\qquad Teacher's Code \qquad

Saint Ignatius' College, Riverview Mathematics Assessment Task 2020

Year 12
Mathematics (Extension One)
Task 4
Trial HSC Examination
Date $: 2^{\text {nd }}$ September 2020

General Instructions:

- Reading time: 5 minutes
- Time Allowed: 2 hours
- Write using blue or black pen only
- NESA approved calculators may be used
- Attempt all questions in the space provided in the writing booklets
- Write your name and your teacher's code in the positions indicated
- Marks may not be awarded for missing or carelessly arranged working.

Teacher's Codes :

- Mr R Maxwell
- Mr D Reidy
- MrN Mushan
- Mr J Newey

REM
DPR
NHM
JPN

Topics Examined:

Section A
10 Marks
Multiple Choice

Section B

Short Answer
Question 11
15 Marks
Question 1215 Marks
Question 13
15 Marks
Question 14
15 Marks

Total
70 Marks

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. Let $P(x)=x^{2}+b x+c$ where b and c are constants. The zeros of $P(x)$ are α and $\alpha+1$.

What are the correct expressions for b and c in terms of α ?
(A) $b=-(2 \alpha+1)$ and $c=\alpha^{2}+\alpha$
(B) $b=2 \alpha+1$ and $c=\alpha^{2}+\alpha$
(C) $b=\alpha^{2}+\alpha$ and $c=-(2 \alpha+1)$
(D) $\quad b=\alpha^{2}+\alpha$ and $c=2 \alpha+1$
2. What is the derivative of $\tan ^{-1}(2 x-1)$?
(A) $\frac{1}{4 x^{2}-4 x+2}$
(B) $\frac{2 x-1}{2 x^{2}-2 x+1}$
(C) $\frac{2}{2 x^{2}-2 x+1}$
(D) $\frac{1}{2 x^{2}-2 x+1}$
3. An experiment consisted of tossing a biased coin three times and recording the number of tails obtained. This experiment was repeated 1000 times and the results are shown in the table.

Number of tails	Frequency
0	219
1	427
2	292
3	62

Based on these results, what is the probability that the coin shows tails when tossed?
(A) 0.3
(B) 0.4
(C) 0.5
(D) 0.6
4. Which of the following expressions is equal to $\cos (x)+\sin (x)$?
(A) $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$
(B) $2 \sin \left(x+\frac{\pi}{4}\right)$
(C) $\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)$
(D) $2 \sin \left(x-\frac{\pi}{4}\right)$
5. The equation $y=e^{a x}$ satisfies the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$.

What are the possible values of a ?
(A) $\quad a=-2$ or $a=3$
(B) $\quad a=-1$ or $a=6$
(C) $\quad a=2$ or $a=-3$
(D) $\quad a=1$ or $a=-6$
6. The direction (slope) field for a first order differential equation is shown.

Which of the following could be the differential equation represented?
(A) $\frac{d y}{d x}=(x+1)^{3}$
(B) $\frac{d y}{d x}=x(y+1)$
(C) $\frac{d y}{d x}=(x+1) y$
(D) $\frac{d y}{d x}=(x-1) y$
7. The position vectors of points A and B are $\underset{\sim}{a}$ and $\underset{\sim}{b}$ respectively. Point C is the midpoint of $O B$ and point D is such that $A B D C$ is a parallelogram.

Which of the following is the position vector of D ?
(A) $\frac{3}{2} \underset{\sim}{b}+\underset{\sim}{a}$
(B) $\frac{3}{2} \underset{\sim}{b}-\underset{\sim}{a}$
(C) $\frac{1}{2} \underset{\sim}{b}-\frac{1}{2} \underset{\sim}{a}$
(D) $\frac{1}{2} \underset{\sim}{b}-\underset{\sim}{a}$
8. Which of the following functions is a primitive of $\frac{1}{\sqrt{4-9 x^{2}}}$?
(A) $\frac{1}{3} \sin ^{-1} \frac{2 x}{3}$
(B) $\frac{1}{9} \sin ^{-1} \frac{3 x}{2}$
(C) $\frac{1}{9} \sin ^{-1} \frac{2 x}{3}$
(D) $\frac{1}{3} \sin ^{-1} \frac{3 x}{2}$
9. A curve C has parametric equations $x=\cos ^{2} t$ and $y=4 \sin ^{2} t$ for $t \in R$.

What is the Cartesian equation of C ?
(A) $y=1-x$ for $0 \leq x \leq 1$
(B) $y=4-4 x$ for $x \in R$
(C) $y=4-4 x$ for $0 \leq x \leq 1$
(D) $y=1-x$ for $x \in R$
10. The diagram shows $O A B C$, a rhombus in which $\overrightarrow{O A}=\overrightarrow{C B}=\underset{\sim}{a}$ and $\overrightarrow{O C}=\overrightarrow{A B}=\underset{\sim}{c}$.

