SAINT IGNATIUS' COLLEGE RIVERVIEW

## 2012

## Higher School Certificate <br> Trial Examination

## Extension 1 Mathematics

## General Instructions

Reading time - 5 mins

- Working time - 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided with this paper
- All necessary working should be shown in every question


## Total Marks - 70

## Section 1-10 marks

Objective response answers
Attempt Questions 1-10
Section 2 - 60 marks
Extended response answers
Attempt Questions 11-14
All questions in Section 2 are of equal value

Q1. What is the primitive of $\cos ^{2} x$ ?
a) $\frac{4 x-\sin 4 x}{4}+c$
b) $\frac{1}{2} \sin 2 x+x+c$
c) $\frac{\sin 2 x+2 x}{4}+c$
d) $x-\frac{1}{4} \sin 2 x+c$

Q2. The value of the term independent of $x$ in the binomial expansion $\left(x^{2}+\frac{3}{x}\right)^{6}$ is
a) 1215
b) 1944
c) 0
d) 2025

Q3. The curves $y=x^{2}-4$ and $y=x^{2}-8 x+12$ intersect at point $\mathrm{Q}(2,0)$. The acute angle at which the tangents intersect at point $\mathrm{Q}(2,0)$ is
a) $82^{0} 52^{\prime}$
b) $61^{0} 56$,
c) $7^{0} 8^{\prime}$
d) $28^{0} 4^{\prime}$

Q4. What are the coordinates of the point P which divides the interval AB externally in the ratio $5: 2$, where $\mathrm{A}(3,-1)$ and $\mathrm{B}(9,2)$
a) $\quad \mathrm{P}(13,4)$
b) $\quad \mathrm{P}(1,4)$
c) $\mathrm{P}\left(\frac{51}{7}, \frac{8}{7}\right)$
d) $\quad \mathrm{P}(13,3)$

Q5. The solutions to the inequality $\frac{2}{x-5}>3$ are
a) $x<5, x>\frac{17}{3}$
b) $5<x<\frac{17}{3}$
c) $x>\frac{17}{3}$
d) $x<\frac{17}{3}$

Q6. The value of $\cot \left(\sin ^{-1} \frac{5}{13}\right)$ is
a) $\frac{5}{12}$
b) $\frac{13}{12}$
c) $\frac{12}{13}$
d) $\frac{12}{5}$

Q7. A root of the Polynomial $P(x)=x^{3}-2 x^{2}-5 x+6$ is
a) 2
b) -3
c) 1
d) -4

Q8. The Vertex of the parabola with parameters

$$
x=p^{2}+2 p+2 \text { and } y=p-1, \text { is }
$$

a) $\quad V(0,-1)$
b) $\quad V(2,-1)$
c) $\quad V(1,-2)$
d) $\quad V(1,0)$


Q10. By using the substitution $x=\sin (u)$ or otherwise, the value of $\int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}} d x$ is equal to
a) $\frac{\sqrt{3}}{4}+\frac{\pi}{6}$
b) $\frac{\sqrt{3}}{8}+\frac{\pi}{12}$
c) $\frac{\sqrt{3}}{4}+\frac{\pi}{12}$
d) $\frac{\sqrt{3}}{8}+\frac{\pi}{6}$

Question 11. (Begin a new writing booklet)
a) Let $M$ be a point outside a circle. MAB and MPQ are secants to the circle

i) Prove that $\triangle A P M \| \Delta Q B M$.
ii) Hence, show that $A M \times M B=P M \times M Q$.
b) The tide level in a harbour oscillates according to simple harmonic motion. At 5 am , the tide is at its lowest level at 3 m and at 11 am , the tide rises to its peak at 6 m .
i) Calculate the amplitude and the period of motion.
ii) The motion can be written in the form $x-b=\operatorname{acos}(n t)$ where $a, b$ and $n$ are constants, $x$ represents the tide level in meters and $t$ is the number of hours after 5am. Explain why $a=-1.5, b=4.5$ and $n=\frac{\pi}{6}$.
iii) Show that it satisfies the condition $\ddot{x}=-n^{2}(x-b)$
iv) What is the first time period (to the nearest minute) during the same day, that a boat can enter and leave the harbour, if the hull of the ship requires a minimum depth of 4 m for safe passage?
c) Prove by mathematical induction that $9^{n+2}-4^{n}$ is divisible by 5 for $\mathrm{n}>0$

