Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 Which expression is the correct factorisation of $8 x^{3}+125$?
(A) $(2 x+5)\left(4 x^{2}+10 x+25\right)$
(B) $(2 x+5)\left(4 x^{2}-10 x+25\right)$
(C) $(2 x-5)\left(4 x^{2}+10 x+25\right)$
(D) $(2 x-5)\left(4 x^{2}-10 x+25\right)$

2

The line $D T$ is a tangent to the circle at D and $A T$ is a secant meeting the circle at A and B. Given that $D T=6, A B=5$ and $B T=x$, which of the following is the value of x ?
(A) $x=4$
(B) $x=5$
(C) $x=6$
(D) $\quad x=9$

3 Which function does the following graph represent?

(A) $y=\frac{1}{2} \sin ^{-1} 2 x$
(B) $y=-\frac{1}{2} \sin ^{-1} 2 x$
(C) $y=2 \sin ^{-1} \frac{x}{2}$
(D) $y=-2 \sin ^{-1} \frac{x}{2}$

4 What is the coefficient of x^{5} in the expansion of $(2 x+5)^{8}$?
(A) 1400000
(B) 224000
(C) 25000
(D) 4000

5 Which of the following is the solution to $\sin \theta=\cos 2 \theta, 0 \leq \theta \leq 2 \pi$?
(A) $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(B) $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
(C) $\frac{4 \pi}{3}, \frac{5 \pi}{3}$
(D) $\frac{\pi}{3}, \frac{2 \pi}{3}$
$6 \quad A$ is the point $(-5,6)$ and B is the point $(4,3)$. Which of the following points divides the interval $A B$ externally in the ratio $3: 2$?
(A) $(-2,-21)$
(B) $(-27,12)$
(C) $(22,-3)$
(D) $\left(\frac{2}{5}, 4 \frac{1}{5}\right)$
$7 \quad$ What is the primitive of $\cos ^{2} x$?
(A) $\frac{\sin 2 x+2 x}{4}+C$.
(B) $\frac{1}{2} \sin 2 x+x+C$.
(C) $\frac{4 x-\sin 4 x}{4}+C$.
(D) $x-\frac{1}{4} \sin 2 x+C$.

8 What is the approximate size of the acute angle between the tangents to the curve $y=\ln (2 x+1)$ at the points where $x=0$ and $x=\frac{1}{2}$?
(A) 11°
(B) 18°
(C) 72°
(D) 79°

9 A particle is projected so that at any time t, its position (x, y) is given by $x=36 t, y=15 t-\frac{1}{2} g t^{2}$, where distances are in metres and time is in seconds.
If θ is the angle of projection and V is the initial velocity, which of the following statements is correct?
(A) $\quad V=36 \mathrm{~ms}^{-1}$ and $\theta=\sin ^{-1}\left(\frac{5}{13}\right)$
(B) $\quad V=15 \mathrm{~ms}^{-1}$ and $\theta=\cos ^{-1}\left(\frac{12}{13}\right)$
(C) $\quad V=39 \mathrm{~ms}^{-1}$ and $\theta=\tan ^{-1}\left(\frac{5}{13}\right)$
(D) $\quad V=39 \mathrm{~m} \mathrm{~s}^{-1}$ and $\theta=\tan ^{-1}\left(\frac{5}{12}\right)$

10 Which expression is equivalent to $8 \sin x-15 \cos x$?
(A) $17 \cos \left(x-61^{\circ} 56^{\prime}\right)$
(B) $17 \cos \left(x+61^{\circ} 56^{\prime}\right)$
(C) $17 \sin \left(x-61^{\circ} 56^{\prime}\right)$
(D) $\quad 17 \sin \left(x+61^{\circ} 56^{\prime}\right)$

Section II

60 marks

Attempt Questions 11-14

Allow about $\mathbf{1}$ hour and 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra booklets are available.
In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11. (15 marks) Use a Separate Booklet.
(a) The polynomial equation $-2 x^{3}+5 x-1=0$ has three roots α, β, and γ.

