

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2007

MATHEMATICS EXTENSION 1

8:45am – 10:50am Friday 31st August 2007

Directions to Students

Reading Time: 5 minutes	• Total Marks: 84
• Working Time: 2 hours	
• Write using blue or black pen (sketches in pencil).	• Attempt Questions 1 – 7
• Board approved calculators may be used	• All questions are of equal value
• A table of standard integrals is provided at the back of this paper.	
• All necessary working should be shown in every question.	
• Answer each question in the booklets provided and clearly label your name and teacher's name.	

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

QUESTION 1 (use a SEPARATE writing booklet)

(a) Given that if $y = \sin^{-1}\left(\frac{x}{a}\right)$ then $\frac{dy}{dx} = \frac{1}{\sqrt{a^2 - x^2}}$, where x < |a|, write down an expression for $\frac{dy}{dx}$ if y equals: (i) $\sin^{-1}(x)$

(ii)
$$\sin^{-1}\left(\frac{x}{7}\right)$$

(iii)
$$\sin^{-1}(7x)$$
 (3M)

(b)

(i) If
$$f(x) = x^3 - 3x^2 - 4x + 12$$
, show that $f(3) = 0$ (1M)

(ii) Hence solve $x^3 - 3x^2 - 4x + 12 = 0$ (2M)

(c) Prove that

$$\frac{1}{3} \Big[n (n+1) (n+2) \Big] + (n+1) (n+2) = \frac{1}{3} (n+1) (n+2) (n+3)$$
(2M)

(d) Solve for
$$x$$

$$\frac{x-2}{x+4} \ge \frac{1}{3} \tag{4M}$$

QUESTION 2 (use a SEPARATE writing booklet)

(a) A particle P moves in a straight line so that its distance x from a central fixed point O at time t is given by

$$x = 2\sin\left(5t + \frac{\pi}{6}\right)$$

- (i) Write down an expression for the velocity \hat{x}
- (ii) Write down an expression for the acceleration x
- (iii) The particle P is said to be executing Simple Harmonic Motion. Explain why this is so.

(b) The parametric equations of a parabola are

$$x = 2t$$
$$y = 2t^2$$

Find the equation of the tangent to this parabola at the point

$$P(2,2) \tag{2M}$$

(c) Given that $x^4 + 3x^2 - 100 = 0$ has a root near x = 3, use Newton's method once to find a better approximation, giving your answer in exact form.

(2M)

- (d) Find the numerical value of the co-efficient of x^0 in the expansion of $\left(2x^2 \frac{1}{2x}\right)^{12}$ (3M)
- (e) Find the sum of the six co-efficients (including the co-efficient of x^0) in the expansion of $(3-x)^5$

QUESTION 3 (use a SEPARATE writing booklet)

(a) Using the table of standard integrals, evaluate
$$\int_{0}^{2} \frac{8dx}{x^{2}+4}$$
 (2M)

(b) Find in radians all the values of x in the domain $0 \le x \le \pi$ which satisfy the equation

$$\sin 2x - \sin x = 0 \tag{3M}$$

(c) If α , β and γ are the roots of the cubic equation

$$2x^3 - 8x^2 + x + 12 = 0,$$

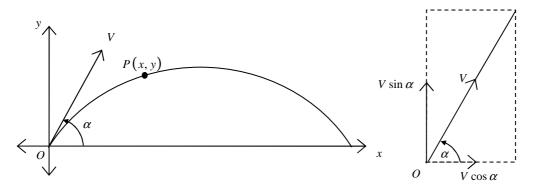
write down the value of

- (i) $\alpha + \beta + \gamma$
- (ii) $\alpha\beta + \beta\gamma + \gamma\alpha$

(iii)
$$\alpha^2 + \beta^2 + \gamma^2$$
 (3M)

(d)

- (i) Show that $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$
- (ii) Deduce from (i) that if $x^2 + 4y^2 = 5$ then $\frac{dy}{dx} = \frac{-x}{4y}$
- (iii) A particle moves at a constant speed of $k \text{ ms}^{-1}$ on the circumference of the curve


$$x^2 + 4y^2 = 5$$

Find
$$\frac{dy}{dt}$$
 at the point *P* where $x = 2$, $y = -\frac{1}{2}$ and $\frac{dx}{dt} = 2 \text{ ms}^{-1}$

(iv) What is the exact value of k, the constant speed?

