Total marks (84)
Attempt Questions 1-7
All questions are of equal value
Answer all questions in a SEPARARTE writing booklet.

QUESTION 1 (12 marks) Use a SEPARATE writing booklet. Marks
(a) Find the exact value of $\int_{-\sqrt{3}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$.

3
(b) Find the coordinates of the point dividing the interval joining $(-3,5)$ to $(2,-8)$ internally in the ratio $3: 2$.
(c) Solve $\frac{x-2}{x+5}<2$.
(d) Find the gradients of the two lines that make an angle of 45° with the line whose equation is $y=2 x-1$.
(e) Find $\lim _{x \rightarrow 0} \frac{\sin \pi x}{x}$.

QUESTION 2 (12 marks) Use a SEPARATE writing booklet.
(a) For what values of x is $|x|+x=0$?
(b) Use the substitution $u=x+1$ to evaluate $\int_{-1}^{3} x \sqrt{x+1} d x$.
(c) Prove the identity $\frac{\cos 2 A}{\sin A}+\frac{\sin 2 A}{\cos A}=\operatorname{cosec} A$.
(d) Use the substitution $t=\tan \frac{\theta}{2}$, or otherwise, to solve for $0^{\circ} \leq \theta \leq 360^{\circ}$:

4

$$
2 \sin \theta+3 \cos \theta=2
$$

QUESTION 3 (12 marks) Use a SEPARATE writing booklet.
(a) The polynomial $P(x)=2 x^{3}-x^{2}-5 x+k$ has a factor $(x-2)$.
(i) Find the value of k. 1
(ii) For this value of k, solve the equation $P(x)=0$.
(b) (i) Show that the equation $5 \log _{e} x+x=9$ has a root between 3 and 4 .
(ii) Taking $x=3$ as a first approximation, use Newton's method to find a second approximation to the root.
(c) Prove, using the Principle of Mathematical Induction, that, for all positive integers $n, 4$

$$
1 \times 2+2 \times 5+3 \times 8+\ldots \ldots \ldots \ldots+n(3 n-1)=n^{2}(n+1)
$$

QUESTION 4 (12 marks) Use a SEPARATE writing booklet.
(a) Find the general solution, in terms of π, of the equation

$$
\sin 2 x-\cos x=0
$$

(b) Consider the function $f(x)=2 \cos ^{-1}(x-1)$.
(i) State the domain and range of $y=f(x)$.
(ii) Sketch the graph of $y=f(x)$.
(c) (i) Sketch the graph of the function $f(x)=|2 x-1|$.
(ii) What is the largest domain containing the value $x=1$ for which $f(x)$ has an inverse function $f^{-1}(x)$?
(iii) Find $f^{-1}(x)$ in terms of x and state its domain and range.
(iv) Sketch the graph of $y=f^{-1}(x)$.
(a)

The diagram shows the graph of $y=1+\sin 2 x$ for $0 \leq x \leq \pi$.
This graph is rotated about the x-axis. Find the volume of the solid formed.
(b)

An inverted conical vessel has a vertical angle of 60°. Water is poured into the vessel at a constant rate of $8 \mathrm{~cm}^{3} /$ minute.
(i) Show that, at a depth of $h \mathrm{~cm}$, the volume $V \mathrm{~cm}^{3}$ of water is given by

$$
V=\frac{1}{9} \pi h^{3} .
$$

(ii) At what rate is the water level rising when the depth is 4 cm ?
(c)

$A B C$ is a straight line. $A D$ is parallel to $C F$.
Copy the diagram neatly into your answer booklet.
Prove that D, E and F are collinear.

QUESTION 6 (12 marks) Use a SEPARATE writing booklet.
(a) A particle is moving in a straight line. Its velocity $v \mathrm{~m} / \mathrm{s}$ at a position x metres from an origin O is given by:

$$
v^{2}=4\left(27-3 x^{4}\right)
$$

(i) Determine the position of the particle when it is instantaneously at rest.
(ii) Find its acceleration when $x=1$.
(b)

The point $P\left(4 p, 2 p^{2}\right)$ lies on the parabola $x^{2}=8 y$.
$P T$ is a tangent to the parabola at P.
(i) Find the equation of the tangent at P.
(ii) The tangent at P meets the x-axis at Q. Find the equation of the locus of M, the midpoint of $P Q$, as P moves around the parabola.
(iii) If the tangent at P passes through $T(2,-12)$, show that $p^{2}-p-6=0$.
(iv) Hence find the equations of the two tangents to the parabola that pass through $T(2,-12)$.

QUESTION 7 (12 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of $\cos \left(2 \tan ^{-1} \frac{3}{5}\right)$
(b) Find the coefficient of x^{3} in the expansion of $(3+2 x)^{5}$.
$(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots \ldots .+\binom{n}{r} x^{r}+\ldots \ldots+\binom{n}{n} x^{n}$,
prove that $\sum_{r=0}^{n} \frac{1}{r+1}\binom{n}{r}=\frac{1}{n+1}\left(2^{n+1}-1\right)$.
(d)

A stone is thrown from the top of a vertical cliff, h metres high, at $20 \mathrm{~m} / \mathrm{s}$ and at an angle of 30° above the horizontal.
Take acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Starting from the acceleration equations 0 and -10 , show that

$$
x=10 \sqrt{3} t \quad \text { and } \quad y=10 t-5 t^{2}+h
$$

where x and y are measured in metres from the base of the cliff.
(ii) The stone hits the ground after 6 seconds. Find the height of the cliff.
(iii) Find the acute angle at which the stone strikes the ground.

End of paper

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -\frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

