Total marks (84)
Attempt Questions 1-7
All questions are of equal value
Answer all questions in a SEPARARTE writing booklet.

QUESTION 1 (12 marks) Use a SEPARATE writing booklet. Marks

(a) Factorise $x^{3}+27$. 1
(b) Draw the graph of the relation $|x+2 y|=4$.
(c) Find the coordinates of the point which divides the interval joining (2, -1) to $(5,3)$ externally in the ratio $3: 1$.
(d) Solve $\frac{3 x-1}{x+2}>4$.
(e) The line $y=8-2 x$ cuts the parabola $y=x^{2}$ at the point (2, 4). Find the acute 4 angle between the line $y=8-2 x$ and the tangent to the parabola at $(2,4)$.
(a) Find $\int \frac{x}{\sqrt{16-x^{4}}} d x$ using the substitution $u=x^{2}$. 3
(b) Find $\int_{0}^{\frac{\pi}{4}} \sin ^{2} 2 x d x$.

3
(c) Find the exact value of $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)$.
(d) Consider the function $f(x)=\frac{\pi}{2}+\tan ^{-1}(x-1)$.
(i) What is the range of $y=f(x)$?
(ii) Sketch the graph of $y=f(x)$.

QUESTION 3 (12 marks) Use a SEPARATE writing booklet.
(a) Write down the general solution of the equation $\cos (\pi x)=\frac{\sqrt{3}}{2}$.
(b) Using the expansion the expansion of $\sin (A+B)$, find the exact value of $\sin 105^{\circ}$.
(c) Sketch the graph of $y=\sec x$ for $0 \leq x \leq 2 \pi$.
(d) (i) Express $6 \sin \theta-8 \cos \theta$ in the form $R \sin (\theta-\alpha)$ where $R>0$ and θ and α are in degrees.
(ii) Hence solve the equation $6 \sin \theta-8 \cos \theta=4$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(iii) What is the minimum value of $6 \sin \theta-8 \cos \theta$, and what is the least positive value of θ for which it occurs?
(a) A parabola has equation $8 a y=x^{2}-4 a x-20 a^{2}$.
(i) By expressing the equation in the form $(x-h)^{2}=4 A(y-k)$, find the coordinates of the vertex.
(ii) Write down the equation of the directrix.
(b)

The points $P\left(4 p, 2 p^{2}\right)$ and $Q\left(4 q, 2 q^{2}\right)$ lie on the parabola $x^{2}=8 y$
(i) Show that the equation of the tangent at P is $p x-y-2 p^{2}=0$.
(ii) Find the coordinates of the point of intersection T of the tangents at P and Q.
(iii) If M is the midpoint of the chord $P Q$, show that $T M$ is parallel to the axis of the parabola.
(c)

In the diagram, $A B$ is a diameter of the circle, and $C B$ and $E D$ are tangents to the circle. $\angle E C D=\theta$.

Copy or trace this diagram into your writing booklet.
Prove that $\angle D E B=2 \theta$.

QUESTION 5 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows part of the graph of the function $y=P(x)$ where $P(x)$ is an odd function.
Copy or trace the diagram into your writing booklet and complete the graph of $y=P(x)$, given that it is an odd function.
(b) $\quad(x-1)$ and $(x+2)$ are factors of $P(x)=x^{3}+4 x^{2}+a x+b$.
(i) Find the values of a and b.
(ii) What is the third factor of $P(x)$?
(c) For the polynomial equation $P(x)=0$ where $P(x)=x^{3}-5 x+3$, there is a root between $x=1$ and $x=2$.
(i) Determine if the root lies between 1 and 1.5 or between 1.5 and 2 .
(ii) Taking $x=1.5$ as an approximation to the root, use Newton's method once to find a second approximation to the root.
(d) Using the Principle of Mathematical Induction, prove that, for all positive integers $n, 5^{n}+2 \times 11^{n}$ is a multiple of 3 .