(4M)

QUESTION 4 (use a SEPARATE writing booklet)

(The above diagrams may help in your presentation)

A particle is projected with a velocity V from a point O at an angle of α to the horizontal, in the x, y plane. In the usual notation using the calculus or otherwise, prove that the horizontal distance x and the vertical distance y, travelled by the particle at time t are given by:

(i)
$$x = (V \cos \alpha)t$$
 (2M)

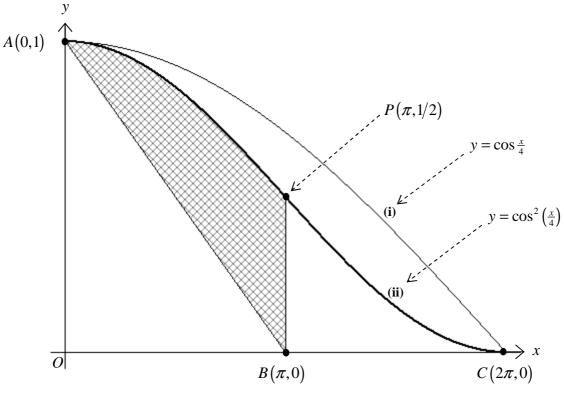
(ii) $y = (V \sin \alpha)t - \frac{1}{2}gt^2$ where g is the acceleration due to gravity. (3M)

(iii) By combining (i) and (ii) deduce that:

$$y = x \tan \alpha - \frac{gx^2}{2V^2} \left(1 + \tan^2 \alpha\right)$$
(3M)

(iv) Any of the above results may be used in attempting this problem:

A football is kicked at $15ms^{-1}$ and just passes over a crossbar 5m high and 15m away.


Taking $g = 10ms^{-2}$ vertically downwards, show that if α is the angle of projection then $\alpha = \frac{\pi}{4}$ or $\alpha = \tan^{-1} 2$ (3M)

(v) If the two values of α (from part iv) are given by A and B (respectively) where A > B, write down the exact value of tan (A - B)

(1M)

(2M)

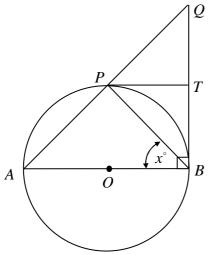
QUESTION 5 (use a SEPARATE writing booklet)

The above diagram shows two curves

$y = \cos \frac{x}{4}$	(i)	(thin line)
$y = \cos^2\left(\frac{x}{4}\right)$	(ii)	(thick line)

Also, A is the point (0,1), B is the point $(\pi,0)$ and C is the point $(2\pi,0)$

- (i) Prove that the area enclosed by the curve $y = \cos \frac{x}{4}$ and the x and y axes is 4 square units.
- (ii) The shaded region *APBA* is enclosed by $y = \cos^2\left(\frac{x}{4}\right)$ and the lines *AB* and $x = \pi$. Prove that the area of this shaded region is 1 square


unit. (3M)

(iii) Prove that
$$\cos^4\left(\frac{x}{4}\right) = \frac{1}{8}\left(3 + 4\cos\frac{x}{2} + \cos x\right)$$
 (3M)

(iv) The shaded region is now rotated through 2π radians about the x-axis. Show, using the result of part (iii) or otherwise that the exact volume of the solid generated is $\pi \left(1 + \frac{\pi}{24}\right)$ cubic units. (4M)

QUESTION 6 (use a SEPARATE writing booklet)

(a) If $y = 2007^x$, find an expression for $\frac{dy}{dx}$ in terms of x (2M)

- (b) *AB* is the diameter of a circle, centre *O*. *P* is a point on the circumference. The tangents at *B* and *P* meet at *T*, and *AP*, *BT* are produced to meet at *Q*, and $A\hat{B}P = x^{\circ}$
 - (i) Copy the diagram into your script and explain why $A\hat{P}B = 90^{\circ}$
 - (ii) Noting without any explanation, that $O\hat{B}Q = 90^{\circ}$ or otherwise, explain why $T\hat{Q}P = x^{\circ}$
 - (iii) Explain why $T\hat{P}Q = x^{\circ}$

