Mr Antonio Mrs Collett Mrs Israel Mrs Kerr Mrs Williams

Name:	 	
Teacher:	 	

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

2014

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-14. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-14, show relevant mathematical reasoning and/or calculations.

Total Marks – 70

Section I

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Pages 1-4

Section II

II Pages 5-11

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Mark	/70
Highest Mark	/70
Rank	

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section.

Use the multiple choice answer sheet for Questions 1-10.

1 The roots of the equation $x^3 - 5x^2 + 4 = 0$ are α, β and γ .

The value of $\alpha + \beta + \gamma$ and the value of $\alpha\beta\gamma$ are respectively.

- (A) 5 and 4
- (B) 5 and -4
- (C) -5 and 4
- (D) -5 and -4

2 Evaluate
$$\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$$
.

(A) $\frac{4\pi}{3}$ (B) $\frac{\pi}{3}$ (C) $\frac{-2\pi}{3}$ (D) $\frac{-\pi}{3}$

3 When the polynomial $P(x) = x^4 + ax + 2$ is divided by $x^2 + 1$ the remainder is 2x + 3. The value of a is

- (A) 1
- (B) 2
- (C) 0
- (D) 3

- Given the points A (7, 14) and B (1, 2), C is a point on AB produced such that AB: BC = 2:1.
 Find the coordinates of C.
 - (A) (-5, -10)
 - (B) (-2, -4)
 - (C) (3, 6)
 - (D) (5, 10)

5 Find
$$\int \frac{1}{\sqrt{1-3x^2}} dx$$
.
(A) $3\sin^{-1}(3x) + C$
(B) $\frac{1}{3}\sin^{-1}(3x) + C$
(C) $\sqrt{3}\sin^{-1}(\sqrt{3}x) + C$
(D) $\frac{1}{\sqrt{3}}\sin^{-1}(\sqrt{3}x) + C$

6 Evaluate
$$\int_{0}^{\frac{\pi}{6}} \sin^{2}\theta \, d\theta$$
.
(A)
$$\frac{\pi}{12} - \frac{\sqrt{3}}{8}$$

(B)
$$\frac{\pi}{6} - \frac{\sqrt{3}}{4}$$

(C)
$$\frac{1}{24}$$

(D) 1

7 The figure on the right shows the graph of y = f(x).

If 2f(x) = g(x), which of the following may represent the graph of y = g(x)?

8 If $\int_{-a}^{a} f(x) dx = 0$, then which one of the following statements is false?

(A) f(x) is an odd function

(B)
$$\int_{0}^{a} f(x) dx = \int_{-a}^{0} f(-x) dx$$

(C)
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

(D) The area bounded by the curve y = f(x), the x axis and the lines x = a and x = -a is twice the area bounded by the curve y = f(x), the x axis and the lines x = 0 and x = a.

9 For
$$0^\circ \le \theta \le 90^\circ$$
, the least value of $\frac{30}{3\sin^2\theta + 2\sin^2(90^\circ - \theta)}$ is

- (A) 5
- (B) 6
- (C) 10
- (D) 15

10 Given *n* is an integer, the general solution of $\tan\left(2x + \frac{\pi}{4}\right) = \sqrt{3}$ is

(A)
$$x = \frac{(12n+1)\pi}{24}$$

(B) $x = \frac{(3n+1)\pi}{6}$
(C) $x = \frac{(12n-1)\pi}{24}$
(D) $x = \frac{(6n+1)\pi}{6}$

Section II

60 marks Attempt Questions 11-14 Allow about 1 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks). Use a Separate Booklet.			Marks
(a)	Give Assu appro	In $f(x) = x^4 + x^2 - 80$. Imme there is a zero near $x = 3$. Use Newton's method once to find a better oximation to the root correct to 2 significant figures.	2
(b)	From the a towe east o The o Let th	In a point A due south of a tower, TP , ingle of elevation of the top of the r, T is 25° and from a point B due of the tower is 32°. distance from A to B is 50 metres. the height of tower TP be h metres. He height of tower TP be h metres.	
	(i) Copy the diagram in your answer booklet and complete with all given information.		1
	(ii)	Find an expression for <i>PA</i> in terms of <i>h</i> .	1
	(iii)	Find the height of the tower, h, correct to 1 decimal place.	3

Question 11 continues on page 6.