Evaluate the following
(i) $\beta \alpha+\beta \gamma+\alpha \gamma$.
(ii) $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
(b) Solve $\frac{5-x}{x}<3$
(c) A particle moves such that its velocity is given by $v=x-5 \mathrm{~m} / \mathrm{s}$.

Show that the acceleration is the same as the velocity for all x.
(d) Write $\tan \left(\cos ^{-1}\left(-\frac{1}{3}\right)\right)$ in the form $a \sqrt{b}$ where a and b are rational.
(e) Jane and John are competing in a sailing boat race. Jane (C) can see the top of a cliff (D) that is 1500 m above sea level. The cliff is on a bearing of 359° from her position and the angle of elevation of the top of the cliff is 16°. John (A) can also see the cliff on a bearing of 059° with an angle of elevation of 23°. The base of the cliff (B) is at sea level.

(i) Show that $\angle A B C=60$.
(ii) Copy the diagram and include all relevant information.
(iii) Find the distance $A C$ between the two sailing boats to the nearest metre.
(a) (i) Find the linear factors of $x^{3}-5 x^{2}+8 x-4$.
(ii) Hence solve $x^{3}-5 x^{2}+8 x-4>0$.
(b) Use the substitution $u=x^{2}+1$ to evaluate $\int_{0}^{2} \frac{x}{\left(x^{2}+1\right)^{3}} d x$.
(c) The volume of water in a tidal pool is given by the formula $V=2 \cos \frac{3 \pi}{x}$, where x is the depth of water in the pool, in metres.

Find the exact rate at which the depth of the pool will be increasing when the volume of water is increasing at $12 \mathrm{~m}^{3} / \mathrm{h}$ and the depth is 1.2 m .
(d) A parabola is given by the parametric equations $x=t$ and $y=t^{2}$.
(i) Sketch the parabola, and on your diagram mark the points P and Q which correspond to $t=-1$ and $t=2$ respectively.
(ii) Show that the tangents to the parabola at P and Q intersect at $R\left(\frac{1}{2},-2\right)$.
(iii) Let $T\left(t, t^{2}\right)$ be the point on the parabola between P and Q such that the tangent at T meets $Q R$ at the midpoint of $Q R$. Show that the tangent at T is parallel to $P Q$.

End of Question 12

(a) If $\int_{0}^{\frac{2}{3}} \frac{d x}{\sqrt{4-9 x^{2}}}=k \pi$, find the value of k.
(b) In the circle below, $A B=A C$. Let $\angle P A B=\alpha$ and $\angle A B C=\beta$.

(i) Copy the diagram into your answer booklet and give a reason why $\angle P Q B=\alpha$.
(ii) Prove $\angle A Q B=\beta$.
(iii) Prove $X Y Q P$ is a cyclic quadrilateral.
(c) The diagram below shows the graph of the function $y=f(x)$ where $f(x)=\ln (x+2)$.

(i) Copy the diagram and on it draw the graph of the inverse function $y=f^{-1}(x)$ showing the intercepts on the axes and the equation of the asymptote.
(ii) Show that the x coordinates of the points of intersection of the curves $y=f(x)$ and $y=f^{-1}(x)$ satisfy the equation $e^{x}-x-2=0$.
(iii) Show that the equation $e^{x}-x-2=0$ has a root α such that $1<\alpha<2$.
(iv) Use one application of Newton's method with an initial approximation
$\alpha_{0}=1.2$ to find the next approximation for the value of α, giving your answer correct to one decimal place.