QUESTION 6 (12 marks) Use a SEPARATE writing booklet.
(a) Boyle's Law in Physics states that, for a gas at constant temperature, the volume of a gas is inversely proportional to its pressure.
For a particular gas at a particular temperature, the pressure (P kilopascals) and its volume $\left(V \mathrm{~cm}^{3}\right)$ are related by the formula:

$$
P V=3000
$$

If the volume of gas is increasing at a rate of $30 \mathrm{~cm}^{3} /$ minute, find the rate at which the pressure is decreasing when the volume is $100 \mathrm{~cm}^{3}$.
(b) A tank contains a brine solution for curing hams. (Brine is salt dissolved in water.) Initially the tank contains 80 kg of dissolved salt.
The amount of salt in the solution is known to change at a rate, in $\mathrm{kg} /$ minute, given by: $\quad \frac{d M}{d t}=-0.01(M-50)$
(i) Show that $M=50+A e^{-0.01 t}$ satisfies the equation.
(ii) Show that $A=30$.
(iii) Find the amount of salt in the tank after 60 minutes.
(iv) What is the least amount of salt that will remain in the solution?
(c) A particle moves in Simple Harmonic Motion with a period of 6 seconds, and an amplitude of 20 cm .
(i) Write an equation for its motion in the form $x=A \sin n t$.
(ii) Find the maximum velocity of the particle.
(iii) Find its distance from the centre of oscillation when its velocity is half its maximum velocity.

QUESTION 7 (12 marks) Use a SEPARATE writing booklet.
(a) Find, as an integer, the coefficient of x^{3} in the expansion of $\left(x-\frac{2}{x^{2}}\right)^{9}$.
(b) A particle is moving in a straight lie. Its velocity $v \mathrm{~m} / \mathrm{s}$ at position x metres is given by:

$$
v=\frac{5}{x} \text { for } x>0
$$

Initially, $x=10$.
(i) Find the acceleration when $x=2$.
(ii) Find an expression for x in terms of t.
(c) A particle is projected from ground level at an angle θ to the horizontal, with a speed of $V . g$ is the acceleration due to gravity. Its position at time t is given by the equations:

$$
x=V t \cos \theta, \quad y=V t \sin \theta-\frac{1}{2} g t^{2}
$$

(i) Find the maximum height reached, in terms of V and θ, in simplest form.
(ii) What is the speed of the object at its maximum height?

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin -\frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\frac{1}{\sqrt{x^{2}+a^{2}}} d x \\
\left.\int \frac{x^{2}-a^{2}}{}\right), x>a>0 \\
\int &
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Extension One Mathematics

Trial HSC Examination 2006

- Marker comments + Worked Solution
- Dot plots

Mathematics Extension 1: Question 1
Suggested Solutions
(a) $x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$

Marker's Comments
(a) $x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$

Well done
(b)

$$
|x+2 y|=4
$$

$$
x+2 y=-4 \text { or } x+2 y=4
$$

(c)

$$
\begin{gathered}
(2,-1)(5,3) \quad x_{1} y_{1} x_{1} x_{2}^{m_{2}} \\
\left(\frac{3 \times 5+(-1) \times 2}{3+(-1)}, \frac{3 \times 3+(-1) \times(-1)}{3+(-1)}\right) \\
\left(6 \frac{1}{2}, 5\right) \\
\frac{3 x-1}{x+2}>4 \\
\times(x+2)^{2}:(3 x-1)(x+2)>4(x+2)^{2} \\
4(x+2)^{2}-(3 x-1)(x+2)<0 \\
(x+2)[4(x+2)-(3 x-1)<0 \\
(x+2)(x+9)<0 \\
-9<x<-2
\end{gathered}
$$

(d)
(e)

$$
\begin{aligned}
& y=8-2 x: \operatorname{grad}=-2 \\
& y=x^{2} \\
& \frac{d y}{d x}=2 x \cdot \operatorname{grad}=4 \text { at }(2,4) \\
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
&=\left|\frac{-2-4}{1+(-2) \times 4}\right| \\
&=\frac{6}{7} \\
& \theta=40^{\circ} 36^{\prime} \text { or } 41^{\circ} \text { (nearestdegrec) }
\end{aligned}
$$

Mathematics Extension 1: Question 2.

