \prime}$ 0.6713252326 $33^{\circ} .52^{\prime} 28.05^{-4-}$
$54^{\circ} 41 \% \quad 133^{\circ} 53$
ratiano 0.9545806910 .591220831