(iv) If
$$x = 30$$
 show $PQ = 3AP$ (4M)

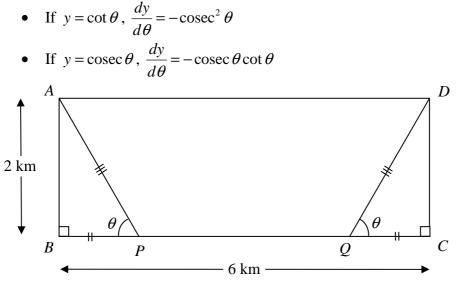
(c)

(i) In the usual notation, prove that
$$\stackrel{\bullet \bullet}{x} = v \frac{dv}{dx}$$
 (1M)

(ii) A particle moves in a straight line and its acceleration at any time *t* is given by $\stackrel{\bullet}{x} = v \frac{dv}{dx} = -e^{-2x}$, where *x* is the displacement and *v* the velocity at time *t*. Also, when x = 0, v = 1.

By starting with the result of part (i) or otherwise, prove that $v = e^{-x}$. (3M)

(iii) It is also known that when t = 0, x = 0. Deduce from (ii), or otherwise prove, that the displacement x at time t is given by $x = \ln(t+1)$


(2M)

QUESTION 7 (use a SEPARATE writing booklet)

(a) If
$$y = 3\cos^{-1}\left(\frac{x}{2}\right)$$
, write down (i) the domain of x
(ii) the range of y (2M)

(b) If
$$y = f(x) = \frac{kx+l}{mx-k}$$
 (where k, l, m are constants), prove that $x = f(y)$ (2M)

(c) In attempting the problem below, you may assume without proof that:

The diagram shows a house at A, a school at D and a straight canal BC, where ABCD is a rectangle with AB = 2km and BC = 6km.

During the winter, when the canal freezes over, Danny travels from A to D by walking to a point P on the canal, skating along the canal to a point Q and then walking from Q to D. The points P and Q are chosen so that the angles APB and DQC are both equal to θ , AP = QD, BP = QC.

- (i) Show that $PQ = (6 4\cot\theta)$ (1M)
- (ii) Given that Danny walks at a constant speed of $4kmh^{-1}$, and skates at a constant speed of $8kmh^{-1}$ show that the time, T minutes, taken for Danny to go from A to D along this route is given by

$$T = 15(3 + 4\csc\theta - 2\cot\theta)$$
(3M)

(iii) Show clearly and carefully that, as θ varies, Danny's minimum time for the journey is approximately 97 minutes.

(4M)

END OF PAPER

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, \ n \neq -1; \ x \neq 0, \text{if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, \ a \neq 0$
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, \ a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a\neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln\left(x+\sqrt{x^2-a^2}\right), x>a>0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)$

NOTE: $\ln x = \log_e x$, x > 0

SAINT IGNATIUS'COLLEGE

Trial Higher School Certificate 2007

QUESTION 1				
Suggested Solutions	Max Mark	Your Mark	Marker's Comments	
(a) (i) $\frac{1}{\sqrt{1-x^2}}$ $x < 1 $ (ii) $\frac{1}{\sqrt{49-x^2}}$ $x < 7 $	2			
(iii) $\frac{1}{\sqrt{\left(\frac{1}{7}\right)^2 - x^2}}$ OR $\frac{7}{\sqrt{1 - 49x^2}}$ $x < \left \frac{1}{7}\right $ No penalty for omitting domain of x	1			
(b) (i) Here $f(3) = 27 - 27 - 12 + 12 = 0$	· · · · · · · · · · · · · · · · · · ·			
(ii) From (i) $f(x) = (x-3)(x^2-4)$				
Here $f(x) = (x-3)(x-2)(x+2) = 0$	1			
Hence the required solutions are $x = 3, 2, -2$ $+$		¥ ∽	No mark award itsoln. not with	
(c) L.H.S= $\frac{1}{3}[n(n+1)(n+2)+3(n+1)(n+2)]$				
We take out the factors $[(n+1)(n+2)]$		i~~*	Some tried Induction.	
To get L.H.S = $\frac{1}{3}[(n+1)(n+2)](n+3)$		-	(F) for 1st bre steps; if	
Award 2 marks for L.H.S = R.H.S by direct multiplication)			ho solution here	
$\frac{1}{3}\left(n^3 + 6n^2 + 11n + 6\right)$		1	Sherre.	
d) $\frac{x-2}{x+4}$ is undefined if $x+4=0$ ie if $x=-4$	1	Ifx-	=-4 had to be	
Aultiply both sides by $3(x+4)^2$		men -1.	-4 had to be	
To get $3(x-2)(x+4) \ge (x+4)^2$, $(x ≠ -4)$				
$x^{2} + 6x - 24 ≥ x^{2} + 8x + 16, (x ≠ -4)$				
Hence $x^2 - x - 20 \ge 0$, $(x \ne -4)$				
$(x+4)(x-5) \ge 0$, but $x \ne -4$		ľ		
$x < -4 \text{ or } x \ge 5$ To gain the 4 th mark, the solution needs to mention $x \ne -4$ just the once.	1			