Suggested Solutions	Marks Awarded	Marker's Comments
$2 \cdot$		

(a)

$$
\begin{align*}
\int \frac{x}{\sqrt{16-x^{4}}} d x & =\frac{1}{2} \int \frac{2 x d x}{\sqrt{16-x^{4}}} \\
& =\frac{1}{2} \int \frac{1}{\sqrt{16-u^{2}}} d u \\
& =\frac{1}{2} \sin ^{-1} \frac{u}{4}+C \\
& =\frac{1}{2} \sin ^{-1} \frac{x^{2}}{4}+C \tag{3}
\end{align*}
$$

$u=x^{2}$
(b) $\int_{0}^{\frac{\pi}{4}} \sin ^{2} 2 x d x=\int_{0}^{\frac{\pi}{4}} \frac{1}{2}(1-\cos 4 x) d x$

$$
\begin{align*}
& =\frac{1}{2}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{4}-\frac{1}{4} \times 0\right)-(0-0)\right] \\
& =\frac{\pi}{8} \tag{3}
\end{align*}
$$

(c) $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)$

$$
\begin{align*}
& =\sin 2 \theta \\
& =2 \sin \theta \cos \theta \\
& =2 \times \frac{2}{\sqrt{13}} \times \frac{3}{\sqrt{13}} \\
& =\frac{12}{13} \tag{3}
\end{align*}
$$

(d) $f(x)=\frac{\pi}{2}+\tan ^{-1}(x-1)$
(i) $-\frac{\pi}{2}<\tan ^{-1}(x-1)<\frac{\pi}{2}$

$$
\therefore \quad 0<\frac{\pi}{2}+\tan ^{-1}(x-1)<\pi .
$$

(ii)

Well done

Those that started with the result $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ did better than those that went straight into the expression integrated.

Well done
i) well done
ii) Some forgot to move the curve across I unit \therefore had the y-intercept as $\frac{\pi}{2}$

Mathematics Extension 1: Question 3

Suggested Solutions	Marks Awarded	Marker's Comments

(a)

$$
\begin{gathered}
\cos \pi x=\frac{\sqrt{3}}{2} \\
\pi x=2 n \pi \frac{\pi}{6} \\
x=2 n \pm \frac{1}{6}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\sin 105^{\circ} & =\sin \left(60^{\circ}+45^{\circ}\right. \\
& =\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ} \\
& =\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \text { OR } \frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

(c) $y=\sec x \cdot y \uparrow$

(d) (i)

$$
\begin{aligned}
\text { (i) } \begin{aligned}
& 6 \sin \theta-8 \cos \theta \equiv R \sin (\theta-\alpha) \\
& \equiv R \sin \theta \cos \alpha-R \cos \theta \sin \alpha \\
& R \cos \alpha=6 R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=6^{2}+8^{2} \\
& R \sin \alpha=8 R^{2}=100 \\
& \tan \alpha=\frac{8}{6} R=10 \\
& \alpha=53^{\circ} 08^{\prime}\left(0 R 53^{\circ}\right)(R>0) \\
& \therefore 6 \sin \theta-8 \cos \theta \equiv 10 \sin \left(\theta-53^{\circ} 08^{\prime}\right)
\end{aligned} \text { (2) }
\end{aligned}
$$

(ii)

$$
\begin{align*}
& 10 \sin \left(\theta-53^{\circ} 08^{\prime}\right)=4 \\
& \sin \left(\theta-53^{\circ} 08^{\prime}\right)=\frac{4}{10} \\
& \theta-53^{\circ} 08^{\prime}=23^{\circ} 35^{\prime} \text { or } 156^{\circ} 25^{\prime} \\
& \theta=76^{\circ} 43^{\prime} \text { or } 209^{\circ} 33^{\prime} \tag{2}
\end{align*}
$$

(iii) Minimum value of -10 when

$$
\begin{align*}
\theta-53^{\circ} 08^{\prime} & =270^{\circ} \\
\text { 'e. }^{\circ} \theta & =323^{\circ} 08^{\prime} \tag{2}
\end{align*}
$$

poorly answered. 1 mark for each part to answer.
6) Well answered. I Mark for rule bywnodvalue I Mark for simplification

Many. Sketches were messy.
Solve lost mark for not Snowing asymptotes
a) Generally well done

I Mart for R_{k} in connect form. I Mark for correct angle

Poorly answered.
Many coulshit give Goth andes
poorly answered a large number could's give the Min-Jave and value for θ whee this occurred.

