\qquad
\qquad

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

2014

Mathematics Extension 1

General Instructions

- Reading time -5 minutes.
- Working time -2 hours.
- Write using pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-14. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total Marks - 70
Section I Pages 1-4
10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II Pages 5-11
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Mark	/70
Highest Mark	$/ 70$
Rank	

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 The roots of the equation $x^{3}-5 x^{2}+4=0$ are α, β and γ.
The value of $\alpha+\beta+\gamma$ and the value of $\alpha \beta \gamma$ are respectively.
(A) 5 and 4
(B) 5 and -4
(C) -5 and 4
(D) -5 and -4

2 Evaluate $\sin ^{-1}\left(\sin \frac{4 \pi}{3}\right)$.
(A) $\frac{4 \pi}{3}$
(B) $\frac{\pi}{3}$
(C) $\frac{-2 \pi}{3}$
(D) $\frac{-\pi}{3}$

3 When the polynomial $P(x)=x^{4}+a x+2$ is divided by $x^{2}+1$ the remainder is $2 x+3$.

The value of a is
(A) 1
(B) 2
(C) 0
(D) 3

4 Given the points $A(7,14)$ and $B(1,2), C$ is a point on $A B$ produced such that $A B: B C=2: 1$. Find the coordinates of C.
(A) $(-5,-10)$
(B) $(-2,-4)$
(C) $(3,6)$
(D) $(5,10)$

5 Find $\int \frac{1}{\sqrt{1-3 x^{2}}} d x$.
(A) $3 \sin ^{-1}(3 x)+C$
(B) $\frac{1}{3} \sin ^{-1}(3 x)+C$
(C) $\sqrt{3} \sin ^{-1}(\sqrt{3} x)+C$
(D) $\frac{1}{\sqrt{3}} \sin ^{-1}(\sqrt{3} x)+C$

6 Evaluate $\int_{0}^{\frac{\pi}{6}} \sin ^{2} \theta \mathrm{~d} \theta$.
(A) $\frac{\pi}{12}-\frac{\sqrt{3}}{8}$
(B) $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
(C) $\frac{1}{24}$
(D) 1

7 The figure on the right shows the graph of $y=f(x)$.

If $2 f(x)=g(x)$, which of the following may represent the graph of $y=g(x)$?

(A)
(B)

(C)

(D)

8 If $\int_{-a}^{a} f(x) d x=0$, then which one of the following statements is false?
(A) $\quad f(x)$ is an odd function
(B) $\int_{0}^{a} f(x) d x=\int_{-a}^{0} f(-x) d x$
(C) $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(D) The area bounded by the curve $y=f(x)$, the x axis and the lines $x=a$ and $x=-a$ is twice the area bounded by the curve $y=f(x)$, the x axis and the lines $x=0$ and $x=a$.

9 For $0^{\circ} \leq \theta \leq 90^{\circ}$, the least value of $\frac{30}{3 \sin ^{2} \theta+2 \sin ^{2}\left(90^{\circ}-\theta\right)}$ is
(A) 5
(B) 6
(C) 10
(D) 15

10 Given n is an integer, the general solution of $\tan \left(2 x+\frac{\pi}{4}\right)=\sqrt{3}$ is
(A) $\quad x=\frac{(12 n+1) \pi}{24}$
(B) $\quad x=\frac{(3 n+1) \pi}{6}$
(C) $\quad x=\frac{(12 n-1) \pi}{24}$
(D) $\quad x=\frac{(6 n+1) \pi}{6}$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hours and 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra booklets are available.
In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet.
(a) Given $f(x)=x^{4}+x^{2}-80$.

Assume there is a zero near $x=3$. Use Newton's method once to find a better approximation to the root correct to 2 significant figures.
(b) From a point A due south of a tower, $T P$, the angle of elevation of the top of the tower, T is 25° and from a point B due east of the tower is 32°.

The distance from A to B is 50 metres.
Let the height of tower $T P$ be h metres.

(i) Copy the diagram in your answer booklet and complete with all given information.
(ii) Find an expression for $P A$ in terms of h.
(iii) Find the height of the tower, h, correct to 1 decimal place.

Question 11 continues on page 6.

