SCECGS REDLANDS

TRIAL HIGHER SCHOOL CERTIFICATE 1995

FORM 12

MATHEMATICS

3/4 UNIT - COMMON PAPER
3 UNIT - ADDITIONAL PAPER

TIME ALLOWED: Two hours plus five minutes reading time.

DIRECTIONS TO CANDIDATES:

1. ALL questions may be attempted.

2 ALL questions are of equal pted.
3. Answer each question in a salue (marks are indicated). Write your Candidate in a separate Writing Booklet. Writing booklet.
4. Show all neces arranged work.
6. Board-Approved Calculinted on the last page of this paper.
7. You may ask for extra Writors may be used.
8. Students are advised Writing Booklets, if you need them. any way guarantee the this is a TRIAL EXAMINATION only and cannot in CERTIFICATE EXAMINATION. Wr the format of the HIGHER SCHOOL positive contribution to your preparation hepe that this paper will provide a

SCECGS REDLANDS

TRIAL HIGHER SCHOOL CERTIFICATE 1995

FORM 12

MATHEMATICS

3/4 UNIT - COMMON PAPER
3 UNIT - ADDITIONAL PAPER

MARKING SCHEDULE

QUESTIONS	MARKS FOR SECTIONS					
	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	e	TOTAL
Question No. 1	2	4	2	3	4	15
Question No. 2	4	7	4	-	-	15
Question No. 3	5	5	5	-	-	15
Question No. 4	5	10	-	-	-	15
Question No. 5	11	4	-	-	-	15
Question No. 6	6	9	-	-	-	15
Question No. 7	9	6	-	-	-	15

QUESTION 1 (15 marks)

Use a separate Writing Booklet.
(a) Solve $2 x^{2}-x \cdot 6<0$.
(b) Show that $\left.\frac{d}{d x} \left\lvert\, \frac{2 x}{\sqrt{\left(2 x^{2}+1\right)}}\right.\right)=\frac{2}{\left(2 x^{2}+1\right)^{13 / 2} / 2}$
(c) Find the exact value of

$$
\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{\left(3-x^{2}\right)}}
$$

(d) Evaluate

$$
\int \frac{\cos \left(\log _{0} x\right)}{x} d x
$$

by using the substitution $t=\log _{0} x$.
(e) For what values of x is $\frac{1}{x-2} \leq \frac{1}{2}$ Indicate your solution on a number line.

QUESTION 2
(15 marks)

Use a separate Writing Booklet.
(a) Evaluate

(b). The acceleration of a particle moving in a straight line is given by: where x is the displace seconds.

If the particle starts from rest at $x=1$ metres,
(i) Show that the velocity of the particle is given by

$$
v^{2}=2\left(-2 x^{2}+3 x-1\right)
$$

(ii) Identify the second position where the particle will come to rest.
(iii) What will be the acceleration at the second position where the particle
comes to rest.
(c) Use Newton's method to find a second approximation to a root of

$$
x^{3}-3 x-10=0
$$

Take $x=2.7$ as the first approximation.
Glve your answer to two decimal places.

Use a separate Writing Booklet.
(a) $P Q$ is a tower standing on a horizontal plane. Q, being its foot.
A and B are two points on the plane such that
$\angle Q A B=90^{\circ}$ and $A B=20$ metres
It is found that $\operatorname{Cot} P \hat{A Q}=\frac{3}{10}$ and $\operatorname{Cot} \hat{P B Q}=\frac{1}{2}$
(i) Copy the diagram to Illustrate this information
Booklet.

(ii) Find the height of this tower.
(b) Consider the function $f(x)=1 / 2 \operatorname{Cos}^{-1}(\sqrt{3} x)$
(I) Evaluate $f\left(\frac{1}{2}\right)$
(ii) State the domain of $f(x)$.
(iii) For what values of $f(x)$ is this function defined?
(lv) Draw a graph of $f(x)$, labelling any key features.
(c) (i) Lenny Wu establishes a fund for his daughter with a deposit of $\$ 200$, at 9% p.a. interest compounded monthly. To how much money would this amount accrue at the end of 3 years?
(ii) Suppose, at the beginning of each subsequent month after the first deposit has been made, a further $\$ 200$ had been added to the fund and had also eamed 9\% p.a. interest, compounded monthly, how much money would there be in the fund after 12 years?
(a) Prove by mathematical induction that

$$
2+2^{2}+2^{2}+\ldots \ldots . .+2^{n}=2\left(2^{n}-1\right)
$$

(b) A watertank, in the form of an inverted cone with semi-vertical angle 30°, contains water to a depth of h metres as shown in the diagram.
(i) Copy the diagram Into your answer booklet.
(ii) Show that the volume of water in the tank is given by

$$
\stackrel{e n}{ } \mathrm{by}=\frac{\pi}{9} h^{3} \text { metres }^{3}
$$

(iii) The vertex of the tank has now sprung a leak and water in leaking out at the rate of $0.2 \sqrt{h}$ metre ${ }^{3} /$ minute.

Find an expression in terms of h, for the rate at which the depth of water is being reduced.
(iv) What will be the rate of reduction in depth when $h=4$ metres? (Leave your answer in terms of π).

QUESTION 5

Use Separate Writing Booklet

(a) Two points $P\left(4 p, 2 p^{2}\right)$ and $Q\left(4 q, 2 q^{2}\right)$ lie on the parabola $x^{2}=8 y$.
(i) Show that the equation to the tangent to the parabola at P is $y=p x-2 p^{2}$.
(ii) The tangent at P and the line throigh Q, parallel to the Y-axis, intersect at T. Find the $C o-o r d i n a t e s$ of T.
(iii) . Find the Co-ordinates of M, the mid-point of PT.
(iv) Determine the Cartesian Equation of the locus of M when $p q=-1$.
(b) Write the most general solution for θ, when $2 \sin ^{2} \theta+3 \cos \theta=0$.

QUESTION 6. (15 marks)

Use a separate Writing Booklet
(a) The population of sheep on a farm is given by the relation $\frac{d N}{d t}=k(N-2000)$,
when N is the number
thend k is a constant. If there are sheep and after 2 years, there are 6000 sheep,
(i) Show that $N=2000+3000 e^{k t}$ for some value of k.
(ii) Give a value for k correct to eight decimal places.
(iii) Show also that the number of sheep on the farm after 3 years is 6
farm after 3 years is $6 \$ 18$.
(iv) After how many years will the sheep population reach 10,000? (Give your answer to the nearest whole year).
(b) A particle moves in a straight line so that its position $x \mathrm{~cm}$ from a fixed point 0 , at time t seconds is given by:

$$
x=4 \sin 2 t+3 \cos 2 t
$$

(i) Show that this motion can be expressed in the form $x=A \sin (2 t+\alpha)$ where $-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}$
Evaluate A and α.
(Ii) Prove that the motion Is Simple Harmonic.
(iii) What ls the Period of Oscillation?
(iv) Determine its maximum displacement.
(v) Calculate its velocity when x is 3 cm from 0 .
(a)

A sector $A B$ of angle θ radians is cut from a circular dise of radius $4 \pi \mathrm{~cm}$ and used to make the complete curved surface of a right circular cone (with no overlap).
(i) Show that the volume of this cone is given by $V=\frac{8 \pi \theta^{2}}{3} \sqrt{4 \pi^{2}-\theta^{2}}$
(ii) Find the value of θ for which the volume of this cone is a maximum.
(Make sure that the maximum is verified) (Make sure that the maximum is verified).
(b)

In $\triangle A B C, A B=A C$ and $\angle B A C=90^{\circ}$. AY is any straight line through A. BH and CK are perpendlculars from B and C to $A Y$.
(i) Copy the given diagram into your answer booklet.
(ii) Prove that $A H=C K$.

Sohutions

SCECGS REDLANDS

TRIAL HIGHER SCHOOL CERTIFICATE 1995

FORM 12

MATHEMATICS

3/4 UNIT - COMMON PAPER
3 UNIT - ADDITIONAL PAPER

MARKING SCHEDULE

QUESTIONS	MARKS FOR SECTIONS					
	a	b	c	d	e	TOTAL
Question No. 1	2	4	2	3	4	15
Question No. 2	4	7	4	-	-	15
Question No. 3	5	5	5	-	-	15
Question No. 4	5	10	-	-	-	15
Question No. 5	11	4	-	-	-	15
Question No. 6	6	9	-	-	-	15
Question No. 7	9	6	-	-	-	15

[^0]Question Nos. 1 \& 8(a)
Question Nos. 2 \& 6(b)
Question Nos. 3 \& 7(a)
Question Nos. 4 \& 7(b)
\therefore Farm 12, 3/4 Unit paper
H.SC TRIALS

JuLy 1995
SOLUTIBNS
The following are only one set of solutions
\{Allernative solutions are acceptable.
Sthernative solutions will be mankel on it own merits.
The maximum score for eech question is 15 mark:
Question no. 1
(a) Solve $2 x^{2}-x-6<0$
is $(2 x+3)(x-2)<0$

$$
\therefore \quad-1 \frac{1}{2}<x<2
$$

(b). Let $y=\frac{2 x}{\sqrt{2 x^{2}+1}}$

$$
=\frac{2}{\left(2 x^{2}+1\right)^{3 / 2}}
$$

$$
\begin{aligned}
& =\frac{2 x}{\left(2 x^{2}+1\right)^{1 / 2}} \\
& \therefore \frac{d y}{d x}=\frac{\left(2 x^{2}+1\right)^{\frac{1}{2}} \cdot 2-2=\cdot \frac{1}{2}\left(2 x^{2}+1\right)^{-\frac{1}{2}} \cdot 4 x}{2 x^{2}+1} \\
& =\frac{2 \sqrt{2 x^{2}+1}-\frac{4 x^{2}}{\sqrt{2 x^{2}+1}}}{\left(2 x^{2}+1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 x^{2}+2-4 x^{2}}{\left(2 x^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{3-x^{2}}} \\
= & {\left[\sin ^{-1} \frac{x}{\sqrt{3}}\right]_{0}^{\sqrt{3}} } \\
= & \left(\sin ^{-1} \frac{\sqrt{3}}{\sqrt{3}}\right)-\sin ^{-1} 2 \\
= & \frac{\pi}{2}
\end{aligned}
$$

$$
\text { (i) } I=\int \frac{\cos \left(\log _{2} x\right)}{x} d x
$$

$$
\text { Let } t=\log _{e} x
$$

$$
\therefore \quad d t=\frac{1}{x} d x
$$

$$
\therefore d x=x d t
$$

$$
\begin{aligned}
\therefore I & =\int \frac{\cos t}{\not t} \cdot \not x d t \\
& =\int \cos t d t \\
& =\sin t+c \\
& =\sin \left(\log _{0} x\right)+c
\end{aligned}
$$

Remantir: $x>0$

$$
\text { or } r=\sin \ln |x|+c
$$

(e). Some.

This not vigiditor $x=2$
(becave $x \not g^{t h}=a_{n}$ an iritititualu)
Melluad I
Let $\frac{1}{x-2}$

$$
\begin{array}{ll}
\therefore \quad & x-2 \neq 2 \\
& \therefore x=4
\end{array}
$$

Su, lle $x=2$ aud $x: 4$ an boumaric:
(When $x<2,(\operatorname{say} x=1), 1<\frac{1}{2}$ Tres: $x=2$ in not possible
Fir $2<x<4,($ Sag $x=3), \frac{1}{1} 4 \frac{1}{2}$ When $x=4, \quad \frac{1}{2}=\frac{1}{2} \quad-$ TRues (wher $x>4,($ soy $x=5), \frac{1}{3}<\frac{1}{2}$ Thre
\therefore Th scinution is:

ii $\quad x<2\}$
and $x \geqslant 4\}$
Mote: Another MeThod nithe Squaging Met.ad (or Mcradi is Gquaring)

$$
\frac{1}{x-2} x(x-2)^{2} \leq \frac{1}{2}(x-2)^{2}
$$

$$
\begin{gathered}
x \cdot 2 \\
\therefore \quad 2(x-2) \leq x^{2}-4 x+4 \\
0
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \quad 0 \quad x^{2}-6 x+8 \\
& \therefore \quad x^{2}-6 x+8 \geqslant 0
\end{aligned}
$$

$$
\text { Re } \quad(x-4 x(x-2) \geqslant 0: \text { But } x \neq 2
$$

\therefore The solution in:
Another Metiond is Tie Methed a C_{i} raphing.

Guestion No. 2
(a) Evaluali $I_{2} \int^{\pi / 2} \cos ^{2} 2 x d x$.

$$
\begin{aligned}
\cos 4 x & =2 \cos ^{2} 2 x-1 \\
\therefore \cos ^{2} 2 x & =1_{2}(1+\cos 4 x)
\end{aligned}
$$

$$
\begin{aligned}
\therefore I & =\frac{1}{2} \int_{0}^{\pi / 2}(1+\cos 4 x) d x \\
& =\frac{1}{2}\left[x+\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 2} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+\frac{1}{4} \sin 2 \pi\right)-(0)\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

(6). \quad aus ${ }^{2}=\ddot{x}=3-4 x$
(1) li $\frac{\dot{a}}{d x}\left(\frac{1}{2} v^{2}\right)=3-4 x$

$$
\begin{array}{ll}
\therefore & \int \frac{d}{d x}\left(\frac{1}{2} v^{2}\right) d x=\int(3-4 x) d x+C \\
\therefore & \frac{1}{2} v^{2}=3 x-2 x^{2}+C \tag{1}
\end{array}
$$

The porticle,starts from rest at $x=1$ metres.
ie $\quad v=0$ when $x=1$
$\therefore \operatorname{suban}(1), 0=3-2+c$

$$
\therefore c=-1
$$

$$
\therefore \quad \frac{1}{2} v^{2}=3 x-2 x^{2}-1
$$

ie. $V^{2}=2\left(3 x-2 x^{2}-1\right)$
1e $v^{2}=2\left(-2 x^{2}+3 x-1\right)$
(ii) When the pasticle comes to riot $v=0$

$$
\therefore \begin{gathered}
2 x^{2}-3 x+1=0 \\
\text { ie }(2 x-1)(x-1)=0 \\
\therefore x=1, \frac{1}{2} \quad \therefore \text { The pasticle will cometo icst } \\
\therefore x=\frac{1}{2} \mathrm{~m} \text {. }
\end{gathered}
$$

(iii) So, the aucteration whem the pastide coues to rest at $x=\frac{1}{2}$ can be obtamed by Substatuting $x=\frac{1}{2}$ mi $\ddot{x}=3-4 x$

$$
\begin{aligned}
\therefore(\ddot{x})_{x=1}^{2} & =3-4 \times \frac{1}{2} \\
& =1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Pounl of saterest
The porctive accoleration at $x=1$ midicato that the parficke having come to vent at $x=\frac{1}{2}$, changes divientivin ais moves in the poirtion dirution
c). Sd $f(x)=x^{3}-3 x-10$

The first approximation to the sslution of $x^{3}-3 x-10=0$ is $x, 2-7$
Usmig Nentoni methot
the second approximation x_{2} is giveithy

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f(x)}{f^{\prime}(x .)} \\
f(x) & =x^{3}-3 x-10 \\
f^{\prime}(x) & =3 x^{2}-3 \\
f(2.7) & =2.7^{3}-3 \times 2.7-10 \\
& =1.583 \\
f^{\prime}(2.7) & =3 \times 2.7^{2}-3 \\
& =18.87 \\
\therefore x_{2} & =2.7-\frac{1.583}{18.87} \\
& =2.62(24.9) .
\end{aligned}
$$

Question no. 3
(a).

$$
\operatorname{Let} \begin{aligned}
& A Q=x_{1} \\
& B Q=q
\end{aligned}
$$

$$
\begin{aligned}
& B Q=\gamma \\
& P H=h
\end{aligned}
$$

$$
\angle P A Q=0
$$

$$
\mathcal{G P D G}=\alpha
$$

From $\triangle A P Q: \quad \tan \theta=\frac{h}{x}=\frac{10}{3}$

$$
\text { Cot } P \hat{A} Q=\frac{3}{10}
$$ $\cot P \hat{B Q Q}=\frac{1}{2}$

$$
\text { From } \triangle \beta P Q ; \quad \begin{align*}
\operatorname{tin} \alpha & =\frac{h}{y}=\frac{2}{1} \\
\therefore h & =2 z \tag{2}
\end{align*}
$$

from $\varepsilon_{1} \leq(1)+(2)$,

$$
\therefore\left\{\begin{array}{l}
\frac{10}{3}=2 y \\
y=\frac{5}{3} x \tag{6}
\end{array}\right.
$$

Fwom $\triangle A B Q, \quad x^{2}+20^{2}=y^{2}$
ii $x^{2}+400=\frac{25}{9} x^{2}$
1e. $9 x^{2}+3600=25 x^{2}$
$\therefore 16 x^{2}=36 \mathrm{mog}$

$$
\therefore x^{2}=225
$$

$$
\therefore x=15 \mathrm{~m}
$$

$$
\begin{aligned}
\therefore h & =\frac{10}{3} x \\
& =\frac{10}{3} \times 15 \\
& =50 \mathrm{~m}
\end{aligned}
$$

\therefore The hegat $3^{\text {the }}$ towir is 50 m
(t). $f(x)=\frac{1}{2} \cos ^{-1}(\sqrt{3} x)$

$$
\text { (i) } \begin{aligned}
f\left(\frac{1}{2}\right) & =\frac{1}{2} \cos ^{-1}\left(\sqrt{3} \times \frac{1}{2}\right) \\
& =\frac{1}{2} \cos ^{-1} \frac{\sqrt{3}}{2} \\
& =\frac{1}{2} \times \frac{\pi}{6} \\
& =\frac{\pi}{12}
\end{aligned}
$$

(ii). Domain:

$$
\begin{aligned}
& D:-1 \leq \sqrt{3} x \leq 1 \\
& \text { re } D:-\frac{1}{\sqrt{3}} \leq x \leq \frac{1}{\sqrt{3}}
\end{aligned}
$$

(iii) The values of $f(x)$ forwhich the function in defined

(iv).

c). (i) Inctial deposil $=\$ 200$

Rate y_{y} Interesi $=9 \%$ p.a

$$
=0.75 \% \text { p.m }
$$

Periad

$$
=3 y \mathrm{y}
$$

lisu'g

$$
\begin{aligned}
& =3 y^{0} \\
& =3 \text { mon }_{1}
\end{aligned}
$$

\section*{(ii). No. 7 yeans $=12$
 | \therefore Period | $=12$ |
| ---: | :--- |
| | $=1442 \mathrm{months}$ |
| Rate | $=0.75 \% 1 . \mathrm{m}$ |}

Amount inverted every mont $=\$ 200$
Amount acrineed by the $1^{5+} \$ 200$ offer 144 apronims $=\$ 200 \times 1.0075^{144}$ Amount acerned try the $2^{\prime \prime} \$ 200 \quad 143$.monk $=\$ 200 \times 1.0075^{143}$

Amount acernet by the tart $\$ 200 \cdots=\$ 200 \times 1.0075^{\prime}$

Amount in the fun after 12 years
$=\prod_{i}^{\$} 200 \times 1.0075^{1}+200 \times 1.0075^{2}+$
Then na Gie whose 1^{5} term is 200×1.0075 and where Comeconratio ii 1.0075

Wing $S_{n}=\frac{a\left(y^{3}-1\right)}{y-1}$

$$
\begin{aligned}
S_{144} & =\frac{200 \times 1.0075\left(1.0075^{144}-1\right)}{1.0075-1} \\
& =\$ S 1928.88
\end{aligned}
$$

\therefore The amount in the fund apter 12 yeans $=\$ 51928.88$

Mote: Y also
Ion maya solve the above prism using the established frimulae However, the above method is the prefored-one.

Quatition as. 4

Assume true for for $n=\bar{k}$

$$
\left.\begin{array}{l}
\text { Assume true for } n=\bar{k} \\
2+2^{2}+2^{3} \\
\text { enhance what h true for } \left.{ }^{2}=n^{k}=k+1\right)
\end{array}\right\} \text { (1) }
$$

$$
\begin{aligned}
& \text { Inivealigalk whethor the for } n=k+1 \\
& 2+2^{2}+2^{3}+\cdots+2^{k}+2^{k+1}=2\left(2^{k}-i\right)+2^{k+1}
\end{aligned}
$$

$$
\left.\begin{array}{l}
=2^{k+1}-2+2^{k+1} \\
=2 \cdot 2^{k+1}-2 \\
=2\left(2^{k+1}-2\right)
\end{array}\right\}
$$

This in if the same form an (1), when k is replonediytkzi!
Th the statement i tore e for $n=k$,
Then at n true_ for
It n time for $n=1$
\therefore It mint be free $p n=2,3$ and so. on

$$
\begin{aligned}
& \text { mint be trim pr } n=2,3 \text { and } n \geqslant 1, n \text { integral } \\
& 2+2+2^{3}+\cdots
\end{aligned}+2^{n}=2\left(2^{n}-1\right) .
$$

4)

Radix of surface b
watertingiventy $\frac{r}{2}=\tan 30^{\circ}$
$\frac{r}{n}=2.1$

$$
\therefore \hat{r}=h \cdot \frac{1}{\sqrt{3}}
$$

2
\therefore Volume q water $=\frac{1}{3} \pi r^{2} h-1$

$$
\left.\begin{array}{l}
=\frac{1}{3} \times \pi \cdot \frac{h^{2}}{3} \cdot h \\
=\frac{\pi h^{3}}{9} \mathrm{man}^{3}
\end{array}\right\} \square
$$

$$
\begin{aligned}
& \text { a) Ho prove ley thatinematical Induction }
\end{aligned}
$$

-9-

$$
\begin{aligned}
& \frac{d V}{d t}=0.2 \sqrt{h} \\
& \frac{d h}{d t}=\frac{d h}{d V} \cdot \frac{d V}{d t}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{d V}{d h} & =\frac{3 \pi h^{2}}{\pi 3} \\
& =\frac{\pi h^{2}}{3} \\
\therefore \quad \frac{d h}{d t} & =\frac{3}{\pi h^{2}} \times 0.2 \sqrt{h} \\
& =\frac{0.6 \sqrt{h}}{\pi h^{2}} \\
i-\varepsilon \frac{d h}{d t} & =\frac{0.6}{\pi h^{3 / 2}} \mathrm{~m} / \mathrm{m} \cdot
\end{aligned}
$$

arrow,

$$
V=\frac{\pi h^{3}}{9}
$$

(iv). When $h=4$ min.

$$
\begin{aligned}
\left(\frac{d h}{d i}\right)_{h=4 \mathrm{~m}} & =\frac{0.6}{\pi \times 4^{3 / 2}} \\
& =\frac{0.6}{8 \pi} \mathrm{~m} / \mathrm{mt} \\
\therefore \frac{d h}{d t} & =\frac{3}{4 \pi \pi} \mathrm{~m} / \mathrm{mt}
\end{aligned}
$$

\therefore Rate or ocknition midepth
When $\lambda=4 \mathrm{~m}=\frac{3}{40 \pi} \mathrm{~m} / \mathrm{mt}$.
(NB either a fraction or a decimal but a mixture of both not considered simplest form.
\square

Question 00. 5

At P :

$$
\left\{\begin{array}{l}
x=4 p \\
\frac{d x}{d}=4,
\end{array}\right\}
$$

$\left.\right|^{x^{2}=8 y} \quad$ (iv) $\operatorname{Sin} \dot{\sin } M_{\text {is }}$ the Mil -Pt I Pt,
it co-roderiates are given try

$$
x=2(p+q)
$$

$$
\operatorname{cond} y=2 p q
$$

Since $p q=-1$

$$
y=-2
$$

But,
$y^{1} y=-2$ is the equation of the directrix of the parabola $x^{2}=8 y$
\therefore The cartesian \therefore inaction y the Locum of ins $y=-2$
b)

$$
\begin{aligned}
& \quad 2 \sin ^{2} \theta+3 \cos \theta=0 \\
& \therefore \quad 2\left(1-\cos ^{2} \theta\right)+3 \cos \theta=0 \\
& \therefore \quad 2-2 \cos ^{2} \theta+3 \cos \theta=0 \\
& \text { le } \quad 2 \cos ^{2} \theta-3 \cos \theta-2=0
\end{aligned}
$$

le $(2 \cos \theta+1)(\cos \theta-2)=0$

$$
\begin{aligned}
& \therefore \cos \theta=-\frac{1}{2}, 2 \\
& \cos \theta=2 \text { dinnot } \\
& \operatorname{cxist} .
\end{aligned} \quad \begin{aligned}
& \cos \theta= \\
& \therefore \alpha=\frac{1}{2} \quad \frac{s}{3} \quad \frac{s}{T \mid c}
\end{aligned}
$$

(iii) Co uss y M ave: $\quad \therefore$ The musil acenered solution.

$$
\begin{aligned}
& \left(\frac{4 p+4 q}{2}, \frac{2 p^{2}+4 p q-2 p^{2}}{2}\right. \\
= & {[2(p+q), 2 p-] }
\end{aligned}
$$

(ii) Equation Q Q in in $_{\text {i }} x=4 q — D$

Equate of PT Ai $y=p x-2 p^{2}-\Theta$
\therefore Sowing (1) (2), Sunultancencif:

$$
y=4 p q-2 p^{2}
$$

$\therefore c_{0}-0 . d s$ of Taxi $:\left(4 q, 4 p z-2 z^{2}\right)$

$$
\therefore \quad \cos \theta=-\frac{1}{2}
$$

$n \quad 0=2 n \pi \pm \frac{2 \pi}{3}$
$n=c, 1,2, \ldots$
-10-
Question no. 6

$$
\begin{aligned}
& \text { a) } \frac{d N}{d t}=k(N-2000) \\
& \therefore \frac{d N}{N-2000}=k d t \\
& \therefore \quad \int \frac{d N}{N-2000}=\int k d t+C \\
& \therefore \log _{1}(N-2000)=k t+c \\
& \therefore \quad N-2000=e^{k t+c}
\end{aligned}
$$

$$
\begin{align*}
& \text { (i) } \therefore N=2000+A e^{2}
\end{align*}
$$

Initially, number? sheep $=5000$, le. then $t=0, N=5000$
$\therefore \operatorname{sub} \cdot m$ (1).

$$
\begin{aligned}
5000 & =2000+A e^{0} \\
B 000 & =2000+4 \\
\therefore A & =3000 \\
\therefore \quad N & =2000+3000 e^{k}
\end{aligned}
$$

(ii)
when $t=2$ y ns, $N=6000$
ie. $6000=2000+3000 e^{2 k}$
(ii) $\quad x=5 \sin (2 t+\alpha)$.
$\dot{x}=10 \cos (2 t+\alpha)$
$\ddot{x}=-20 \sin (2 t+\alpha)$
He $\quad \ddot{x}=-4 x$
Thus is of the form $\ddot{x}=-n^{2} x$;
i) $\quad \therefore x=\sqrt{4^{2}+3^{2}}\left[\frac{4}{\sqrt{4}+3^{2}} \sin 2 t+\frac{3}{\sqrt{4^{2} 2^{2}}} \cos 2 t\right]$ $x=5\left[\frac{4}{5} \sin 2 t+\frac{3}{5} \cos 2 t\right]$ This in $b^{\text {the }}$ form

$$
x=A \sin (2 t+\alpha)
$$

f) $\quad x=4 \sin 2 t+3 \cos 2 t$

157

(ii) $\quad n^{2}=4$

The period yosalation

$$
\therefore \quad T=\frac{2 \pi}{n}=\frac{2 \pi}{2}
$$

$$
=\pi \text { sens }
$$

(v). To calculate velocity
unng $\begin{aligned} v^{2} & =n^{2}\left(a^{2}-x^{2}\right) \\ v^{2} & =4\left(s^{2}-3^{2}\right)\end{aligned}$

$$
=4 \times 16,
$$

$\therefore V=8 \mathrm{~cm} / \mathrm{s}$

$$
\text { When } A=5 \text { aud Where bathe } \cos \alpha=\frac{4}{5} 1
$$

$$
\text { and whence }-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2} \text {. }
$$

\therefore Max volume nottanis
When $\theta=\sqrt{\frac{F}{3}} \cdot \pi$.
The Minimum value Zen: :-
Maximum Volume
$=\frac{8 \pi}{3} \cdot\left(\sqrt{\frac{7}{3}} \cdot \pi\right)^{2} \cdot \sqrt{4 \pi^{2}-\left(\frac{7}{3} \pi\right)^{2}}$
$=\frac{8 \pi^{2}}{3} \times \frac{8 \pi^{2}}{3} \cdot \sqrt{4 \pi^{2}-\frac{8 \pi^{2}}{3}}$
$=\frac{64 \pi^{3}}{9} \sqrt{\frac{4 \pi^{2}}{3}}$
$\left.\begin{array}{l}=\frac{128 \pi^{4}}{9 \sqrt{3}} \mathrm{~cm}^{3} \\ \left.=\frac{128 \sqrt{3} \pi^{4} \mathrm{~cm}^{3}}{}\right\}\end{array}\right\}$
$\left.=\frac{128 \sqrt{3}}{27} \pi^{4} \mathrm{~cm}^{3}\right\}$.
\therefore Volume Cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& \therefore \quad=\frac{1}{3} \pi \cdot(2 \theta)^{2} \cdot 2 \sqrt{4 n^{2}-\theta} \\
& \therefore \quad V=\frac{8 B^{2} \pi \theta^{2}}{3} \sqrt{4 n^{2}-\theta^{2}}
\end{aligned}
$$