Question 11 (continued).

- (i) Find an expression for $f^{-1}(x)$. 2
- (ii) Write down the domain of $f^{-1}(x)$.

(d) Solve
$$\frac{4}{(x-1)^2} > 1$$
.

(e) Find
$$\int \frac{\ln x}{2x} dx$$
 using the substitution $u = \ln x$.

End of Question 11

2

Question 12. (15 marks) Use a Separate Booklet.

(a) Find the term independent of x in the expansion of $\left(2x + \frac{1}{x^2}\right)^6$. 2

(b) (i) Show that
$$\tan x = \frac{\sin 2x}{1 + \cos 2x}$$
.

(ii) Hence evaluate
$$\tan \frac{\pi}{12}$$
 in simplest form.

(c) Prove by mathematical induction that $8^n - 3^n$ is divisible by 5, where *n* is a positive integer.

Question 12 continues on page 8.

Marks

2

2

In the diagram above, the points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola with equation $x^2 = 4ay$.

(i) Write down the coordinates of the midpoint M of the chord PQ. 1

(ii) Show that the equation of the chord PQ is
$$y = \frac{(p+q)x}{2} - apq$$
. 2

- (iii) Show that the condition for the chord PQ produced to pass through the point A(a,0) is p+q=2pq.
- (iv) Find the cartesian equation of the locus of M, as the points P and Q move on the parabola subject to the constraint that PQ pass through A(a,0).

End of Question 12

(a) Find the acute angle between the tangents on the curve $y = \tan^{-1} x$ at the points 2 where x = 0 and x = 1. Answer correct to the nearest degree.

(b) During a chemical reaction, the amount, R kg, of chemical formed at time t hours is modelled by the differential equation

$$\frac{dR}{dt} = 4 - \frac{R}{15}.$$

(i) Show that
$$R = 60 - 50e^{\frac{-t}{15}}$$
 is a solution to $\frac{dR}{dt} = 4 - \frac{R}{15}$. 2

- (ii) How long will it take for 20 kg of the chemical to form? Give your answer correct to 2 significant figures.
- (c) In the figure below, *BD* is a diameter of the circle *ABCD*. If AB=AC and $\angle BDC = 36^{\circ}$, find $\angle ABD$.

Question 13 continues on page 10.

Marks

3

- (d) A thin sheet of smooth metal is in the shape of a sector of a circle with OA, OB as bounding radii each of length 10 cm, and the angle AOB is 60° .
 - (i) Find the length of the arc AB.
 - (ii) The sheet is now bent to form a right circular cone by welding the radii OA and OB together (and inserting a circular disc to close in the cone at the base).

(α) Find the volume of the cone in terms of π .

(Note: The volume of a right circular cone is, $\frac{1}{3}\pi r^2 h$.)

(β) On the surface of this cone a thin string is pulled tight starting with one end fixed at the point A and passing once round the cone to the other end P which is at the midpoint of OA (as shown in diagram).

Find the exact length of this string.

End of Question 13

1

3

- (a) Solve $\sin x 3\cos x = 3$ for $0^\circ \le x \le 360^\circ$.
- (b) A projectile is fired from a point O with initial speed of V m/s at an angle of elevation θ . If x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds later then

 $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{1}{2}gt^2$ where $g \text{ m/s}^2$ is the acceleration due to gravity. The projectile falls to a point *P* below the level of *O* such that PM = OM.