Question 12. (Begin a new writing booklet)
a) The diagram shows a lighthouse $L$ out at sea, containing a revolving beacon, which is 3 km from P , the nearest point on a straight shoreline. The light beam rotates at $4 \mathrm{revs} / \mathrm{min}$ and shines a spot of light onto the shoreline at M . M is $x \mathrm{~km}$ from P and $\angle M L P=\theta$.

i) Why is $\frac{d \theta}{d t}=8 \pi$, where $t$ is the time in minutes.
ii) Write an expression for $\frac{d x}{d t}$. (in terms of $\theta$ )
iii) Evaluate $\frac{d x}{d t}$ when the spot of light is at P. (ie $\left.\theta=0\right)$
iv) How fast is the spot of light moving 2 km away from P along the shoreline?
(leave your answer as an exact value )
b) Differentiate $\tan ^{-1}\left(e^{-2 x}\right)$
c) Solve the following equations simultaneously.

$$
\begin{align*}
2 \cos ^{-1} x+\frac{1}{3} \sin ^{-1} y & =\frac{\pi}{6}  \tag{2}\\
\cos ^{-1} x-\frac{1}{3} \sin ^{-1} y & =\frac{\pi}{3}
\end{align*}
$$

d) A Ladder $\lambda \mathrm{m}$ long is leaning against a vertical wall so that it just touches the top of a fence that is 3 m high and 4 m from the wall. The ladder is inclined at $\theta$ radians to the horizontal.

i) Write the expressions for $\sin 2 \theta$ and $R \sin (\theta+\phi)$
ii) Prove that the length of the ladder is given by the expression

$$
\begin{equation*}
\lambda=\frac{3}{\sin \theta}+\frac{4}{\cos \theta} \tag{2}
\end{equation*}
$$

iii) Show that if $\lambda=10 \mathrm{~m}$ then the angle $\theta$ satisfies the equation

$$
\begin{equation*}
\sin (2 \theta)=\sin (\theta+\phi) \text { where } \phi=\tan ^{-1}\left(\frac{3}{4}\right) \tag{2}
\end{equation*}
$$

Question 13. (Begin a new writing booklet)
(a) The polynomial $P(x)=4 x^{3}+2 x^{2}+1$ has one real root in the interval $-1<x<0$.
i) Show that there is a root between -0.5 and -1 .
ii) Use Newton's method once for $x=-0.8$ to obtain another approximation to the root. (to 2 decimal places)
(b)The polynomial $P(x)=2 x^{3}+3 x^{2}-5 x+7$ has roots. $\alpha, \beta$ and $\gamma$. Evaluate
i) $\alpha+\beta+\gamma$
ii) $\alpha \beta \gamma$
(b) Consider the function $f(x)=(1+x)^{n}$
i) Write an expression for $f^{\prime}(x)$
ii) By considering the expansion of $(1+x)^{n}$ and part (i) above, prove

$$
\binom{n}{0}+2\binom{n}{1}+3\binom{n}{2}+\cdots+n\binom{n}{n-1}+(n+1)\binom{n}{n}=(n+2) 2^{n-1}
$$

(d) The reflective property of a Parabola suggests that if a ray is constructed from the focus $S$ to any point on the parabola $P$, then it will be reflected so that it is parallel to the axis of the Parabola.
It also means that if a tangent is drawn at point P , the angle between the tangent and the focus is equal to the angle between the tangent and the reflected ray. (See diagram below)

i) Show that the equation of the tangent AB at point $P\left(2 a p, a p^{2}\right)$ to the parabola $x^{2}=4 a y$ is $p x-y-a p^{2}=0$.
ii) By calculating the gradient of PS, show that the expression for the angle between the tangent and the focus $\mathrm{S}(0, \mathrm{a})$ at Point $\mathrm{P} \angle A P S$, is

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{1}{p}\right) \tag{2}
\end{equation*}
$$

iii) Prove that the size of $\angle B P C$ is also $\theta=\tan ^{-1}\left(\frac{1}{p}\right)$

Question 14. (Begin a new writing booklet)
a) Find the general solution of $\tan 3 x=-\sqrt{3}$.
b) Calculate the exact value of $\tan \left(105^{\circ}\right)$ as a simplified surd.
c) $\int \frac{(x+1) d x}{4 x^{2}+8 x-7}$ using the substitution $u=4 x^{2}+8 x-7$
d) A tennis court is 24 m long with a net 1 m high in the middle.