(c) The function $f(x)$ is defined as $f(x)=\frac{3 x-4}{x+2}$, where $x \neq-2$.
(i) Find an expression for $f^{-1}(x)$.
(ii) Write down the domain of $f^{-1}(x)$.
(d) Solve $\frac{4}{(x-1)^{2}}>1$.
(e) Find $\int \frac{\ln x}{2 x} d x$ using the substitution $u=\ln x$.
(a) Find the term independent of x in the expansion of $\left(2 x+\frac{1}{x^{2}}\right)^{6}$.
(b) (i) Show that $\tan x=\frac{\sin 2 x}{1+\cos 2 x}$.
(ii) Hence evaluate $\tan \frac{\pi}{12}$ in simplest form.
(c) Prove by mathematical induction that $8^{n}-3^{n}$ is divisible by 5 , where n is a positive integer.

Question 12 continues on page 8.

(d)

In the diagram above, the points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola with equation $x^{2}=4 a y$.
(i) Write down the coordinates of the midpoint M of the chord $P Q$.
(ii) Show that the equation of the chord $P Q$ is $y=\frac{(p+q) x}{2}-a p q$.
(iii) Show that the condition for the chord $P Q$ produced to pass through the point $A(a, 0)$ is $p+q=2 p q$.
(iv) Find the cartesian equation of the locus of M, as the points P and Q move on the parabola subject to the constraint that $P Q$ pass through $A(a, 0)$.
(a) Find the acute angle between the tangents on the curve $y=\tan ^{-1} x$ at the points where $x=0$ and $x=1$. Answer correct to the nearest degree.
(b) During a chemical reaction, the amount, $R \mathrm{~kg}$, of chemical formed at time t hours is modelled by the differential equation

$$
\frac{d R}{d t}=4-\frac{R}{15} .
$$

(i) Show that $R=60-50 e^{\frac{-t}{15}}$ is a solution to $\frac{d R}{d t}=4-\frac{R}{15}$.
(ii) How long will it take for 20 kg of the chemical to form?

Give your answer correct to 2 significant figures.
(c) In the figure below, $B D$ is a diameter of the circle $A B C D$.

If $A B=A C$ and $\angle B D C=36^{\circ}$, find $\angle A B D$.

Question 13 continues on page 10.
(d) A thin sheet of smooth metal is in the shape of a sector of a circle with $O A, O B$ as bounding radii each of length 10 cm , and the angle $A O B$ is 60°.
(i) Find the length of the arc $A B$.
(ii) The sheet is now bent to form a right circular cone by welding the radii $O A$ and $O B$ together (and inserting a circular disc to close in the cone at the base).

(α) Find the volume of the cone in terms of π.
(Note: The volume of a right circular cone is, $\frac{1}{3} \pi r^{2} h$.)
(β) On the surface of this cone a thin string is pulled tight starting with one end fixed at the point A and passing once round the cone to the other end P which is at the midpoint of $O A$ (as shown in diagram).

Find the exact length of this string.

End of Question 13

(a) Solve $\sin x-3 \cos x=3$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(b) A projectile is fired from a point O with initial speed of $\mathrm{V} \mathrm{m} / \mathrm{s}$ at an angle of elevation θ. If x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds later then
$x=V t \cos \theta$ and $y=V t \sin \theta-\frac{1}{2} g t^{2}$ where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity.
The projectile falls to a point P below the level of O such that $P M=O M$.

(i) Prove that the time taken to reach P is $2 V \frac{(\sin \theta+\cos \theta)}{g}$ seconds.
(ii) Show that the distance $O M$ is

$$
\frac{V^{2}}{g}(\sin 2 \theta+\cos 2 \theta+1) \text { metres }
$$

(iii) If $O S=r, O M=\frac{4 r}{3}$ and $r>0$, prove that $\sin 2 \theta-3 \cos 2 \theta=3$.
(iv) Hence, by using Question 14 part (a), find the value of θ.
(v) Find an expression for the horizontal and vertical components of the velocity.
(vi) If the magnitude of the velocity of the projectile at P is $\mathrm{kV} \mathrm{m} / \mathrm{s}$, find the exact value of k.