(i) Prove that the time taken to reach P is $2V \frac{(\sin \theta + \cos \theta)}{g}$ seconds.

(ii) Show that the distance *OM* is $\frac{V^2}{g} (\sin 2\theta + \cos 2\theta + 1) \text{ metres.}$

(iii) If
$$OS = r$$
, $OM = \frac{4r}{3}$ and $r > 0$, prove that $\sin 2\theta - 3\cos 2\theta = 3$.

- (iv) Hence, by using Question 14 part (a), find the value of θ .
- (v) Find an expression for the horizontal and vertical components of the velocity.
- (vi) If the magnitude of the velocity of the projectile at P is kV m/s, find the exact 3 value of k.

End of Paper

2

1

1

3. B 4. B 9. C 2. L.B $\mathcal{D}_{\mathcal{A}}$ 5.D 7. D. 8. C. 6.A 10 A Oa) $f(\chi) = \chi^4 + \chi^2 - 80$ f'(x) = 4x3 + 2x $\chi_{z} = 3 - \frac{f(3)}{f'(3)}$ $= 3 - \frac{3^4 + 3^2 - 80}{4 \times 3^3 + 2 \times 3}$ = 2.912... = 2.9 by in In AAPT; īj PA $PA = h cot 25^{\circ}$ $\frac{1}{100} I_n \triangle BPT_3$ $\frac{1}{100} \frac{1}{100} \frac{1}{100}$ $PB = h \cot 32$ $I_{A} \triangle APB = ($ (h cot 25°)² + (h cot 32°)² 1 h = - $= \frac{50^{-1}}{\cot^2 25^\circ + \cot^2 32^\circ}$ 50 1 = 349.16 (h is a height of tower so h > 0 = 18.68 h. 18.7 m

c) $f(x) = \frac{3x-4}{x+2}$ $\chi = \frac{3y - 4}{y + 2}$ 3) xy + 2x = 3y - 4 xy - 3y = -4 - 2x 3y - xy = 2x + 4 $y = \frac{2\chi + 4}{3 - \chi}$ $f^{-1}(\chi) = \frac{2\chi + 4}{3 - \chi}$ ii) Domain = all real X ; X = 3 4____; X = ds $(\chi - 1)^{2}$ $4 > \chi^{2} - 2\chi + 1$ $\chi^{2} - 2\chi - 3 < 0$ $(\chi - 3)(\chi + 1) < 0$ $-1 < \chi < 3$ $i', -1 < \chi < 3$ except $\chi = 1$. 5 U = 1~X $e \int \frac{\ln \chi}{2\chi} d\chi$ $du = \frac{1}{x} dx$ $= \frac{1}{2} \int ln \chi \cdot \frac{1}{\chi} d\chi$ $= \frac{1}{2} \int u \, du$ = $\frac{1}{2} \left(\frac{1}{2} u^{2} \right) + C$ = $\frac{1}{4} \left(\frac{1}{4} x^{2} \right)^{2} + C$ = $\frac{1}{4} \left(\frac{1}{4} x^{2} \right)^{2} + C$

() 1226) as $(2x + \frac{1}{x})$ $= \sum_{r=0}^{6} C_{r} (2x)^{r} (x^{-2})^{6-r}$ Term in dependent of X = $6C_4 (2X)^4 (-X^{-2})^2$ = $6C_4 \cdot 2^4$ = 240 ł b) i) $RHS = \frac{\sin 2x}{1 + \cos 2x}$ = 25in X cos X $1 + 2\cos^{2}\chi - 1$ $= 2 \sin \chi \cos \chi$ 2 cos2 x - ----= <u>Sin X</u> COSX - $= \tan x$ = LHS tan TI . 5+1 to 1+ cost 1 1+ 13 V3+2 Z 13+2 $2 - \sqrt{3}$. L