End of Question 13

(a) Use mathematical induction to prove that for all integers $n \geq 1$,

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+2}{2 n+2} .
$$

(b) In an experiment recording the number, N, of daisies in a given area of garden, it was found that the rate of change of N is given by

$$
\frac{d N}{d t}=k N\left(1-\frac{N}{2000}\right), \text { where } k \text { is a constant and } t \text { is number of days. }
$$

At the beginning of the experiment there were 1000 daises.
(i) Verify that $N=\frac{2000 e^{k t}}{1+e^{k t}}$ is a solution of the equation.
(ii) If $N=1500$ when $t=10$ days, determine the value of t when $N=1800$.
(c) The depth of water y metres in a tidal creek is given by

$$
4 \frac{d^{2} y}{d t^{2}}=5-y, \text { the time } t \text { being measured in hours. }
$$

(i) Prove that the vertical motion of water is simple harmonic. Find the centre of motion.
(ii) Write down the period T of the motion.
(iii) Given that $y=1 \mathrm{~m}$ at low tide and $y=9 \mathrm{~m}$ at high tide, and that $y=a-b \cos n t$ is a solution of the equation $4 \frac{d^{2} y}{d t^{2}}=5-y$, write down the values of a, b and n.
(iv) If the low tide one day is at 1.00 pm , when is the earliest time that a boat requiring 3 m of water can enter the creek?

Give your answer correct to the nearest minute.

End of Paper

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x \quad=\log _{e} x, \quad x>0$

2015 Exterivion Trace Sotutans
1.

$$
\begin{aligned}
& 8 x^{3}+125 \\
= & (2 x)^{3}+(5)^{3} \\
= & (2 x+5)\left((2 x)^{2}-10 x+5^{2}\right) \\
& (2 x+5)\left(4 x^{2}-10 x+25\right)
\end{aligned}
$$

2

$$
\begin{aligned}
& 6^{2}=(x+5) x \\
& x^{2}+5 x-36=0 \\
& (x+9)(x-4)=0 \\
& x=-9,4
\end{aligned}
$$

But $x>0 \therefore x=4$
3 Wha $x=2 \quad-2 \sin ^{-1} \frac{2}{2}=-2 \times \pi / 2=-\pi \quad \therefore \quad D$
4. Geneal tom $\binom{8}{r}(2 x)^{8-r} 5^{r}$

$$
\text { For } x^{5} r=3
$$

\therefore coents $\binom{8}{3} 2^{5} \cdot 5^{3}$

$$
=224000
$$

$$
\therefore B
$$

$$
\begin{aligned}
& \sin \theta=\cos 2 \theta \\
&=1-2 \sin ^{2} \theta \\
& 2 \sin ^{2} \theta+\sin \theta-1=0 \\
&(2 \sin \theta-1)(\sin \theta+1)=0 \\
& \therefore \sin \theta=1 / 2 \theta-1 \\
& \theta=\pi / 65 \pi / 6,3 \pi / 2
\end{aligned}
$$

$$
\therefore \quad B
$$

$m: n$	$A\binom{x_{1}-5,6}{-5}$
	$(3:-2)$
$4(3)$	

$$
\begin{align*}
x=\frac{n x_{1}+m x}{m+n} & =\frac{(-2 x-5) \div(3 \times 4)}{3-2} \\
& =22
\end{align*}
$$

7

$$
\begin{aligned}
& \int \cos ^{2} x d x \quad \cos 2 x=2 \cos ^{2} x-1 \\
& =\frac{1}{2}\left(\frac{1}{2} \sin 2 x+x\right)+c \\
& \cos ^{2} x=1 / 2(\cos 2 x+1) \\
& =\frac{\operatorname{sen} 2 x+2 x}{4}+E
\end{aligned}
$$