Mathematics Extension 1: Question 4
Suggested Solutions
(a) $8 a y=x^{2}-4 a x-20 a^{2}$
(i) $x^{2}-4 a x+4 a^{2}=8 a y+20 a^{2}+4 a^{2}$

$$
(x-2 a)^{2}=8 a(y+3 a) \text {. }
$$

vertex is $(2 a,-3 a)$.
(ii) $A=2 a$

Directrix: $y=-5 a$

(b) $x^{2}=8 y$ ie. $y=\frac{x^{2}}{8}$
(i) $\frac{d y}{d x}=\frac{2 x}{8}=\frac{2 \times 4 p}{8}=P$ at $\left(4 P, 2 p^{2}\right)$

Tangent $a+P: \quad y-2 P^{2}=P(x-4 P)$

$$
\begin{align*}
& y-2 P^{2}=P^{x}-4 P^{2} \\
& p x-y-2 P^{2}=0 \tag{2}
\end{align*}
$$

(ii) Tangent a+ $\overline{P:} \quad p x-y=2 p_{2}^{2}$ (i)

Tangent at Q : $\quad q^{x}-y=2 q^{2}$ (2)

$$
\text { (1) } \begin{aligned}
-(2)(p-q) x & =2 p^{2}-2 q^{2} \\
& =2(p-q)(p+q) \\
x & =2(p+q)
\end{aligned}
$$

Subst. into (1).

$$
\begin{aligned}
y & =p \times 2(p+q)-2 p^{2} \\
& =2 p^{2}+2 p q-2 p^{2} \\
& =2 p q
\end{aligned}
$$

$$
\begin{equation*}
T \text { is }[2(p+q), 2 p q] \tag{3}
\end{equation*}
$$

(iii) x-coord of $M=\frac{4 p+4 q}{2}=2(p+q)$

Since T, M have the Same x-coord.,
then TM//y-axis (axis of parabola)
(c)

$$
\therefore \angle B D C=90^{\circ}
$$

$$
\begin{aligned}
\therefore \angle B E D & =180^{\circ}-2\left(90^{\circ}-\theta\right)(\text { angle sum of }) \\
& =2 \theta
\end{aligned}
$$

- semi-circle)

$$
\therefore \angle D B E=90^{\circ}-\theta(\text { angle sum of } \triangle B D C)
$$

$$
\therefore \angle B D E=90^{\circ}-\theta \text { (base angle of isos. } \triangle B D E
$$

$$
\begin{aligned}
\because \text { since } E B= & E D(\text { tangents from } \\
& \text { external pointare equal }))
\end{aligned}
$$

$$
=2 \theta
$$

Many students didn' + Handle the algebra well. or were confused with working
with the ${ }^{2}$. with the ' a '.
i) well done
ii) didn't have to derive tangent at Q.
a number of students couldn't solve the
simultaneous eqns or didn't see that $2 p^{2}-2 q^{2}$ $2 p-2 q$
$=2(p+q)(p-q)$.
iii) many students found gradient of TM and showed that it was undefined \therefore TM is a vertical line. Correct but more working than given explanation.
c) well done by) those that worked through it.