During a tennis match, Rafael Nadal smashes a ball into the opposing court 6 m away from the net at a velocity of $50 \mathrm{~m} / \mathrm{sec}$. The ball is projected at an angle of depression of $13^{0}$ at a height of 2.5 m above the ground.

Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{-2}$. You may also assume that the horizontal displacement of the ball to be given by the expression $x=50 t \cos 13^{\circ}$, where $t$ is the time in $\sec$ and $x$ is in metres.

i) Given that $\ddot{y}=-g$, show that the vertical displacement of the ball at time $t$
is $y=-5 t^{2}-50 t \sin 13^{0}+2.5$
ii) By what margin does the ball clear the net?
(correct to the nearest cm )
iii) How far from the opposing player's baseline does the ball land (correct to the nearest cm )
e) A rectangular field ABCD has the dimensions 60 m by 30 m where $A B=C D=30 \mathrm{~m}$. $E$ is the midpoint of $B C$.
At the same time, one person leaves point B cycling at $3 \mathrm{~m} / \mathrm{s}$ and another leaves from point E jogging at $2 \mathrm{~m} / \mathrm{s}$.
They travel towards the other side of the field to arrive simultaneously at point Q .
Let $\angle A B Q=\theta$ and let the distance $Q E=x$
Diagram is given below.

A Q

i) By equating equal travel times, show that $Q B=\frac{3 x}{2}$
ii) $\quad \mathrm{M}$ lies on EC and is the foot of the perpendicular from Q . By considering $\triangle Q A B$ and $\triangle Q B E$, prove the following

$$
\begin{equation*}
5 x^{2}+3600=360 \sqrt{x^{2}-400} \tag{2}
\end{equation*}
$$

$\qquad$
$\qquad$

## Year 12 Mathematics Ext 1 - Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$
2+4=(\mathrm{A}) 2
$$

(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D $\bigcirc$


- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
Z
$\mathrm{C} \bigcirc$
D $\bigcirc$
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

D $\bigcirc$

| 1. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 3. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 4. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 5. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 6. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 7. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 8. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 9. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |
| 10. | A | $\bigcirc$ | B | $\bigcirc$ | C | $\bigcirc$ | D | $\bigcirc$ |

## SAINT IGNATIUS' COLLEGE

 RIVERVIEW

## Extension 1 Mathematics.

General Instructions
Reading time - 5 mins

- Working time -2 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided with this paper
- All necessary working should be shown in every question

Total Marks - 70

## Section 1 - 10 marks

Objective response answers
Attempt Questions 1-10
Section 2-60 marks
Extended response answers
Attempt Questions 11-14
All questions in Section 2 are of equal value

Mathematics Extension 1: Question Objective Response (Section 1)


$$
\begin{array}{ll}
\text { (3) } y=x^{2}-4 & y=x^{2}-8 x+12 \\
y^{\prime}=2 x & y^{\prime}=2 x-8 \\
\text { at } x=2 & \text { at } x=2 \\
y^{\prime}=4 & y^{\prime}=4-8 \\
y^{\prime}=-4 \\
\therefore \tan \theta & =\left|\frac{4--4}{1+(4)(-4)}\right| \\
& =\left|\frac{8}{-15}\right| \\
\therefore \theta & =20^{\circ} 4^{\prime}
\end{array}
$$



Mathematics Extension 1: Question objective Response (fection 1)

$$
\begin{align*}
& \text { (7) } \begin{array}{l}
P(x)=x^{3}-2 x^{2}-5 x+6 \\
P(1)
\end{array}=1-2-5+6  \tag{C}\\
& =0 \\
& \therefore \quad x=1 \text { is a oot. }
\end{align*}
$$

(8)

$$
\begin{aligned}
& \text { (8) } x-1=p^{2}+2 p+1 \\
& (x-1)=(p+1)^{2}
\end{aligned}
$$

also

$$
\begin{align*}
& \text { also } y+1=p \\
& \therefore(x-1)=(y+1+1)^{2} \\
& (x-1)=(y+2)^{2} \\
& \therefore V:(1,-2)
\end{align*}
$$