8. atach is dy $=\frac{2}{2 x+1}$

When $x=0 \quad m_{1}=2$

$$
x=1 / 2 \quad M_{2}=1
$$

$$
\therefore \quad \tan \alpha=\left|\frac{M_{1}-m_{2}}{1+M_{1} M_{2}}\right|=\left|\frac{2-1}{1+2 \times 1}\right|=\frac{1}{3}
$$

$$
\alpha \stackrel{18}{=}
$$

$$
\therefore \quad B
$$

$$
\begin{aligned}
9 \quad x=(V \cos \alpha) t \therefore \quad \sqrt{\cos \alpha} & =36 . \\
\sqrt{\sin \alpha} & =15 \\
\therefore \quad \tan \alpha & =1 / 36=\frac{5}{12}
\end{aligned}
$$

$$
V^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=15^{2}+36^{2}
$$

$$
\therefore \quad V=\sqrt{15^{2}+36^{2}}=39
$$

10. $\quad r \sin (x-\infty)=r \sin x \cos \alpha-r \cos x \sin \alpha$

$$
\begin{array}{lr}
r \cos \alpha=8 & \tan \alpha=15 / 8 \\
r \sin \alpha=15 & \alpha=61^{\circ} 56^{\prime} \\
r=\sqrt{8^{2}+15^{2}} & \\
=17
\end{array}
$$

Questior 11

$$
\begin{aligned}
& a=-2 \quad \alpha+\beta+b=-\frac{b}{a}=0,2=0 \\
& b=0 \quad \alpha \beta+\alpha \gamma+\beta \gamma=\% a=5 / 2 \\
& c=5 \\
& \alpha=-1 \quad \alpha \beta \gamma=-\alpha / a=-(-1) / 2=-1 / 2
\end{aligned}
$$

a)
i) $\beta \alpha+\beta \gamma+\alpha \gamma=-52$
ii)

$$
\begin{aligned}
& \alpha^{-1}+\beta^{-1}+\gamma^{-1} \\
= & \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
= & \frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma} \\
= & -3 / 2 /-1 / 2 \\
= & 5
\end{aligned}
$$

1 for cerrect ama'gemation

1 correct an swel
b) $\frac{5-x}{x} \leftarrow 3$

$$
\begin{aligned}
& x(5-x)<3 x^{2} \\
& 5 x-x^{2}<3 x^{2} \\
& -4 x^{2}-5 x>0 \\
& x(4 x-5)>0 \\
& x<0 \text { or } x>5 / 4
\end{aligned}
$$

(3) - Compliteiy Correct
(2) - 1 error
(1) - 2ercols
c)

$$
\begin{aligned}
v= & x-5 \mathrm{~m} / \mathrm{s} \\
a_{a} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =d / d x \frac{1}{2}(x-5)^{2} \\
& =2\left(\frac{1}{2}\right)(x-5)^{1} \cdot 1 \\
& =x-5 \\
& =V
\end{aligned}
$$

\therefore areberation is veleuty for acex
d) $\tan \left(\cos ^{-1}(-1 / 3)\right)=-2 \sqrt{2}$

$\cos ^{-1}(-1 / 3)$ is obtise $\because \operatorname{tav}\left(\cos ^{-1}(-1 / 3)\right)<0$
(2) - correct answer; acce of $\sqrt{5}$
(1) = one errol
-... 11.
B: oo eye Ven

i)

Any sells which assumed Ale were East/west were incorrect

$$
1-r / \omega
$$

Ignored any diagrams which used error in $1)$
iii) $\ln \triangle A B D \quad \tan a 3^{\circ}=\frac{1500 / 4 B}{1500} \therefore A B=\frac{1500}{\tan 23^{\circ}}=1500 \operatorname{cota3} 3^{\circ}$
$\operatorname{In} \triangle D B C \tan 16^{\circ}=1500 / B C \therefore B C=\frac{1500}{\tan 10^{\circ}}=1500 \cot 16^{\circ}$

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-2(A S)(B C) \cos 60^{\circ} \\
& =(1500 \tan 6)^{2}+\left(150 \tan 74^{\circ}\right. \\
& =150^{2}-2(1500 \tan)\left(1500 \tan 70^{\circ}\right) 2
\end{aligned}
$$

(3) - completely correct

$$
\begin{aligned}
A C & =4622 \cdot 401--6 \\
& =4622 m b \text { nequet } m
\end{aligned}
$$

(3) - terror;
(1) - 2 errors, or just finding A ' B and $B C$.