c) het the statement be 8°-3° = 5P where P is an integer. When $n = 1_{\overline{3}} = 3_{\overline{3}} =$ 5 which is divisible by 5. Assume the statement is true for n = k; i.e. $8^{k} - 3^{k} = 5P \Rightarrow 8^{k} = 5P + 3^{k}$ Prove that the statement is true for n=k+1; i.e. prove that 8^{k+1} - 3^{k+1} = 5Q where Q is an integet. LHS = $8^{k+p} - 3^{k+1}$ LHS $= 8(8^{k}) - 3^{k+1}$ = 8 (5P + 3*) - 3(3*); from * $= 5.8P + 8.3^{k} - 3.3^{k}$ = 5.8P + 5.3K Since Pis an integer, 8Pise = 5 (8P+3k); since this apositive bateger, 3kis = 5Q ; Q = 8P+ 3t is also an integer Since the statement is true for n = 1, assume true for n=k and proved true for n=k-So the statement is true for n= 1+1=2, n = 2 + 1 = 3, ..., i, the statement is true for all positive integers of n. 1 for intro, # and conclusion 1 for case n=1 1. For correct steps showing 8^{k+1}-3^{k+1}=50, Qan integer

ds is Midpoint M of PQ $= \left(\frac{2ap + 2aq}{2}, \frac{ap^2 + aq^2}{2} \right)$ = $\left(ap + aq\right), \frac{ap^2 + aq^2}{2}$ ii) $M_{PQ} = -\frac{aP^2 - aq^2}{aq^2}$ 2ap - 2aq = a(p+q)(p-q)2a(p-q)= = (p+q) Equation of chord PQ is $\frac{p+q}{2} = \frac{y-ap^2}{y}$ X-2ap $\left(\frac{P+q}{2}\right)X - 2ap\left(\frac{P+q}{2}\right)' = y - ap^{2}$ $\frac{(p+q)\chi}{2} - (ap^2 + apq) + ap^2 = 4$ $\frac{(p+q)\chi}{\sqrt{2}} - ap^2 - apq + ap^2 J$ ____γ___ 2 <u>(p+q)-x</u> - apq = iii) If chord PQ passes through A (a, 0), then $O = \frac{1}{2}a(p+q) - apq \int O$ $\frac{1}{2}a(p+q) = apq$ $\frac{1}{2}(p+q) = pq$ -P+q==2pq $\chi_{\rm M} = ap + aq$ $X_{\rm M} = a\left(p+q\right)$ $n_{H} = 2apq$ = 2pq $y_{n} = \pm a(p^2 + q^2)$ $= \frac{1}{2a} \left[\left(p + q \right)^{2} - 2pq \right]$ = $\frac{1}{2a} \left(p + q \right)^{2} - apq$ = $\frac{1}{2a} \left[a^{2} \left(p + q \right)^{2} \right] - apq$ = $\frac{1}{2a} \left[x_{M} \right]^{2} - \frac{1}{2} x_{M}$ $2ay = \chi^2 - a\chi$ $\chi^2 - a\chi - 2ay = 0$

13 \bigcirc $y = t_{a_n} \dot{X}$ ar $y' = \frac{1}{1 + \chi}$ 1 ; m of tongent at X = 0 1 2 ; m of tangent at X = 1 2 m. = 1+12 = $M \sim$ = $=\frac{1-\frac{1}{2}}{1+(1)(\frac{1}{2})}$ tan O tan 0 =The acute angle, 0 = 18.43 = 18 b) i) R = 60 - 50e⇒ 50e===== 60 - R $\frac{dR}{dt} = 0 = 5$ $(\frac{-1}{15}e$ (50e 苦) -) = 15 $= \frac{1}{15}$ (60-R) 1 $= 4 - \frac{R}{15}$ ii) 20 = 60 - 50 e^{\frac{-15}{15}} $-40 = -50e^{\frac{-15}{15}}$ (2) = lo - 15 h 3.347 ... 3.3 hours ٨J