End of Paper

1. B
2. A
3. D
4. D
5. B
6. C
7. B
9
8. D
$10 A$

$$
\text { Q. } \begin{align*}
\frac{f(x)}{f(x)} & =x^{4}+x^{2}-80 \\
f^{\prime}(x) & =4 x^{3}+2 x \\
x_{2} & =3-\frac{f(3)}{f^{\prime}(3)} \\
& =3-\frac{3^{4}+3^{2}-80}{4 \times 3^{3}+2 \times 3} \tag{2}\\
& =2.912 \\
& =2.9
\end{align*}
$$

b) $-\hat{i}$ In $\triangle A P T$;

$$
\begin{align*}
\tan 25^{\circ} & =\frac{h}{P A} \\
P A & =h \cot 25^{\circ} \tag{1}
\end{align*}
$$

iii) In $\triangle B P T$;

$$
\begin{aligned}
\tan 32^{\circ} & =\frac{h}{P B}
\end{aligned}
$$

$$
P B=h \cot 32^{\circ}
$$

In $\triangle A P B=$

$$
\begin{aligned}
50^{2} & =\left(h \cot 25^{\circ}\right)^{2}+\left(h \cot 32^{\circ}\right)^{2} \\
h^{2} & =\frac{\left(0^{2}\right.}{\cot ^{2} 25^{\circ}+\cot ^{2} 32^{\circ}} \\
& =349.16
\end{aligned}
$$

$$
h=18.68 \cdots \quad(h \text { is a height of tower })
$$

$$
=18.7 \mathrm{~m}
$$

c) $f(x)=\frac{3 x-4}{x+2}$
i)

$$
\begin{gather*}
x=\frac{3 y-4}{y+2} \\
x y+2 x=3 y-4 \\
x y-3 y=-4-2 x \\
3 y-x y=2 x+4 \\
y=\frac{2 x+4}{3-x} \\
f^{-1}(x)=\frac{2 x+4}{3-x} \tag{2}
\end{gather*}
$$

ii) Domain : all real $x=x \neq 3$.
d) $\frac{4}{(x-1)^{2}} \rightarrow 1+x \neq 1$

$$
\begin{aligned}
& 4>x^{2}-2 x+1 \\
& x^{2}-2 x-3<0 \\
& (x-3)(x+1)<0 \\
& -1<x<3 \\
& \therefore-1<x<3 \text { except } x=1
\end{aligned}
$$

e)

$$
\begin{array}{ll}
& \int \frac{\ln x}{2 x} d x \\
= & \frac{1}{2} \int \ln x \cdot \frac{1}{x} d x \\
= & \frac{1}{2} \int u=\ln x \\
= & \frac{1}{2}\left(\frac{1}{2} u^{2}\right)+C \\
= & \frac{1}{4} u^{2}+C \\
= & \frac{1}{4}(\ln x)^{2}+C
\end{array}
$$

Q 12

$$
\begin{aligned}
\text { a) } & \left(2 x+\frac{1}{x^{2}}\right)^{6} \\
= & \sum_{r=0}^{6} C_{r}(2 x)^{r}\left(x^{-2}\right)^{6-r}
\end{aligned}
$$

Term in dependent of x

$$
\begin{aligned}
& ={ }^{6} C_{4}(2 x)^{4}(x-2)^{2} \\
& ={ }^{6} C_{4} \cdot 2^{4} \\
& =240
\end{aligned}
$$

b) is

$$
\begin{align*}
\text { RUS } & =\frac{\sin 2 x}{1+\cos 2 x} \\
& =\frac{2 \sin x \cos x}{1+2 \cos ^{2} x-1} \\
& =\frac{2 \sin x \cos x}{2 \cos ^{2} x} \\
& =\frac{\sin x}{\cos x} \\
& =\tan x \tag{2}\\
& =\text { HS }
\end{align*}
$$

ii) $\tan \frac{\pi}{12}$

$$
\begin{align*}
& =\frac{\sin \frac{\frac{\pi}{6}}{1+\cos \frac{\pi}{6}}}{\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}} \\
& =\frac{\frac{1}{2}}{\frac{\sqrt{3}+2}{2}} \\
& =\frac{1}{\sqrt{3}+2} \\
& =2-\sqrt{3}
\end{align*}
$$

c) Let the statement be $8^{n}-3^{n}=5 P$ where p is an integer.
When

$$
8^{n}=1=3^{1}=8-3
$$

$$
=5 \text { which is divisible by } 5 \text {. }
$$

- Assume the statement is true for $n=k$;

$$
\text { ie. } 8^{k}-3^{k}=5 P \Rightarrow 8^{k}=5 P+3^{k}
$$

Prove that the statement is true for $n=k+1$; ie. Prove that $8^{k+1}-3^{k+1}=5 Q$ where Q is an integer.