(9) $m=70^{\circ}$ (Lat entre, $x 2$ 人at circamference)
$n=145^{\circ}$ (Opp K's in syclic are supplementy)

$$
\text { (10) } \begin{aligned}
&\left.\int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}} d x \quad \begin{array}{r}
x=\sin u \\
d x
\end{array}\right)=\cos 0 \\
& x=0 \quad u=0 . \\
& x=\frac{1}{2} \quad u=\frac{\pi}{6} \\
& \therefore \int_{0}^{\frac{\pi}{6}} \sqrt{1-\sin ^{2} u} \cos u d u \\
&=\int_{0}^{\frac{\pi}{6}} \cos ^{2} u d u \\
&=\frac{1}{2}\left[\frac{\sin 2 n}{2}+4\right]_{0}^{\frac{\pi}{6}} \\
&=\frac{\sqrt{3}}{8}+\frac{\pi}{12}
\end{aligned}
$$

$$
d x=\cos u d u
$$

| Suggested Solutions | Marks <br> Awarded | Markers Comments |
| :---: | :---: | :---: |

Given: Let $M$ be a point outside a circle, and let $M A B$ and $M P Q$ be secants to the circle.
Aim: To prove that $A M \times M B=P M \times M Q$.
Construction: Join $A P$ and $B Q$.
Proof: In the triangles $A P M$ and $Q B M$ :

1. $\angle M A P=\angle M Q B$ (external angle of cyclic quadrilateral),

2. $\angle A M P=\angle Q M B$ (common),
so $\quad \triangle A P M|l| \triangle Q B M$ (AA).
Hence $\quad \frac{A M}{Q M}=\frac{P M}{B M}$ (matching sides of similar triangles),
that is, $A M \times M B=P M \times M Q$.
b)
i) Amplitude $\rightarrow$ (highes t-Lowest) $\vdots 2$

$$
\therefore(6-3) \div 2=1.5 \mathrm{~m}
$$

Period $=$ (time between high tide and has tide) $\times 2$

$$
=\left(11 a m-5 a_{m}\right) \times 2
$$

$$
=12 \mathrm{hrs}
$$

ii) $a=-1.5$ (since at $t=0$ tide is at lowest point)

$$
b=4.5 \text { (centre of motion is }
$$ at 4.5 m )

$$
\begin{aligned}
& T=\frac{2 \pi}{n} \\
& 12=\frac{2 \pi}{n} \\
& \therefore \quad n=\frac{\pi}{6}
\end{aligned}
$$



| Suggested Solutions |  |
| ---: | :--- |
| b) |  |
| (iii) $\quad x$ | $=4.5=-1.5 \cos \left(\frac{\pi}{6} t\right)$ |
| $\dot{x}$ | $=1.5\left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{6} t\right)$ |
| $\ddot{x}$ | $=1.5\left(\frac{\pi}{6}\right)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6} t\right)$ |
|  | $=-\left(\frac{\pi}{6}\right)^{2}\left(-1.5 \cos \left(\frac{\pi}{6} t\right)\right)$ |
| $\ddot{x}$ | $=-n^{2} x \quad$ where $X=(x-4.5)$ |

$$
\begin{aligned}
& \text { iv) }-1.5 \cos \left(\frac{\pi}{6} t\right)+4.5>4 \\
& \therefore 0.5>1.5 \cos \left(\frac{\pi}{6} t\right) \\
& \therefore \frac{1}{3}>\cos \left(\frac{\pi}{6} t\right) \\
& \therefore \frac{\pi}{6} t=1.23,2 \pi-1.23,2 \pi+1.23,4 \pi-1.23
\end{aligned}
$$

$$
\therefore t=2.35,9.65, \quad 14.35,27.65
$$

$$
\begin{aligned}
& =2 \mathrm{hrs} 9 \text { his } 14 \mathrm{hr}, 21 \mathrm{hr} \\
& 21 \mathrm{~min}, 39 \mathrm{~min}, 21 \mathrm{~min}, 39 \mathrm{~min} \text { etc. }
\end{aligned}
$$

$\therefore$ Fist time period after Sam for sate passage
$7.21 a \mathrm{~m} \rightarrow 2.39 \mathrm{pm}$
C) Prove true for $n=1$

$$
\begin{aligned}
& 9^{1+2}-4^{1} \\
= & 9^{3}-4 \\
= & 729-4 \\
= & 725 \\
= & (145)(5)
\end{aligned}
$$

$\therefore$ divisible by 5
Suggested Solutions
c) Assume the for $n=k<$
$9^{k+2}-4^{k}=5 A \rightarrow 9^{k+2}=5 A+4^{k}$

Pore true for $n=k+1$

$$
\begin{aligned}
& 9^{k+3}-4^{k+1}=5 B \\
&=9\left(9^{k+2}\right)-4\left(4^{k}\right) \\
&=9\left[5 A+4^{k}\right]-4\left(4^{k}\right) \\
&=45 A+9\left(4^{k}\right)-4\left(4^{k}\right) \\
&=45 A+5\left(4^{k}\right) \\
&=5\left[9 A+4^{k}\right] \\
&=5 B \quad \text { where } \quad B=\left(9 A+4^{k}\right)
\end{aligned}
$$

$12 a)$
i) $\sin$ ce, 4 revs $/ \mathrm{min}$
$\therefore \quad 8 \pi \mathrm{rad} / \mathrm{min}$ as $1 \mathrm{rev}=2 \pi \mathrm{rad}$.

$$
\therefore \frac{d \theta}{d t}=8 \pi
$$

ii) $\tan \theta=\frac{x}{3}$

$$
\therefore \begin{aligned}
\frac{d x}{d t} & =\frac{d x}{d \theta} \times \frac{d \theta}{d t} \\
& =3 \sec ^{2} \theta \times 8 \pi \\
& =24 \pi \sec ^{2} \theta
\end{aligned}
$$

$$
x=3 \tan \theta
$$

$$
\begin{aligned}
x=3 \tan \theta & =3 \sec ^{2} \theta \times 8 \pi \\
\frac{d x}{d \theta}=3 \sec ^{2} \theta . & =24 \pi \sec ^{2} \theta
\end{aligned}
$$

(ii) at $P, \theta=0$

$$
\begin{aligned}
\therefore \frac{d x}{d t} & =24 \pi \sec ^{2}(0) \\
& =24 \pi \mathrm{~km} / \mathrm{min} .
\end{aligned}
$$


b)

$$
\begin{aligned}
& \frac{d}{d x} \tan ^{-1}\left(e^{-2 x}\right) \\
= & \frac{-2 e^{-2 x}}{1+\left(e^{-2 x}\right)^{2}} \\
= & \frac{-2 e^{-2 x}}{1+e^{-4 x}} \times \frac{e^{4 x}}{e^{4 x}} \\
= & \frac{-2 e^{4 x}}{e^{4 x}+1}
\end{aligned}
$$

c) Ief $a=\cos ^{-1} x$ and $b=\sin ^{-1} y$

$$
\begin{array}{rl}
\therefore \quad 2 a+\frac{b}{3} & =\frac{\pi}{6}(1) \\
a & a \frac{b}{3}=\frac{\pi}{3} \tag{2}
\end{array}
$$

$$
\begin{array}{lrl}
\text { (1) }+(2) & \therefore 2\left(\frac{\pi}{6}\right)+\frac{b}{3}=\frac{\pi}{6} \\
3 a=\frac{\pi}{2} & \frac{b}{3}=-\frac{\pi}{6} \\
a=\frac{\pi}{6} & b=-\frac{\pi}{2} \\
\therefore \cos ^{-1} x=\frac{\pi}{6} & \sin ^{-1} y=-\frac{\pi}{2} \\
x=\frac{\sqrt{3}}{2} & y=-1
\end{array}
$$

Mathematics Extension 1: Question $/ 2$

iii) let $\lambda=10$

$$
\begin{aligned}
& \therefore 10=\frac{3}{\sin \theta} \div \frac{4}{\cos \theta} \times \sin \theta \cos \theta \\
& \begin{array}{r}
10 \sin \theta \cos \theta=3 \cos \theta+4 \sin \theta
\end{array} \\
& \begin{array}{r}
5[2 \sin \theta \cos \theta]=5[\sin (\theta+\phi)] \\
\begin{array}{r}
\sin 2 \theta=\sin (\theta+\phi) \quad \\
\text { since in } \\
4 \sin \theta+5 \cos \theta
\end{array} \\
R=\sqrt{4^{2}+3^{2}} \\
\\
=5
\end{array} \\
& \text { and } \phi=\tan ^{-1}\left(\frac{b}{a}\right) \\
& \phi=\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Mathematics Extension 1: Question $/ 3$

| $\quad$ Suggested Solutions |  |
| ---: | :--- |
| a) $P(x)$ | $=4 x^{3}+2 x^{2}+1$ |
| $P^{\prime}(x)$ | $=1.2 x^{2}+4 x$ |
| $\therefore P(-0.5)$ | $=4(-0.5)^{3}+2(-0.5)^{2}+1$ |
|  | $=-1$ |
| $P(-1)$ | $=4(-1)^{3}+2(-1)^{2}+1$ |
|  | $=1$ |