Questese $12=$
a) i) $\operatorname{be} p(x)=x^{3}-5 x^{2}+8 x-4$

$$
\begin{equation*}
P(1)=1-5+8-4=0 \tag{1}
\end{equation*}
$$

$\therefore x-1$ is a factor $\quad x^{2}-4 x+4$

$$
\begin{equation*}
P(x)=(x-1)(x-2)^{2} \tag{1}
\end{equation*}
$$

$$
x-1 \quad \frac{\int x^{3}-5 x^{2}+8 x-4}{-\frac{\left(x^{3}-x^{2}\right)}{-4 x^{2}+8 x}} \begin{array}{r}
\frac{-4 x^{2}+4 x}{4 x-4} \\
\frac{4 x-4}{0}
\end{array}
$$

ii)

$$
\begin{aligned}
& x^{3}-5 x^{2}+8 x-4>0 \\
& (x-1)(x-2)^{2}>0
\end{aligned}
$$

$x>1$ except $x=2$
of $1<x<2, x>2$
b) $u=x^{2}-1$
$\frac{d u}{d x}=2 x . \therefore \quad d u=2 x d x$.
$\frac{1}{2} d u=x d x$
Wher $\begin{array}{rlrl}x & =0 & u & =1 \\ x & =2 & u & =5\end{array}$ (1)

$$
\begin{aligned}
\int_{0}^{2} \frac{x}{\left(x^{2}+1\right)^{3}} d x & =\int_{1}^{5}-1 u^{3} \cdot \frac{1}{2} \cdot d u \\
& =\frac{1}{2} \int_{1}^{5} u^{-3} d u \\
& =\frac{1}{2}\left[\frac{u^{2}}{-2}\right]_{1}^{5} \\
& =-1 / 4\left[\frac{1}{u^{2}}\right]_{1}^{5} \\
& =-1 / 4\left(\frac{1}{25}-1\right) \\
& =\frac{1}{25}
\end{aligned}
$$

12e) $V=2 \cos \frac{3 \pi}{x}$
Frad dx/dt wher dV/dt $=12$ and $x=1.2$

$$
\begin{align*}
& d x / d t=d x / d v \cdot d x / d t \cdot \\
& \\
& =\frac{d / d x / 2 \cos \left(3 \pi x^{+}\right)}{}=\frac{-3 \pi}{x^{2}} \cdot 2 \cdot-\sin \left(\frac{3 \pi}{x}\right) \\
& =\frac{6 \pi}{x^{2}} \cdot \operatorname{sun}\left(\frac{3 \pi}{x}\right)
\end{align*}
$$

$$
\frac{d x}{d v}=\frac{x^{2}}{6 \pi \sin \left(\frac{3 \pi}{\pi}\right)}
$$

When $x=1.2 \quad d x / d V=\frac{112^{2}}{6 \pi s u^{3 \pi / 2}}=\frac{3 / 25}{6 \pi s n^{5 \pi / 2}}$

$$
\begin{array}{rlrl}
& =\frac{36}{25} \times \frac{1}{5 \pi} \\
& =\frac{6}{25 \pi} \times 12 & & \\
& =\frac{72}{25 \pi} \pi \mathrm{~m} / \mathrm{h} & \text { (1) } \tag{1}
\end{array}
$$

ii) $x=t, y=t^{2}$

$$
\begin{aligned}
& d y / d x=d y / d t \cdot d x \\
&=2 t \\
& \therefore \text { At } P, d y / d x=-2
\end{aligned}
$$