QUESTION 2				
Suggested Solutions	Max Mark	Your Mark	Marker's Comments	
(a) (i) $\dot{x} = 10 \cos\left(5t + \frac{\pi}{6}\right)$	1			
(ii) $\ddot{x} = -50\sin\left(5t + \frac{\pi}{6}\right)$	1			
(iii) $\ddot{x} = -5^2 \left(2\sin\left(5t + \frac{\pi}{6}\right) \right) = -5^2 x \otimes$ At least 2 explanations are acceptable				
Eg (α) $x = 2\sin\left(5t + \frac{\pi}{6}\right) = 2\cos\left(5t - \frac{\pi}{3}\right)$, defines S.H.M	1			
(β) Equation $\otimes \ddot{x} = -n^2 x$ ($n = 5$) defines S.H.M $\int $			most studento ←used &=-n²x	
(b) Here $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 4t \times \frac{1}{2} \checkmark OR OR OR OR OR OR OR $	1			
(c) Here $f(x) = x^4 + 3x^2 - 100$ $\therefore f(3) = 8$ $f'(x) = 4x^3 + 6x$ $f'(3) = 126$ both conect	1		· · ·	
In the usual notation $x_1 = x_0 - \frac{f(x)}{f'(x)} = 3 - \frac{8}{126}$	1			
$=2\frac{59}{63}$ $\left(=\frac{185}{63}\right)$ \checkmark				
(d) (i) Here $T_{R+1} = {\binom{12}{R}} \frac{-x^{-1}}{2}^{R} \cdot (2x^2)^{12-R}$	1			
Power of x in $T_{R+1} = -R + 24 - 2R$ = $24 - 3R = 0$ when $R = 8$	1			
So $T_9 = {\binom{12}{8}} \frac{1}{2^8} 2^4 = \frac{12.11.10.9}{4.3.2.1} \times \frac{1}{16}$	1			
$=\frac{495}{16} \left(=30.9353 = 30^{\frac{15}{16}}\right)$	1			
(ii) To sum the 6 co-efficients, set $x = 1$				
Required sum $(3 - 1)^5 = 2^5 = 32$ OR	1			
$3^{5} + {\binom{5}{1}}3^{4}(-1) + {\binom{5}{2}}3^{3}(-1)^{2} + {\binom{5}{3}}3^{2}(-1)^{3} + {\binom{5}{4}}3(-1)^{4} + (-1)^{5}$	1			