LBDC (angles at the circumference) 36° C), LBAC = 2 LACB = LABC (angles opposite equal sides) LACB = LABC (AB and AC in isosceles dABC)36 LACB + LABC + LBAC = 180°(1) 2 LACB + 36° = 180° of ABC LACB LDCA = LDBA (standing with LDCB = 90° (angles at the FLDCB LDCA + LACB = LDCB (adjacent angles 2° LDBA+ 9 7 90°- $\angle DBA =$ 72

0 LAOB da Ξ 17 60 of arc AB ength XI = 10 3 ii, x) of the radius CONC et. be 0 be the height of the cone a٨ 2 = 10 C.M h 10 5 35 -m ٣ 3 Volume cone of <u>চ √ য্</u>চ 15 2 x. Ξ ኦ X (35 Ž 25 $\sqrt{}$ 81 B) 6) In R 62 \mathcal{P} Б 2 PB 10) (Cos 60 -5 11 (ち ົວ 125 - 100 11 Ξ x 75 = PB is a length so PB > 0, PB = -PB = 5 JAE 5 ٦ = Length of string, PB , , = 5 3

1 - correct set up 2 - Correct set up and acute sol Q 14 3 - All Correct Sin X -3 cos X = 3 a) VIO sin (X-0) = 3 ; tan0=3 ≥ 0 = 71.56 Sin (X-0 $= \frac{3}{\sqrt{10}} 2 - \Theta \leq \chi - \Theta \leq 360^{\circ} - \Theta$ X-0 = 71.56 ... OR X-0 = 180°-71.56 ... X = 143.13 -- OR X = 180° i. X = 143° or 180° (nearest degree) (3) b) [X=VtcosO] $y = Vtsin\theta - \frac{1}{2}gt^2$ in Since PM = OM, at P X = - 4 $Vtcos \Theta = \frac{1}{2}gt^2 - Vtsin \Theta$ $\frac{1}{2}qt^2 = Vt(cos0 + sin0)$ t = 0 or $\frac{1}{2}qt = V(sin\theta + cos\theta)$ However at P, t = 0; = gt = V (sin O + cos O) 2V (5:10 + COSO ______ is When t = 21(sin0+cos0) VCOSO - 2V (S: nO + COSO $\frac{\sqrt{2}}{9} \left(2\sin\theta\cos\theta + 2\cos^2\theta\right)$ 51120= (sin 20 + cos 20 + 1) ; 2 sind cos 20 =2 cos 20 -=> 200370 = 003 $\frac{1}{100} OS = r$ When y = 0 , ^\ = 5 $-\frac{1}{2}qt^{2}=0$ Vt sin O t (VS:n0 - 2qt) = 0 $\frac{1}{2} \frac{gt}{dt} = \frac{V \sin \theta}{2V \sin \theta}; t \neq 0$ $t = \frac{2V \sin \theta}{q}$ (١

When t = VSINO VCOS ベ = - 5 2v2 sin Q cos Q 9 V² 5: 1 20 <u>7</u> 9 fromin 5:n 20 + cos 20+1 $\cap M$ ~ 5:020 A20 cos 20+ fron 39 12 5in 20 Cos 20++ 9 39 Tying toget Cos 20 <u>: sin20 =</u> Sin 20 = 3 cos 20 Sin 20 - 3 cos 20 `S 20 = 143.13~ 180 115 OR 71.56 ---0 (\mathbf{i}) = DR 90 However O is the angle of elevation and the projectile is not fired vertically, 0°<04 0= 71.56 --- \bigcirc Explanation and exclusion X = VCOSO \Rightarrow Vt. ros A = V) ⇒ ù = VsinO - gt Vtsin0 - Lat Ξ From (a), tan O Þ VIN 3 Sin O \Rightarrow 10 (Γ) cos 0 = and Coc (0+ < 1 VIO 1(velocity)² = ce the magnitude of = KV , K>0 K