Tongent at p is $y-1=-2(x-1)$

$$
\begin{equation*}
\text { At } Q \text { dy/dx }=4 \quad y=-2 x-1 \tag{1}
\end{equation*}
$$

Targut at Q is $y-4=4(x-2)$

$$
\begin{equation*}
y=4 x-4 \tag{2}
\end{equation*}
$$

Solve (1) + (2) simutareously to fird R

$$
\begin{align*}
-2 x-1 & =4 x-4 \\
6 x & =3 \\
x & =1 / 2 \tag{2}
\end{align*}
$$

whe $x=1 / 2 \quad y=4(1 / 2)-4$

$$
\begin{equation*}
\therefore R \text { is }(1 / 2,-2) \tag{1}
\end{equation*}
$$

iii) Cudcent at $T\left(t, t^{2}\right)$ is $d y x=2 t$

Targen at T is $y-t^{2}=2 t(x-t)$
Midpout of QR is $0\left(\frac{2+1 / 2}{2}, \frac{4+-2}{2}\right)=(5 / 4,1)$
$(5,4,1)$ lies sangetat

$$
\begin{aligned}
& \left.1-)^{2}=2 t-4-t\right) \\
& 1-t^{2}=\frac{10 t}{4}-2 t^{2} \\
& 4 t^{2}-10 t-8 t^{2} \\
& 2^{2}-2 t-2
\end{aligned}
$$

$$
\begin{array}{r}
2 t^{2}-5 t+2=0 \\
(2 t-1)(t-2)=0 \\
t=1 / \text { or } t=2
\end{array}
$$

but $t=2$ is at $Q \therefore T i \sigma\left(\frac{1}{2}, 1\right)$
Gradcint of tangent at T is $2 t=2 \times 1 / 2=1$ Qadient ef PQ is $\frac{4-1}{2-1}=1$
\therefore Cargart at T is parallel to $P Q$

013
a)

$$
\begin{gathered}
\int_{0}^{2 / 3} \frac{d x}{\sqrt{4-9 x^{2}}}=k \pi \\
\int_{0}^{2 / 3} \frac{d x}{\sqrt{9\left(\frac{4}{9}-x^{2}\right)}}=k \pi \\
\frac{1}{3} \int_{0}^{2 / 3} \frac{d x}{\left(\frac{2}{3}\right)^{2}-x^{2}}=k \pi \\
\frac{1}{3}\left[\sin ^{-1} \frac{x}{(2 / 3)}\right]_{0}^{2 / 3}=k \pi \\
\sin ^{-1 \frac{2 / 3}{2 / 3}-\sin ^{-1} \frac{0}{2 / 3}}=3 k \pi \\
\pi / 2-0=3 k \pi \\
-\frac{1 / 2}{k}=1 / 6 \\
k=1 /
\end{gathered}
$$

(1) wefficient $\frac{1}{3}$
b) i) $\angle P Q B=\angle P A B=\alpha$
(Angles at the cifcunfereme sucterdea by arr PB are equal)

ii) $\angle A C B=\angle C B A=\beta$ (augles opposhe cqual sides:w Bosceler $\triangle A B C$)
$\angle A Q B=\angle A C B \quad$ (angles at the aicunference subterder by are $A B$ are equal)

$$
\begin{equation*}
\therefore \angle A Q B=\beta \tag{1}
\end{equation*}
$$

iii)

$$
\begin{aligned}
& \angle Y X A=\angle X B A+\angle X A B=\beta+\gamma \text { (exteror anfle of } \triangle X A B \text {) } \\
& \begin{array}{l}
\angle P Q Y=\angle P Q B+\angle A B=\alpha+\beta \quad \text { (adpaent antes, } i+i i \text {) } \\
\angle P Q Y=\angle Y X A=\alpha+\beta
\end{array} \\
& \therefore \angle P Q Y=\angle Y \angle A=\alpha+\beta
\end{aligned}
$$