Trial Higher School Certificate 2007

Suggested Solutions	Max Mark	Your Mark	Marker's Comments
a) $I = \left[4\tan^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2}$	1		
$= 4 \left[\tan^{-1} 1 - \tan^{-1} 0 \right] = \frac{4\pi}{4} = \pi$	1	πι	
b) $2\sin x \cos x - \sin x = 0$ $\therefore \sin x (2\cos x - 1) = 0 \rightarrow \sin x = 0 \text{ or } \cos x = \frac{1}{2}$	1		
So $x = 0, \pi$ or 2π or $x = \frac{\pi}{3} or \frac{5\pi}{3}$ But $0 \le x \le \pi$ $x = 0, \frac{\pi}{3}, \pi$ (Penalty of 1 if degrees are used instead fradians)	1	O, NIN	Any answers , T other than there three di horget a morte here.
(i) 4 (ii) $\frac{1}{2}$	1	4 U Y2	horget a more here.
ii) $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma) = 15$ i) (i) Use product rule $\frac{d}{dx}(y.y) = yy' + y'y = 2yy'$	1	2434	Somethied to reproduce lie Quertren - No
R note $\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \cdot \frac{dy}{dx} = 2yy'$ i) Differentiate both sides with respect to x to get $2x + 8y \cdot \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = \frac{-x}{4y}$	1		Quertren - No Martes. All otter nelts de were accepted.
i) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{-x}{4y}(2) = 2ms^{-1}$ y) Note: we focus on <u>speed</u> (and not velocity)	1	2	· · ·
P, speed along x axis = speed along the y axis $2ms^{-1}$ \therefore Resulting speed = $\sqrt{2^2 + 2^2}$ $k = 2\sqrt{2}$	1	252	~

Trial Higher School Certificate 2007

Suggested Solutions	Max Mark	Your Mark	Marker's Comments
(i) HORIZONTAL MOTION The initial velocity in a horizontal direction is V $\cos \alpha$ and since no forces are acting in the horizontal direction, this velocity will	- 1		
remain uniform. $\ddot{\mathbf{x}} = \mathbf{O}$ That is $\frac{dx}{dt} = V \cos \alpha$			
Thus $x = (V \cos \alpha)t + c$	1		
But $x = 0$ when $t = 0$, thus $c = 0$ Hence $x = (V \cos \alpha)t \dots (i)$	1		
(ii) VERTICAL MOTION			Note:
The initial velocity in a vertical direction is $V \sin \alpha$. If we take			You must show
he upwards direction as positive the particle experiences a miform acceleration of $-g$ due to gravity.			the initial
12			conditions to
Thus $\frac{d^2 y}{dt^2} = -g$	1		work out the
Hence $\frac{dy}{dt} = -gt + c$			constants.
But $\frac{dy}{dt} = V \sin \alpha$ when $t = 0$, thus $c = V \sin \alpha$			
Thus $\frac{dy}{dt} = V \sin \alpha - gt$	1		
Hence $y = (V \sin \alpha)t - \frac{1}{2}gt^2 + k$			
But $y = 0$ when $t = 0$, thus $k = 0$	1		
Biving $y = (V \sin \alpha)t - \frac{1}{2}gt^2 \dots$ (ii)			
iii) Eliminating t			Remember
From (i) $t = \frac{x}{V \cos \alpha}$	1	•	$\sec^2 \alpha = 1 + \tan^2 \alpha$
substituting in (ii) $y = \frac{(V \sin \alpha)x}{V \cos \alpha} - \frac{1}{2}g \left(\frac{x}{V \cos \alpha}\right)^2$	1		
e $y = x \tan \alpha - \frac{gx^2}{2V^2} \sec^2 \alpha = x \tan \alpha - \frac{gx^2}{2V^2} (1 + \tan^2 \alpha) \dots (iii)$	1		
v) Using equation (iii) $5 = 15 \tan \alpha - 5 - 5 \tan^2 \alpha$, $5 = 15t - 5 - 5t^2$ where $t = \tan \alpha$	2		1st mark : conect substitutio
$\therefore 5t^2 - 15t + 10 = 0$	ľ		
$t^2 - 3t + 2 = 0$			2nd mark :
(t-2)(t-1) = 0 ence $t=1$ and $t=2$			ionect equation
$\alpha = \frac{\pi}{4} \& \alpha = \tan^{-1} 2 \qquad \checkmark$	1		1
			N.B question
$t) \tan(A-B) = \frac{TanA - TanB}{1 + TanATanB} = \frac{2-1}{1+2} = \frac{1}{3}$	-		A>B anower=