$\therefore$ a coot lies between $x=-0.5$ and $x=1$
ii)

$$
\begin{aligned}
x_{2} & =-0.8-\frac{p(-0.8)}{p^{\prime}(-0.8)} \\
& =-0.8-\frac{0.232}{12(-0.8)^{2}+4(-0.8)} \\
& =-0.85(2 d p)
\end{aligned}
$$

b)

$$
\text { i) } \begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{a} \\
& =-\frac{3}{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\alpha \beta \gamma & =-\frac{d}{a} \\
& =-\frac{7}{2}
\end{aligned}
$$

c) $f(x)=(1+x)^{n}$

$$
\text { i) } \begin{aligned}
& f(x)=n(1+x)^{n-1} \\
& f^{\prime}(x)=n(1)
\end{aligned}
$$

$$
\text { ii) }(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n-1} x^{n-1}+{ }^{n} C_{n} x^{n}
$$

Derive

$$
n(1+x)^{n-1}={ }^{n} C_{1}+2^{n} C_{2} x+3 C_{3} x^{2}+\cdots+n^{n} C_{n} x^{n-1}
$$

Mathematics Extension 1: Question / 3
Suggested Solutions
add above Expressions. and let $x=1$
$2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots{ }^{n} C_{n-1}+{ }^{n} C_{n}$
$n(2)^{n-1}={ }^{n} C_{1}+2^{n} C_{2}+3^{n} C_{3}+\cdots+(n-1)^{n} C_{n-1}+n^{n} C_{n}$
$2^{n}+n\left(2^{n-1}\right)={ }^{n} C_{0}+2^{n} C_{1}+3^{n} C_{2}+\cdots$
$2^{n-1}[2+n]=\sum^{n} C_{n-1}+(n+1)^{n} C_{n}(k+1){ }^{n} C_{k}$ as aspired.
d)
i)

$$
\begin{aligned}
& \frac{d x}{d p}=2 a \quad \frac{d y}{d p}=2 a p \\
& \therefore \frac{d y}{d x}=\frac{d y}{d p} \times \frac{d p}{d x} \\
&=2 a p \times \frac{1}{2 a} \\
&=p \\
& \therefore p=\frac{y-a p^{2}}{x-2 a p} \\
& \therefore p-2 a p^{2}=y-a p \text { a } \\
& \therefore p x-y-a p^{2}=0 \quad \text { as required. }
\end{aligned}
$$

$$
\therefore m_{p s}=\frac{a p^{2}-a}{2 a p-0}
$$

$$
=\frac{a\left(p^{2}-1\right)}{2 a p}
$$

$$
m_{p s}=\frac{p^{2}-1}{2 p}
$$

Mathematics Extension 1: Question 13

$$
\begin{aligned}
& \text { Suggested Solutions } \\
& \text { d) ii } \\
& \tan \theta=\left|\frac{p-\frac{p^{2}-1}{2 p}}{1+p\left(\frac{p^{2}-1}{2 p}\right.}\right| \times 2 p \\
&=\left|\frac{2 p p^{2}-p^{2}+1}{2 p+p^{3}-p}\right| \\
&=\left|\frac{\left(p^{2}+1\right)}{p\left(p^{2}+1\right)}\right| \\
& \tan \theta=\frac{1}{p}
\end{aligned}
$$

iii) Constmot a horizontal from $P$ away from $a \times i$ ot Porabuia fo $D$

$$
\therefore \angle B P D=90-\theta \text { and } m_{P D}=0
$$

$$
\therefore \tan (90-6)=\left|\frac{p-0}{1+p(0)}\right|
$$

$$
=P
$$

But $\tan (90-\theta)=\cot \theta$

$$
\begin{aligned}
\therefore \quad \cot \theta & =P \\
\frac{1}{\tan \theta} & =P \\
\therefore \quad \tan \theta & =\frac{1}{P} \quad \text { as required }
\end{aligned}
$$


b)

$$
\begin{aligned}
\tan (105) & =\tan (60+45) \\
& =\frac{\tan 60+\tan 45}{1-\tan 60 \tan 45} \\
& =\frac{\sqrt{3}+1}{1-(\sqrt{3})(1)} \times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\
& =\frac{3+2 \sqrt{3}+1}{1-3} \\
& =\frac{4+2 \sqrt{3}}{-2}=-2-\sqrt{3}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \int \frac{(x+1) d x}{4 x^{2}+8 x-7} \\
& \text { let } \begin{aligned}
u & =4 x^{2}+8 x+7 \\
d u & =8 x+8 d x \\
d u & =8(x+1) d x \\
\therefore & \frac{1}{8} \int \frac{d u}{u} \\
= & \frac{1}{8} \ln [u]+c \\
= & \frac{1}{8} \ln \left[4 x^{2}+8 x-7\right]+c
\end{aligned}
\end{aligned}
$$

d) $\ddot{y}=-10$
i) $\dot{y}=-10 t+c$
when $t=0 \quad y=-50 \sin 13$
$\therefore c=-50 \sin 13$
$\therefore y=-10 t-50 \sin 13$
$y=-5 t^{2}-50 t \sin 13+c$
when $t=0 \quad y=2.5$
$\therefore c=2.5$
$\therefore y=-5 t^{2}-50 t \sin 13+2.5$
ii) since $x=50$ tcos 13

$$
t=\frac{x}{50 \cos 13}
$$

at $x=6$

$$
\begin{aligned}
t & =\frac{6}{50 \cos 13} \\
& =0.1232 \mathrm{sec} .
\end{aligned}
$$

$\therefore y=-5(0.1232)^{2}-50(0.1232) \sin 13+2.5$

$$
=1.039 \mathrm{~m}
$$

$\therefore$ clear net by $0.039 \mathrm{~m} \cong 3.9 \mathrm{~cm}$.

$$
\begin{aligned}
& \text { iii) let } y=0 \\
& \therefore 5 t^{2}+50 t \sin 13-2.5=0
\end{aligned}
$$

$$
t=-50 \sin \left(3 \pm \sqrt{(50 \sin 13)^{2}-4(5)(-2 . r)}\right.
$$

$$
=0.2038,-2.45 \leqslant \text { invaind }
$$ time.

$\therefore x=50(0.203 \%) \cos 13$

$$
=9.93 \mathrm{~m}
$$

| Suggested Solutions |
| :---: |
| deil) $\therefore$ Ball lands |
|  |
| $=12-3.93 \mathrm{~m}$ |
| $=$ |
| .07 m from opponents base line |

e) i) Jogger

$$
\begin{aligned}
T & =\frac{D}{S} \\
& =\frac{x}{2}
\end{aligned}
$$

ii) In $\triangle Q A B$

$$
\begin{aligned}
\left(A(X)^{2}\right. & =\left(\frac{3 x}{2}\right)^{2}-30^{2} \\
& =\frac{9 x^{2}}{4}-900 \\
\therefore A Q & =\sqrt{\left(\frac{9 x^{2}}{4}\right)-900} \\
& =\frac{3}{2} \sqrt{x^{2}-400}
\end{aligned}
$$

$\therefore$ In $\triangle Q B E$

$$
\begin{aligned}
& x^{2}=\left(\frac{3 x x^{2}}{2}+30^{2}-2\left(\frac{3 x}{2}\right)(30) \cos (90-\theta)\right. \\
&=\frac{9 x^{2}}{4}+900-90 x \sin \theta \\
&=\frac{9 x^{2}}{4}+900-90 x \frac{\sqrt{x^{2}-400}}{x} \\
& x^{2}=\frac{9 x^{2}}{4}+900-90 \sqrt{x^{2}-400} \\
& 4 x^{2}=9 x^{2}+3600-360 \sqrt{x^{2}-400} \\
& \therefore 5 x^{2}+3600=360 \sqrt{x^{2}-400}
\end{aligned}
$$

$$
\begin{aligned}
D & =5 \times 7 \\
& =3 \times \frac{x}{2} \\
& =\frac{3 x}{2}
\end{aligned}
$$