\Rightarrow XIQP is a cychic quadilatul (oxterar angle equals the opposite intiragt
i)

(2) correct shape, intercepts, asymptote

- (1) each error
ii) $y=f(x): y=\ln (x+2) \quad f(x)$

$$
\begin{aligned}
y=f^{-1}(x): x & =\ln (y+2) \\
e^{x} & =y+2 \\
y & =e^{x}-2
\end{aligned}
$$

\therefore The intersection of the 2 aves is where:

$$
\begin{equation*}
\ln (x+2)=e^{x}-2 \tag{1}
\end{equation*}
$$

Since $f(x)$ and $f^{-1}(x)$ intersect on $\therefore \quad x=e^{x}-2$

$$
\begin{aligned}
& \text { ext on } \therefore \quad x=e-2 \\
& y=x \Leftrightarrow \quad e^{x}-x-2=0 \text { gree the i) }
\end{aligned}
$$

$x-c o-o r d e v a t s$ of the points of utersechod
ii) when $x=1 \quad e^{x}-x-2=e^{\prime}-1-2=e^{\prime}-3<0$

When $x=2 \quad e^{x}-x-2=e^{2}-2-2=e^{2}-4>0$
Sine there is a change in sign of $e^{x}-x-2$ fran $x=1$ to $x=2$ and $e^{x}-x-2$ is contwious betiouthene raves, there rust be a rot α, of $e^{x}-x-2=0$ such that $1 \leq \alpha<2$.
v) Wet $f(x)=e^{x}-x-2$

$$
f(x)=e^{x}-1
$$

$$
\begin{aligned}
& f(12)=e^{1 \cdot 2}-1 \cdot 2-2 \\
& f(1 \cdot 2)=e^{12}-1
\end{aligned}
$$

New afprommontur.

$$
\begin{align*}
a_{1}=a_{0}-\frac{f\left(a_{0}\right)}{p\left(a_{0}\right)} & =1 \cdot 2-\frac{e^{1-2}-3 \cdot 2}{e^{1-2}-1} \\
& =11482 a^{2}-1 \cdot 1 \tag{1}
\end{align*}
$$

a) Let the statement be:

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+2}{2 n+2}
$$

When $n=1 \quad \angle H S=1-\frac{1}{(1+1)^{2}}=1-\frac{1}{2^{2}}=3 / 4$

$$
\text { RHS }=\frac{1+2}{2(1)+2}=\frac{3}{4}
$$

Suse $L H S=$ RHS, statement is true for $n=1$ (1)

Assume the statement is true for $n=k \quad k \geqslant 1$ le $\left(1-1 / 2^{2}\right)\left(1-1 / 3^{2}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2 k+2}$

Show the statement is true for $n=k+1$ ie $\left(1-1 / 2^{2}\right)\left(1-1 / 3^{2}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)\left(1-\frac{1}{(k+2)^{2}}\right)=\frac{k+3}{2 k+4}$

$$
\begin{align*}
L H S= & \left(\frac{k+2}{2 k+2}\right)\left(\frac{\left.1-\frac{1}{(k+2)^{2}}\right)}{2(k+1)} \times \frac{(k+2)^{2}-1}{(k+2)^{2}}\right. \\
= & \frac{(k+2)^{2}-1}{2(k+1)(k+2)} \\
= & \frac{k^{2}+4 k+3}{2(k+1)} \\
= & \frac{(k+3)(k+1)}{2(k+1)(k+2)} \\
= & \frac{k+3}{2 k+4} \\
= & R+S \tag{1}
\end{align*}
$$

logical and shan to the end must hare 3 dot points for mow
\therefore The statement is true for $n=k+1$ if t is tree per $n=k$ and sine if is true for $n=1$ it is of tow for $a=1+1=2,2+1=3$ and $n 0$ st p ache positive sheqel value of a. .