MATHEMATICS EXTENSION 1 Solutions, Marking Scheme & Comments

QUESTION 5	······································	-	
Suggested Solutions	Max Mark	Your Mark	Marker's Comments
(i) From diagram, Area = $\int_{0}^{2\pi} \cos \frac{x}{4} dx$	1	~	
i.e. A = $\left[4\sin\frac{x}{4}\right]_{0}^{2\pi} = 4\sin\frac{\pi}{2} - 0 = 4$	1	~	
(ii) Shaded Area = $\int_{0}^{\pi} \cos^{2}\left(\frac{x}{4}\right) dx - \Delta BOA$	1		
$=\frac{1}{2}\int_{0}^{\pi}\left(\cos\frac{x}{2}+1\right)dx-\frac{1}{2}(\pi\times 1)$	CostA	= Crs	2A H
$=\frac{1}{2}\left[2\sin\left(\frac{x}{2}\right)+x\right]_{0}^{\pi}-\frac{\pi}{2}$	1	128	「(当+x」) - 之 Siu 本+ ス ~ ~
$= \left[\sin \frac{\pi}{2} + \frac{\pi}{2} - 0 - 0 \right] - \frac{\pi}{2} = 1$	1	= ¥ Sm = * Sm	$2AH$ $\int_{1}^{T} - \frac{\pi}{2}$ $\int_{1}^{T} - \frac{\pi}{2}$ $\int_{1}^{T} \frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi}{2}$ $\frac{\pi}{2} + \frac{\pi}{2} - \frac{\pi}{2}$ $\frac{\pi}{2} - \frac{\pi}{2}$
(iii) Since $\cos^2\left(\frac{x}{4}\right) = \frac{1}{2}\left[1 + \cos\left(\frac{x}{2}\right)\right]$	1		
Therefore $\cos^4 \frac{x}{4} = \frac{1}{4} \left[1 + \cos\left(\frac{x}{2}\right) \right]^2$			
$\therefore \cos^4 \frac{x}{4} = \frac{1}{4} \left[\left(1 + 2\cos\frac{x}{2} + \cos^2\left(\frac{x}{2}\right) \right) \right]$	1		
$=\frac{1}{4}\left[1+2\cos\left(\frac{x}{2}\right)+\frac{1}{2}(1+\cos x)\right]$			
$=\frac{1}{8}\left(3+4\cos\frac{x}{2}+\cos x\right)$	1		
(iv) Required Volume = $\pi \int_0^{\pi} \cos^4\left(\frac{x}{4}\right) dx - v_c$	1 V	~	
where $v_c =$ volume of a cone with radius unity and height π .			
ie $v_c = \frac{1}{3} \cdot \pi \cdot 1^2 \cdot \pi = \frac{\pi^2}{3}$	1	~	
:. Required Volume = $\frac{\pi}{8} \int_{0}^{\pi} \left(3 + 4\cos\frac{x}{2} + \cos x\right) dx - \frac{\pi^2}{3}$ from			
$= \frac{\pi}{8} \left[3x + 8\sin\frac{x}{2} + \sin x \right]^{\pi} - \frac{\pi^2}{3}$			
$8 \lfloor 2 \rfloor_{0} 3$ $= \frac{\pi}{8} [3\pi + 8 + 0] - \frac{\pi}{8} [0 + 0 + 0] - \frac{\pi^{2}}{3}$	1 v >	37-7	1 - x
$=\frac{8\pi}{8} + \pi^{2} \left[\frac{3}{8} - \frac{1}{3}\right] = \pi + \frac{\pi^{2}}{24} = \pi \left[1 + \frac{\pi}{24}\right]$		Ferd Pet in full	got to the end - 4 right steps north Louis awarde

.

Suggested Solutions	Max Mark	Your Mark	Marker's Comments
(a) Taking logs to base e of each side $(\ln y) = (x) \ln 2007$ Now	1		poorly answered
differentiate both sides with respect to $x: \frac{1}{y} \cdot \frac{dy}{dx} = \ln 2007$			some Extension 2
now multiply both sides by $y = (2007)^x$ to get $\frac{dy}{dx} = (2007)^x (\ln 2007)^x$	1		students O.K.
(b) (i) $\hat{APB} = 90^{\circ}$ since it is the angle in the semi circle diameter AB	1		Note: You cannot assume PT 11 AB
(ii) $\hat{OBQ} = 90^{\circ}$ (given)			
$\therefore \hat{PBQ} = 90^{\circ} - x^{\circ} \qquad \qquad P \qquad \qquad P \qquad \qquad \qquad P \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	1		I have written in
But $\hat{APB} = \hat{PBQ} + \hat{PQB}$			the conect values
(Ext \angle of Δ = sum of interior opp \angle 's) A q_{0-x} x B			for each angle in
$90^\circ = 90^\circ - x^\circ + P\hat{Q}B$		-	terms of the
$\therefore \hat{PQB} = x^{\circ} = T\hat{Q}P \text{ (same angle)}$	1		pronumeralo.
iii) TP=TB (tangents from ext point to a circle are equal)			
$\hat{TPB} = \hat{TBP} = 90^{\circ} - x^{\circ}$		1	
So $T\hat{P}Q = [90^\circ - (90^\circ - x^\circ)] = x^\circ$			
iv) $\frac{AP}{AQ} = \frac{AB\cos 60^{\circ}}{\left(\frac{AB}{\cos 60^{\circ}}\right)} = \left(\frac{1}{2} \times \frac{1}{2}\right) = \frac{1}{4} \therefore PQ = 3AP$	1		
c) (i) $x = \frac{dv}{dt} = \frac{dx}{dt} \cdot \frac{dv}{dx} = v \frac{dv}{dx}$	1		
dv = -2x	1		* Some used
ii) Using part (i) $v \frac{dv}{dx} = -e^{-2x}$ and rearranging, $\int v dv = -\int e^{-2x} dx$			$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \tilde{x}$
hus $\frac{v^2}{2} = \frac{1}{2}e^{-2x} + K$ Set $x = 0$ and $v = 1$	1	۲ ۲	this was OK
b get $\frac{1}{2} = \frac{1}{2}(1) + K \implies K = 0$ thus $v^2 = e^{-2x}$ so $v = e^{-x}$	1		
ii) From part (ii) $\frac{dx}{dt} = e^{-x}$			
u			
b again rearranging, $\frac{dx}{e^{-x}} = dt$	1		Nate: $J = e^{-x}$
ad hence $\int e^x dx = \int dt \Rightarrow e^x = t + c$			
t $t = 0$ and $x = 0$, (data), $e^0 = 0 + c$ $\therefore c = 1$		-	to assist in
$e^x = t + 1$		C	ionect integration
nally take logs of each side to base e, to get $x = \ln t+1 $			U