Mathematics Extension 1: Question 5

(b). $\quad P(x)=x^{3}+4 x^{2}+a x+b$
(i)

$$
\begin{array}{r}
P(1)=0: 1+4+a+b=0 \quad \therefore a+b=-5 \\
P(-2)=0:-8+16-2 a+b=0 \therefore-2 a+b=-8 \tag{2}\\
\quad \text { (1) }-(2): 3 a=3 \therefore a=1, b=-6
\end{array}
$$

(ii)

$$
\begin{aligned}
& (x-1)(x+2) \overline{(x+c) \equiv x^{3}+4 x^{2}}+x-6 \\
& \therefore-2 c=-6 \therefore c=3
\end{aligned}
$$

Third factor is $(x+3)$
OR. USE "sum of roots"
(c)

$$
P(x)=x^{3}-5 x+3
$$

(i)

$$
P(1)=-1 ; \quad P(2)=1
$$

(ii)

Well dine.
well done

For mark needed to

$$
P\left(1.5^{-}\right)=1.5^{3}-5 \times 1.5+3=-1.125
$$

\therefore Root lies between 1.5 and 21

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\overline{P\left(x_{1}\right)}}{P^{\prime}\left(x_{1}\right)} \\
& =1.5-\frac{1.125}{1.75} \\
& =2.14(2 d p)
\end{aligned}
$$ Shout $P(15)<0 \quad P(2)>0$ \therefore lies Between 15 and 2 .

well done

Poorly answered.
1 Mark for proving true for $n=1$

1 Mark for assuming

$$
5^{k}+2 \times 11^{k}=3 M \text { ant }
$$

Substitution into T_{k+1}. 1 Mark for Shaming $T_{\text {ky }}$ is amatiple of 3
1 Mare for conclusion.

Those that could not prove it true for $n=k+1$ wore only awarded 1 Mark

Mathematics Extension 1: Question 6
Suggested Solutions
(a)

$$
\begin{aligned}
P V & =3000 \\
P & =3000 V^{-1} \\
\frac{d P}{d V} & =-3000 V^{-2}-\frac{3000}{V^{2}} \\
\frac{d P}{d t} & =\frac{d P}{d V} \times \frac{d V}{d t}
\end{aligned}
$$

when $V=100, \frac{d V}{d t}=30$

$$
\begin{aligned}
\frac{d P}{d t} & =-\frac{3000}{(100)^{2}} \times 30 \\
& =-9
\end{aligned}
$$

Pressure is decreasing at $9 \mathrm{kpa} / \mathrm{minute}$.
(b)

$$
\begin{aligned}
\frac{d M}{d t} & =-0.01(M-50) \\
M & =50+A e^{-0.01 t} \\
\frac{d M}{d t} & =-0.01 A e^{-0.01 t} \\
& =-0.01(M-50)
\end{aligned}
$$

(ii) When $t=0, M=80 \therefore 80=50+A e^{\circ}$

$$
A=30
$$

(iii) When $t=60, \overline{M=50+30 \times e^{-0.01 \times 60}}$

$$
\text { Mass of salt }=66.5 \mathrm{~kg}
$$

(iv) Least amount of salt $=50 \mathrm{~kg}$.
(c) (i)

$$
\begin{align*}
x & =A \sin n t \\
\text { Period } & =\frac{2 \pi}{n}=6 \therefore n=\frac{2 \pi}{6}=\frac{\pi}{3} \\
\therefore x & =20^{\circ} \sin \frac{\pi}{3} t \tag{2}
\end{align*}
$$

(ii)

$$
v=20 \times \frac{\pi}{3} \cos \frac{\pi}{3} t
$$

Maximum velocity $=\frac{20 \pi}{3} \mathrm{~cm} / \sec$ (1)
(iii)

$$
\begin{aligned}
v^{2} & =n^{2}\left(a^{2}-x^{2}\right) \\
\left(\frac{10 \pi}{3}\right)^{2} & =\left(\frac{\pi}{3}\right)^{2}\left(400-x^{2}\right) \\
100 & =400-x^{2} \\
x^{2} & =300
\end{aligned}
$$

$$
\text { Distance }=10 \sqrt{3} \mathrm{~cm} .
$$

$O R$ when $v=\frac{10 \pi}{3}, \frac{10 \pi}{3}=\frac{20 \pi}{3} \cos \frac{\pi}{3} \cdot t$

$$
\cos \frac{\pi}{3} t=\frac{1}{2} \therefore \frac{\pi}{3} t=\frac{\pi}{3} \therefore t=1
$$