Q14 continued
b)

$$
d N / d t=k N\left(1-\frac{N}{2000}\right) \quad \text { When } t=0 \quad N=1000
$$

i)

$$
\text { If } N=\frac{2000 e^{k t}}{1+e^{k t}}
$$

ther $\alpha N / \alpha t=\frac{\left(1+e^{k t}\right) 2000 k e^{k t}-2000 e^{k t} \cdot k e^{k t}}{-\left(1-e^{k t}\right)^{2} \text { (1) corruty }}$

$$
\frac{d N}{d t}=\frac{2000 k_{k}^{b t}}{\left(1+e^{k+}\right)^{2}}
$$

how

Now

$$
\begin{aligned}
1-\frac{N}{200} & =1-\frac{2000 e^{k t}}{2000\left(1+e^{k t}\right)} \\
& =1-\frac{e^{k t}}{1+e^{k t}} \\
& =\frac{1+e^{k+}-e^{k t}}{1+e^{k t}} \\
& =\frac{1}{1+e^{k t}} \\
\therefore \frac{d N}{d t} & =k N\left(\frac{1}{1+e^{k t}}\right) \\
& =k N\left(1-\frac{N}{2000}\right)
\end{aligned}
$$

$\Rightarrow N=\frac{2000 e^{k t}}{1+e^{k t}}$ is a solutien of the equation
iii) Wher $t \equiv 10$

$$
\begin{align*}
N=1500 \quad \therefore \quad 1500 & =\frac{2000 e^{10 k}}{1+e^{10 k}} \\
1500+1500 e^{10 k} & =2000 e^{16 k} \\
500 e^{10 k} & =1500 \\
e^{10 k} & =3 \tag{1}\\
10 k & =\ln 3 \\
k & =1 / 10 \ln 3
\end{align*}
$$

\therefore When $N=1800 \quad 1800=\frac{2000 e^{k t}}{1+e^{k t}}$

$$
\begin{aligned}
1800+1800 e^{k t} & =2000 e^{k t} \\
200 e^{k t} & =1800 \\
e^{k t} & =9 \\
k t & =\ln 9 \\
t & =1 / k \ln 9 \\
& \left.=\frac{10 \ln 3}{10}\right) \\
& =\frac{\ln 3}{20} \text { daip } \\
&
\end{aligned}
$$

c) i) $4 \alpha^{2} y / d x^{2}=5-y$

For $\operatorname{sim} \quad \ddot{x}=-n^{2}(x-b)$ whee b is the cerfere of motion

$$
\begin{align*}
& 4 \ddot{y}=5-y \\
& 4 \ddot{y}=-(y-5) \tag{1}\\
& \ddot{y}=-1 / 4(y-5)
\end{align*}
$$

which is SHM woth certre 5
ii) $T=\frac{2 \pi}{n}=\frac{2 \pi}{(1 / 2)}=4 \pi$ (1)
iii) $\begin{aligned} y & =a-b \cos n t \\ & =-b \cos t\end{aligned}$

$$
y=\frac{1}{a}<\cot M=5
$$

$$
=-b \cos a t+a
$$

\therefore anplitude is 4 … $b=4$

$$
\begin{align*}
& \therefore-4+a=1 \Rightarrow a=5 . \\
& \therefore a=5 \quad b=4 \quad n=1 / 2 \tag{1}
\end{align*}
$$

(V) For $y=3$

$$
\begin{aligned}
& 3=5-4 \cos t / 2 \\
& 1 / 2=\cos t / 2 \\
& t / 2=\pi / 3 \quad 2 \pi / 3 \text { etc } \\
& t=2 \pi / 3(1 / 3-1 / 4
\end{aligned}
$$

* needel to roond up!!
\therefore avilust tme for boat to enterthe crele u when $t=\frac{2 \pi}{3} h=2 h 5^{\prime} 39-82^{\prime \prime}$ ie: 3:00pm $=2 h b^{\prime} t$. nexiestuin:

