Total marks (84) Attempt Questions 1 - 7 All questions are of equal value

Answer all questions in a SEPARARTE writing booklet.

QUES	TION 1 (12 marks) Use a SEPARATE writing booklet.	Marks
(a)	Find the exact value of $\int_{-\sqrt{3}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx.$	3
(b)	Find the coordinates of the point dividing the interval joining $(-3, 5)$ to $(2, -8)$ internally in the ratio $3:2$.	2
(c)	Solve $\frac{x-2}{x+5} < 2$.	3

(d) Find the gradients of the two lines that make an angle of 45° with the line **3** whose equation is y = 2x - 1.

(e) Find
$$\lim_{x\to 0} \frac{\sin \pi x}{x}$$
. 1

QUESTION 2(12 marks)Use a SEPARATE writing booklet.Marks

(a) For what values of x is
$$|x| + x = 0$$
? 1

(b) Use the substitution
$$u = x + 1$$
 to evaluate $\int_{-1}^{3} x \sqrt{x + 1} dx$. 4

(c) Prove the identity
$$\frac{\cos 2A}{\sin A} + \frac{\sin 2A}{\cos A} = \operatorname{cosec} A$$
. 3

(d) Use the substitution
$$t = \tan \frac{\theta}{2}$$
, or otherwise, to solve for $0^\circ \le \theta \le 360^\circ$:
 $2\sin \theta + 3\cos \theta = 2$

QUESTION 3	(12 marks)	Use a SEPARATE writing booklet.	Marks
-------------------	------------	---------------------------------	-------

(a)	The	The polynomial $P(x) = 2x^3 - x^2 - 5x + k$ has a factor $(x - 2)$.		
	(i)	Find the value of <i>k</i> .	1	
	(ii)	For this value of k, solve the equation $P(x) = 0$.	3	

Show that the equation $5\log_e x + x = 9$ has a root between 3 and 4. (b) (i) 1

Taking x = 3 as a first approximation, use Newton's method to find (ii) 3 a second approximation to the root.

(c) Prove, using the Principle of Mathematical Induction, that, for all positive integers n, 4

 $1 \times 2 + 2 \times 5 + 3 \times 8 + \dots + n(3n-1) = n^2(n+1)$

QUESTION 4	(12 marks)	Use a SEPARATE writing booklet.	Marks

4

 $\sin 2x - \cos x = 0$

Find the general solution, in terms of π , of the equation

(b) Consider the function
$$f(x) = 2\cos^{-1}(x-1)$$
.

(a)

State the domain and range of y = f(x). 2 (i)

(ii) Sketch the graph of
$$y = f(x)$$
. 1

Sketch the graph of the function f(x) = |2x-1|. (c) (i) 1 What is the largest domain containing the value x = 1 for which f(x) has (ii) 1

 $a = 1 \land a$

an inverse function
$$f^{-1}(x)$$
?
(iii) Find $f^{-1}(x)$ in terms of x and state its domain and range. 2

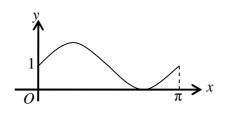
(iv) Sketch the graph of
$$y = f^{-1}(x)$$
. 1

QUESTION 5

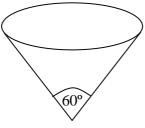
Marks

(a)

(b)



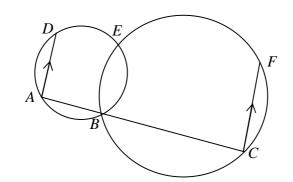
The diagram shows the graph of $y = 1 + \sin 2x$ for $0 \le x \le \pi$. This graph is rotated about the *x*-axis. Find the volume of the solid formed.



An inverted conical vessel has a vertical angle of 60° . Water is poured into the vessel at a constant rate of 8 cm³/minute.

- (i) Show that, at a depth of *h* cm, the volume $V \text{ cm}^3$ of water is given by $2 V = \frac{1}{9}\pi h^3$.
- (ii) At what rate is the water level rising when the depth is 4 cm? 2

(c)



ABC is a straight line. *AD* is parallel to *CF*. Copy the diagram neatly into your answer booklet. Prove that *D*, *E* and *F* are collinear.

4

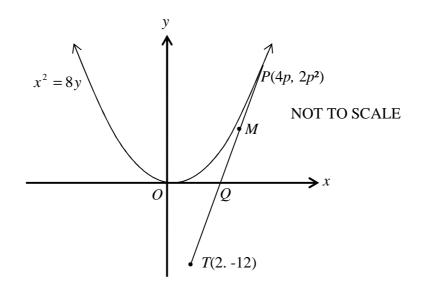
(a) A particle is moving in a straight line. Its velocity v m/s at a position x metres from an origin O is given by:

$$v^2 = 4(27 - 3x^4)$$

(i) Determine the position of the particle when it is instantaneously at rest. 1

2

(ii) Find its acceleration when x = 1.



The point $P(4p, 2p^2)$ lies on the parabola $x^2 = 8y$. *PT* is a tangent to the parabola at *P*.

(i)	Find the equation of the tangent at <i>P</i> .	2
(ii)	The tangent at P meets the x-axis at Q . Find the equation of the locus of M , the midpoint of PQ , as P moves around the parabola.	3
(iii)	If the tangent at <i>P</i> passes through <i>T</i> (2, -12), show that $p^2 - p - 6 = 0$.	1
(iv)	Hence find the equations of the two tangents to the parabola that pass through $T(2, -12)$.	3

QUESTION 7 (12 marks) Use a SEPARATE writing booklet. Marks

(a) Find the exact value of
$$\cos\left(2\tan^{-1}\frac{3}{5}\right)$$
 2

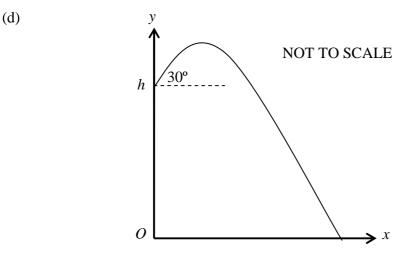
(b) Find the coefficient of x^3 in the expansion of $(3+2x)^5$. 2

3

2

(c) Using the Binomial Theorem expansion

$$(1+x)^{n} = {n \choose 0} + {n \choose 1}x + {n \choose 2}x^{2} + \dots + {n \choose r}x^{r} + \dots + {n \choose n}x^{n},$$
prove that
$$\sum_{r=0}^{n} \frac{1}{r+1}{n \choose r} = \frac{1}{n+1}(2^{n+1}-1).$$



A stone is thrown from the top of a vertical cliff, h metres high, at 20 m/s and at an angle of 30° above the horizontal. Take acceleration due to gravity as 10 m/s².

- (i) Starting from the acceleration equations x = 0 and x = -10, show that 2 $x = 10\sqrt{3}t$ and $y = 10t - 5t^2 + h$ where x and y are measured in metres from the base of the cliff.
- (ii) The stone hits the ground after 6 seconds. Find the height of the cliff. 1
- (iii) Find the acute angle at which the stone strikes the ground.

End of paper

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; \ x \neq 0, \text{if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, \ a\neq 0$
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, \ a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln(x+\sqrt{x^2-a^2}), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)$

NOTE: $\ln x = \log_e x, x > 0$