$$
\begin{aligned}
\text { LHS } & =8 k+4-3^{k+1} \\
& =8\left(8^{k}\right)-3^{k+1} \\
& =8\left(5 P+3^{k}\right)-3\left(3^{k}\right) \text {; from * } \\
& =5 \cdot 8 P+3^{k}-3 \cdot 3^{k} \\
& =5 \cdot 8^{k}+3^{k} \text {. since Pis an integer, } 8 P \text { is e } \\
& =5\left(8 P+3^{k}\right) \text {; since his positiverateger } 3^{k} \text { in } \\
& =5 Q \quad ; \quad \text { is also an integer. }
\end{aligned}
$$

Since the statement is true for $n=1$, assume true for $n=k$ and proved true for $n=k$. so the statement is true for $n=1+1=2$, $n=2+1=3, \cdots, \therefore$ the statement is true for all positive integers of n.

1 for intro, * and conclusion
for case $n=1$
for correct steps showing $8^{k+1}-3^{k+1}=5 Q, Q$ an integer
d) is Midpoint M of $P Q$

$$
\begin{align*}
& =\left(\frac{2 a p+2 a q}{2}, \frac{a p^{2}+a q^{2}}{2}\right) \\
& =\left(a p+a q, \frac{a p^{2}+a q^{2}}{2}\right) \tag{1}
\end{align*}
$$

ii)

$$
\begin{aligned}
m_{P Q} & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q} \\
& =\frac{a(p+q)(p-q)}{2 a(p-q)} \\
& =\frac{1}{2}(p+q)
\end{aligned}
$$

Equation of chord $P Q$ is

$$
\begin{align*}
& \frac{p+q}{2}=\frac{y-a p^{2}}{x-2 a p} \\
& \frac{(p+q) x-2 a p\left(\frac{p+q}{2}\right)}{2}=y-a p^{2} \\
& \frac{(p+q) x}{2}-\left(a p^{2}+a p q\right)+a p^{2}=y \tag{2}\\
& \left.y=\frac{(p+q) x}{y=\frac{(p+q) x}{2}-a p^{2}-a p q+a p^{2}}\right]
\end{align*}
$$

iii) If chord $P Q$ passes through $A(a, 0)$,
then $0=\frac{1}{2} a(p+q)-a p q$

$$
\begin{align*}
\frac{1}{2} a(p+q) & =a p q \tag{1}\\
\frac{1}{2}(p+q) & =p q \\
p+q & =2 p q
\end{align*}
$$

iv)

$$
\begin{aligned}
& p+q=2 p q \\
& x_{M}=a p+a q \\
& x_{M}=a(p+q) \\
& x_{M}=2 a p q \\
& y_{M}=\frac{1}{2} a\left(p^{2}+q^{2}\right) \\
&=\frac{1}{2} a\left[(p+)^{2}-2 p q\right] \\
&=\frac{1}{2} a(p+q)^{2}-a p q \\
&=\frac{1}{2 a}\left[a^{2}(p+q)^{2}\right]-a p q \\
&=\frac{1}{2 a}\left(x_{M}\right)-\frac{1}{2} x_{M} \\
& 2 a y=x^{2}-a x \\
& x^{2}-a x-2 a y=0
\end{aligned}
$$

\qquad

Q13
a) $y=\tan ^{-1} x$

$$
y^{\prime}=\frac{1}{1+x^{2}}
$$

$m_{1}=\frac{1}{1+0^{2}}=1 ; m$ of tangent at $x=0 \quad 1$
$m=\frac{1}{1+1^{2}}=\frac{1}{2} ; m$ of tangent at $x=1$

$$
\tan \theta=\frac{1-\frac{1}{2}}{1+(1)\left(\frac{1}{2}\right)}
$$

$$
\tan \theta=\frac{1}{3}
$$

The acute angle, $\theta=18.43 \cdots$

$$
\text { b) i) } \begin{align*}
R & =60-50 e^{\frac{-t}{15}}=18^{\circ} \\
\frac{d R}{d t} & =0-50\left(\frac{-t}{15} e^{\frac{-t}{15}}\right) \\
& =\frac{1}{15}\left(50 e^{\frac{-t}{15}}\right) \\
& =\frac{1}{15}(60-R) \\
& =4-\frac{R}{15} \\
20 & =60-50 e^{\frac{-t}{15}} \\
-40 & =-50 e^{\frac{-t}{15}} \\
\frac{-t}{15} & =\ln \frac{4}{5} \\
t & =-15 \ln \frac{4}{5} \\
& =3.347 \\
& \sim 3.3 \operatorname{lin}
\end{align*}
$$