When $t=1, x=20 \sin \frac{\pi}{3}$

$$
\begin{aligned}
& =20 \times \frac{\sqrt{3}}{2} \\
& =10 \sqrt{3}
\end{aligned}
$$

a) Well done by those that atterm pred.
Disappointing to see that a number of students didn't know where to start.
i) well done
ii) well done
iii) well done
iv) Needed to know
that as $t \rightarrow \infty$,
$e^{-0.0 i t} \rightarrow 0$.
i) some students
incorrectly let
$\eta=6$ instead of
$\frac{2 \pi}{2}=6$.
ii) Many students
found max. velocity by letting acceleration $=0$. Easier \& less working to consider amplitude of velocity function.
iii) Most students used second method . First method produced less errors.

Mathematics Extension 1: Question 7.

Suggested Solutions	Marks Awarded	Marker's Comments
(a) $\left(x-\frac{2}{x^{2}}\right)^{9}$		

By inspection, term in x^{3} is

$$
\binom{9}{2} x^{7}\left(-\frac{2}{x^{2}}\right)^{2}
$$

Coefficient of $x^{3}=\binom{a}{2}(-2)^{2}$
$=144$
(b)

$$
v=\frac{5}{x} \quad \text { for } x>0 \text {. }
$$

(i) $a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

$$
\begin{aligned}
& =\frac{d}{d x}\left(\frac{1}{2} \times \frac{25}{x^{2}}\right) \\
& =\frac{d}{d x}\left(\frac{25}{2} x^{-2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d x}{d x}=\frac{5}{x} \\
& \frac{d t}{d x}=\frac{x}{5} \\
& t=\frac{x^{2}}{10}+c
\end{aligned}
$$

When $t=0, x=10: \quad 0=\frac{100}{10}+c \therefore c=-10$

$$
\begin{aligned}
& t=\frac{x^{2}}{10}-10 \\
& x^{2}=10(t+10)
\end{aligned}
$$

Max. ht $=v\left(\frac{v \sin \theta}{g}\right) \sin \theta-\frac{g}{2}\left(\frac{v \sin \theta}{g}\right)^{2}$

$$
=\frac{v^{2} \sin ^{2} \theta}{g}-\frac{v^{2} \sin ^{2} \theta}{2 g}
$$

(ii) $\dot{x}=V \cos \theta$

At maximum height, direction is horizontal.
\therefore Speed at maximum height is $V \cos \theta$.
weal dore.
Some reader to
expand completer as they couldst find
the corfecient by using the general term.
(b) (i)Gereally well dire.

$$
\begin{gathered}
=-25 x^{-3} \\
\text { When } x=2, \quad a=-\frac{25}{2^{3}}
\end{gathered}
$$

$$
\begin{align*}
& \text { en } x=2, a=-2^{3} \tag{3}\\
& \text { Acceleration }=-3 \frac{1}{8} \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

(Mark $\frac{d}{d x}\left(\frac{25}{2} x^{-2}\right)$
l Moe convect differenstiono
1 Mark over.
(ii) Poorly arevereat. Many thouruttis was a log problem and

$$
\begin{aligned}
& x=\sqrt{10(t+10)} \quad(x>0) \\
& \cos \theta \quad y=v t \sin \theta-\frac{1}{2} g t^{2} \\
& =V \sin \theta-g t . \\
& g h t \text { when } y=0 . \therefore t=\frac{V \sin \theta}{g}
\end{aligned}
$$ tried to integrate

1 Mark integrating correctly
I Mark Finarig the constant
(Mark Making x Suggest
(c) Many got 2/3 Marks
as they couldst simplify to achieve the answer.

$$
=i \frac{v^{2} \sin ^{2} \theta}{2 g}
$$

1 Mark for finding \dot{y} 1 Mark for find time when at mont.
(Mark for max ht.
(ii) Dourly answered. A wide varies y of answer.