Note: Yon are not expected to Wake out the maximum Volume. It done here, only for enteritis' sake.
yo th Cone win have the same
length as are $A B$
$2 \pi r=4 \pi 0$
when $\theta=\sqrt{\frac{5}{3}} \cdot \pi$
Set the slope y the come be l.
$l=4 \pi \mathrm{~km}$
Let the hinges $f^{\text {itu }}$ Cove be $=$ ham
$\therefore \quad h^{2}=l^{2}-r^{2}$
Le. $h^{2}=16 \pi^{2}-4 t^{2}$

$$
\begin{aligned}
& =\sqrt{4\left(4 \pi^{2}-\theta^{2}\right)} \\
& =2 \sqrt{4 \pi^{2}-\theta^{2}}
\end{aligned}
$$

-
(i) For Maximum Vikum $\frac{d V}{d \theta}=0$. $d v=\frac{8 \pi \theta^{2}}{3} \sqrt{4 \pi^{2}-\theta^{2}} d \theta$

$$
\begin{aligned}
& 2(4 \pi-\theta] \cdot \theta-2 \theta \\
& +\left(4 \pi^{2}-\theta^{2}\right)^{2 / 2} \cdot \frac{16 \pi \theta}{3}
\end{aligned}
$$

$=0$ fornax. Volume
$\therefore \quad \frac{9 \pi \theta^{3}}{3} \times \frac{1}{\sqrt{4 n^{2}-\pi^{2}}}=\frac{6 \pi \theta}{3} \sqrt{4 n^{2}-\theta^{2}}$
\qquad

--

$A A_{3}=A O_{0}$
$9 A C_{C}=90^{\circ}$
$q A K C=90^{\circ}$
$f B H Y=90^{\circ}$
TO PRCUE：－$A \cdot H=C Y$
PRooF：set 千 $\mathrm{BHA}_{\mathrm{H}}=\alpha^{\circ}$
Tisen： f $A B A=40^{\circ}-\alpha^{\circ}$
f^{\prime} CAK $=90^{\circ}-x^{\circ}$
和和 $=x^{\circ}$
on i 5 MBH，$A C K$ ，

$$
A B=\pi C-2 a
$$

$\dot{A B A H}=f \dot{A C K}-\left(=\alpha^{\circ}\right)$

$$
x \cdot A B H=x \operatorname{caK}-\left(=90 x^{\circ}\right)
$$

$$
\therefore \quad \triangle A B \mu \equiv \triangle A C K \quad(A A)
$$

$\therefore \quad$ CH $=C K$

$$
Q_{1}
$$

In $\operatorname{Cs} A B+1$ and $A C K$
1．$A B=H C$ Grier
2．$\angle B H A=\angle A K C=90^{\circ}$
（ $B \mathrm{BH}_{2} \mathrm{CK}$ are yoren ferpeocha．
to $A Y$ ）．
3．$\angle B A K+\angle K A C=90^{\circ}$ （ $\angle B A C=90$ gūn ）
$\therefore \angle K A C \equiv 90-\angle B A K$.
$\angle B A H+\angle A H B+\angle H B A$
$=180^{\circ}(\angle$ sumi $\triangle A B H)$
$\therefore \angle A B A=180-(B A H+\angle B A A)$

$$
=180-(\operatorname{LEAH}+90)
$$

$\angle H B A=90-\angle B A H-q 1$
From：（1）and（2）
$\angle K A C=\angle H E A$ 天
$\triangle A B H \equiv \triangle A C A K(A . A S))$

[^0]: EXAMINERS:

 Mr. John
 Mr. Habkouk
 Mr. Dharma Mrs. Taylor