c) $\angle B A C=\angle B D C$ ($\begin{aligned} & \text { angles at the circumference } \\ & \text { standing on the }\end{aligned}$
c) $\begin{aligned} \angle B A C & =\angle B D C \quad\binom{\text { angles a the circumference }}{\text { standing on the same chard } B C}_{A} \\ & =36^{\circ}\end{aligned}$

$$
\begin{align*}
& \angle A C B+\angle A B C+\angle B A C=180^{\circ} \\
& 2 \angle A C B+36^{\circ}=180^{\circ} \quad \text { angles sun } \\
& \angle A C B=72^{\circ} \\
& \angle D C A=\angle D B A \text { (angles at the circiunfincic) } \\
& F^{\angle L D C B}=90^{\circ} \text { (angles at the circumference } \\
& \text { in a semicircle } \\
& 1 \angle D C A+\angle A C B=\angle D C B \text { (adjacent angles) } \\
& \angle D B A+72^{\circ}=90^{\circ} \\
& \angle D B A=90^{\circ}-72^{\circ} \\
& =18^{\circ} \tag{3}
\end{align*}
$$

-2
(d) is

$$
\begin{aligned}
\angle A O B & =\frac{60^{\circ}}{} \\
& =\frac{\pi}{3}
\end{aligned}
$$

-2
Length of arc $A B$

$$
\begin{align*}
& =10 \times \frac{\pi}{3} \\
& =\frac{10 \pi}{3} \mathrm{~cm} \tag{0}
\end{align*}
$$

ii) $\alpha)$ Let r be the radius of the cone and h be the height of the cone.

$$
\begin{aligned}
2 \pi r & =\frac{10 \pi}{3} \\
r & =\frac{5}{3} \mathrm{~cm} \\
h & =\sqrt{10^{2}-\left(\frac{5}{3}\right)^{2}} \\
& =\frac{5 \sqrt{35}}{3} \mathrm{~cm}
\end{aligned}
$$

Volume of cone

$$
\begin{aligned}
& \text { Volume of cone } \\
&=\frac{1}{3} \times \pi \times\left(\frac{5}{3}\right)^{2} \times \frac{5 \sqrt{35}}{3} \\
&= \frac{125 \sqrt{35} \pi}{81} \mathrm{~cm}^{3}
\end{aligned}
$$

p) In $\triangle B P O$;

$$
\begin{aligned}
P B^{2} & =5^{2}+10^{2}-2(5)(10)\left(\cos 60^{\circ}\right) \\
& =125-100 \times \frac{1}{2} \\
& =75 \\
P B & =\sqrt{75} ; P B \text { is a length so } \\
& =5 \sqrt{3}
\end{aligned}
$$

\therefore Length of string, $P B=5 \sqrt{3} \mathrm{~cm}$.

1- correct set up
2- correct set up and acute so 1"
Q 14
3- All correct
a) $\sin x-3 \cos x=3$

0

$$
\begin{aligned}
& \sqrt{10} \sin (x-\theta)=3, \tan \theta=3 \Rightarrow \theta \pm 71.56 \\
& \sin (x-\theta)=\frac{3}{\sqrt{10}}, 2-\theta \leq x-\theta \leq 360^{\circ}-\theta \\
& x-\theta=71.56 \cdots \text { or } x-\theta=180^{\circ}-71.56 \cdots \\
& x=143.13 \cdots \text { or } x=180^{\circ} \\
& \therefore x=143^{\circ} \text { OR } 180^{\circ} \text { (nearest degree) }
\end{aligned}
$$

b)

$$
\begin{aligned}
& x=v t \cos \theta \\
& y=v t \sin \theta-\frac{1}{2} g t^{2}
\end{aligned}
$$

i) Since $P M=O M$, at $P x=-y$;

$$
\begin{aligned}
& v t \cos \theta=\frac{1}{2} g t^{2}-v t \sin \theta \\
& \frac{1}{2} g t^{2}=v t(\cos \theta+\sin \theta) \\
& t=0 \quad \text { or } \frac{1}{2} g t=v(\sin \theta+\cos \theta)
\end{aligned}
$$

However at $P, t \neq 0$;

$$
\begin{align*}
\frac{1}{2} g t & =v(\sin \theta+\cos \theta) \tag{1}\\
t & =\frac{2 v(\sin \theta+\cos \theta)}{9}
\end{align*}
$$

ii)

When $t=\frac{2 v(\sin \theta+\cos \theta)}{9}$,

$$
\begin{align*}
&-x=\frac{V \cos \theta \cdot 2 v(\sin \theta+\cos \theta)}{9} \tag{1}\\
&=\frac{V^{2}}{9}\left(2 \sin \theta \cos \theta+2 \cdot \cos ^{2} \theta\right) \\
&=-\frac{V^{2}}{9}(\sin 2 \theta+\operatorname{sos} 2 \theta+1) \\
& 3 \sin 2 \theta=\sin \theta \cos 2 \theta \\
& \Rightarrow 2 \cos ^{2} \theta \\
& 2 \cos ^{2} \theta=\cos
\end{align*}
$$

iii) $O S=r$
\Rightarrow when $y=0 ; x=r$

$$
\begin{align*}
v t \sin \theta-\frac{1}{2} g t^{2} & =0 \\
t\left(v \sin \theta-\frac{1}{2} g t\right) & =0 \\
\frac{1}{2} g t & =\frac{V \sin \theta}{2 t}=t \neq 0 \tag{1}
\end{align*}
$$

When $t=\frac{2 v \sin \theta}{9}$,

$$
\begin{gather*}
x=\frac{v \cos \theta-\frac{2 v \sin \theta}{9}}{}=r \\
\frac{2 v^{2} \sin \theta \cos \theta}{9}=r \tag{1}\\
\frac{v^{2} \sin 2 \theta}{9}=r
\end{gather*}
$$

$$
O M=\frac{4 r}{3}=\frac{r^{2}}{9}(\sin 2 \theta+\cos 2 \theta+1) \text {, from ii }
$$

$$
\frac{4 v^{2} \sin 2 \theta}{3 g}=\frac{v^{2} \sin 2 \theta}{9}+\frac{v^{2}}{9}(\cos 2 \theta+1) \text {; fro }
$$

$$
\frac{v^{2} \sin 2 \theta}{3 g}=\frac{v^{2}}{g}(\cos 2 \theta+1)
$$

$$
\frac{\sin 2 \theta}{3}=\cos 2 \theta+1
$$

$$
\sin 2 \theta=3 \cos 2 \theta+3
$$

$$
\begin{equation*}
\sin 2 \theta-3 \cos 2 \theta=3 \tag{3}
\end{equation*}
$$

$-\int i v$

$$
\begin{align*}
2 \theta & =143.13 \cdots \text { OR } 180^{\circ} \tag{1}\\
\theta & =71.56 \cdots \text { OR } 90^{\circ}
\end{align*}
$$

However θ is the angle of elevation and the projectile is not fired vertically, $0^{\circ}<\theta<$

$$
\therefore \theta=71.56 \cdots
$$

(1) Explanation and exclusion
v) $x=v t \cos \theta \Rightarrow \dot{x}=v \cos \theta$

$$
\begin{aligned}
& x=v t \cos \theta \Rightarrow x=v \cos \theta \\
& y=v t \sin \theta-\frac{1}{2} g t^{2} \Rightarrow y=v \sin \theta-g t
\end{aligned}
$$

vi) From (a), $\tan \theta=3$

$$
\begin{align*}
& \Rightarrow \sin \theta=\frac{3}{\sqrt{10}} \\
& \therefore \cos \theta=\frac{1}{\sqrt{10}} \tag{1}\\
& \dot{x}=\frac{V}{\sqrt{10}} \text { and } \dot{y}=\frac{3 v}{\sqrt{10}}-g\left(\frac{2 v}{g}(\sin \theta+\cos t\right. \\
& \dot{y}=\left(\frac{3}{\sqrt{10}}-\frac{6}{\sqrt{10}}-\frac{2}{\sqrt{10}}\right) v \\
& =\frac{-5 v}{\sqrt{10}} \tag{1}\\
& (\text { Velocity })^{2}=\dot{x}^{2}+\dot{y}^{2}=(k v)^{2} \\
& \left(\frac{y}{\sqrt{10}}\right)^{2}+\frac{\left(-\frac{5 v}{\sqrt{10}}\right)^{2}}{26 \sqrt{2}}=k^{2} v^{2} \tag{1}\\
& \begin{aligned}
\frac{26 v^{2}}{10} & =k^{2} v^{2} \\
k & =\sqrt{13}
\end{aligned} \\
& \text { from } \\
& \begin{array}{l}
\text { since menascituded } \\
=k v, k>0
\end{array}
\end{align*}
$$