Trial Higher School Certificate 2007

Suggested Solutions $\leq \infty \leq \infty$	Max Mark	Your Mark	Marker's Comments
(a) (i) $x \le 2 $ (ii) $0 \le y \le 3\pi$	1+1	so mar	disoppointing that y students didn't get these correct
(b) Note that $mxy - ky = kx + l$ $\therefore mxy - kx = ky + l$ and so $x(my - k) = ky + l \implies x = \frac{ky + l}{my - k} = f(y)$	1 -	atte جـــا	mpting to make the subject
(neither x, or $y = \frac{k}{m}$)			correct result
(c) (i) $PQ = BC - 2BP$ and in right angled $\triangle ABP$ Tan $\theta = \frac{2}{BP}$ $\therefore \cot \theta = \frac{BP}{2}$ $\therefore BP = 2 \cot \theta$			
Hence $PQ = BC - 2(2 \cot \theta) = 6 - 4 \cot \theta$	1		
(ii) By similar reasoning as in (i) $AP = 2\cos ec\theta$ so $AP + QD = 4\cos ec\theta$	1 - fc	→ cor r keng	rect expression th of AP or QD .
Now focus on time in MINUTES (t_m) t_m for D to travel $AP + QD = 60 \left(\frac{4 \cos ec\theta}{4}\right) = 60 \cos ec\theta$			•
t_m for D to travel $PQ = 60 \frac{(6-4\cot\theta)}{8} = (45-30\cot\theta)$	1	<pre>corr </pre>	ect expression for taken (even if in s)
Let T=Total t_m , so $T = 60 \csc ec\theta + 45 - 30 \cot \theta$ = $15(3 + 4 \cos ec\theta - 2 \cot \theta)$	<u> </u>		s) rect conversion fro <u>in hours to time</u> in minutes.
(iii) $\therefore \frac{dT}{d\theta} = -60 \cos ec\theta \cot \theta + 30 \cos ec^2\theta$ = $30 \cos ec^2\theta (-2 \cos \theta + 1)$ N/4 $= 30 \cos ec^2\theta = 0$		_	correct expressi
= $30 \cos ec^2 \theta (-2 \cos \theta + 1)$ Note $30 \cos ec^2 \theta > 0$ So (in discussing) the sign of $\frac{dT}{d\theta}$ we need focus on sign of $(-2 \cos \theta + 1)$		* mar e the	for <u>dT</u> do y students didn't given results at g of guestion.
Now for a Max or a Min $\frac{dT}{d\theta} = 0$ so $-2\cos\theta + 1 = 0$ or $\cos\theta = \frac{1}{2}$ and		1	g of question.
$\theta = \frac{\pi}{3}$ (Note θ is acute) π (8 2)		for	◆ (픟)
If $\theta = \frac{\pi}{3}$, $T = 15\left(\frac{8}{\sqrt{3}} + 3 - \frac{2}{\sqrt{3}}\right) = 45 + 30\sqrt{3}$ $\approx 45 + 51.963 \approx 96.963$	1		testing that If gives a time
Hence for $\theta = \frac{\pi}{3}$, T is just slightly below 97 minutes. We have now to show this is	مريد	nimun	n time
a minimum. Note $\displaystyle rac{dT}{d heta}$ takes the same sign as $\left(1-2\cos heta ight)$			
Now if $0 \le \theta < \frac{\pi}{3}$, $\cos \theta > \frac{1}{2}$ $\therefore 1 - 2\cos \theta < 0$			
Now if $\frac{\pi}{3} < \theta \le \frac{\pi}{2}$, $\therefore \cos \theta < \frac{1}{2}$, $\therefore 1 - 2\cos \theta > 0$			
Hence as θ passes through $\frac{\pi}{3}$, $\frac{dT}{d\theta}$ goes from negative through 0 to positive.	1	→ sut expt	pstituting
Hence at $\theta = \frac{\pi}{3}$ we get the least value of T. When $\Theta = \frac{\pi}{3}$, $T = 97$ minutes	and	obtair	ing T ÷ 97 min

Trial Higher School Certificate 2007

QUESTION 7 (c) (iii)	QUESTION 7 (c) (iii)			
Suggested Solutions	Max Mark	Your Mark	Marker's Comments	
2 nd way of showing that $\theta = \frac{\pi}{3}$ gives a minimum time for				
Danny's journey.				
Note that $\frac{1}{30} \frac{dT}{d\theta} = \cos ec^2 \theta (1 - 2\cos\theta)$	1			
$\therefore \frac{1}{30} \frac{d^2 T}{d\theta^2} = (1 - 2\cos\theta) \left[-2\cos ec^2 \theta \cot \theta \right] + \cos ec^2 \theta (2\sin\theta) \dots (L)$				
RHS of L = $\left[-2\cos ec^2\theta \cot \theta + 4\cos ec^2\theta \cot \theta \cos \theta\right] + 2\cos ec\theta$ = $2\cos ec^2\theta \cot \theta (2\cos \theta - 1) + 2\cos ec\theta$	1			
$= 2\cos ec^{2}\frac{\pi}{3}\cot \frac{\pi}{3}(2\cos \frac{\pi}{3}-1) + 2\cos ec\frac{\pi}{3}, if\theta = \frac{\pi}{3}.$				
$=0+\frac{4}{\sqrt{3}}, as 2\cos\frac{\pi}{3}=1$				
$=\frac{4}{\sqrt{3}}$, ,		
$\therefore \frac{1}{30} \cdot \frac{d^2 T}{d\theta^2} = \frac{4}{\sqrt{3}}$	1			
$\therefore \frac{d^2 T}{d\theta^2} = 30 \times \frac{4}{\sqrt{3}} = 40\sqrt{3} > 0$				
$\therefore \theta = \frac{\pi}{3}$ gives a minimum time for Danny's journey.				
Source of question 7(c) University of London GCE Pure Mathematics 405, January 1988.	1			
371/405/420 Question 14				
		i		
	ļ			