To prove that the diagonals of $O A B C$ are perpendicular, it is required to show that
(A) $(\underset{\sim}{a}+\underset{\sim}{c}) \cdot(\underset{\sim}{a}+\underset{\sim}{c})=0$.
(B) $(\underset{\sim}{a}-\underset{\sim}{c}) \cdot(\underset{\sim}{a}-\underset{\sim}{c})=0$.
(C) $(\underset{\sim}{a}-\underset{\sim}{c}) \cdot(\underset{\sim}{a}+\underset{\sim}{c})=0$.
(D) $\underset{\sim}{a} \cdot \underset{\sim}{c}=0$.

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the function $f(x)=x^{2}-4 x+6$.
(i) Explain why the domain of $f(x)$ must be restricted if $f(x)$ is to have an inverse function.
(ii) Given that the domain of $f(x)$ is restricted to $x \leq 2$, find an expression for $f^{-1}(x)$.
(iii) Given the restriction in part (a) (ii), state the domain and range of $f^{-1}(x)$.
(iv) The curve $y=f(x)$ with its restricted domain and the curve $y=f^{-1}(x)$ intersect at the point P.

Find the coordinates of P.
(b) Use the substitution $u=9-x^{2}$, to find the primitive function of $\frac{x d x}{\sqrt{9-x^{2}}}$.
(c) Use t-formulae to solve the equation $\cos x-\sin x=1$, where $0 \leq x \leq 2 \pi$.
(d) The work done, W, by a constant force, $\underset{\sim}{F}$, in moving a particle through a displacement, $\underset{\sim}{s}$, is defined by the formula $W=\underset{\sim}{F} \cdot \underset{\sim}{s}$. A force described by the vector $\underset{\sim}{F}=\binom{4}{-2}$ moves a particle along the line l from $P(-1,2)$ to $Q(2,-2)$.
(i) Find $\underset{\sim}{s}=\overrightarrow{P Q}$ and hence find the value of W.
(ii) Hence, verify that W is also given by $W=(\underset{\sim}{F} \cdot \underset{\sim}{\underset{S}{s}})|\underset{\sim}{s}|$.
(iii) Find the component of $\underset{\sim}{F}$ in the direction of l.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) A proposed plan for a garden is shown in the diagram. The curved boundary of the garden is modelled by the function $f(x)=6 \sin ^{2}\left(\frac{\pi x}{8}\right), 0 \leq x \leq 8$.

(i) Use the identity $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$ to show that $\sin ^{2}\left(\frac{\pi x}{8}\right)=\frac{1}{2}\left(1-\cos \frac{\pi x}{4}\right)$.
(ii) Use the result from part (a) (i) to find the area, A, of the garden.

Question 12 continues on page 8

Question 12 (continued)
(b) A state-wide housing study found that 36% of adults in NSW have a mortgage.
(i) A random sample of 25 adults in NSW is to be taken to determine the proportion of those who have a mortgage.

Show that the mean and standard deviation for the distribution of sample proportions of such random samples are 0.36 and 0.096 respectively.
(ii) In a sample of 25 adults, find the probability that 9 adults have a mortgage.
(Give your answer correct to four decimal places)
(iii) Part of a table of $P(Z \leq z)$ values, where Z is a standard normal variable, is shown.

z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964

Of a random sample of 25 adults in NSW, use the table to estimate the probability that at most three will have a mortgage. Give your answer correct to four decimal places.

Question 12 continues on page 9

Question 12 (continued)
(c) The diagram shows the graph of $y=\frac{1}{x^{2}+1}$ and the graph of $y=1-\frac{x}{2}$ for $0 \leq x \leq 1$.

(i) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y=\frac{1}{x^{2}+1}$, the y-axis and the line $y=\frac{1}{2}$ is rotated 360° about the y-axis.
(ii) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y=1-\frac{x}{2}$, the y-axis and the line $y=\frac{1}{2}$ is rotated 360° about the y-axis.
(iii) Use the results from parts (c) (i) and (ii) to show that $\ln 2>\frac{2}{3}$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) A particle is projected from a point O on level horizontal ground with a speed of $21 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle θ to the horizontal. At time T seconds, the particle passes through the point $B(12,2)$.

Neglecting the effects of air resistance, the equations describing the motion of the particle are:

$$
\begin{gathered}
x=V t \cos \theta \\
y=V t \sin \theta-\frac{1}{2} g t^{2}
\end{gathered}
$$

where t is the time in seconds after projection, $g \mathrm{~m} \mathrm{~s}^{-2}$ is the acceleration due to gravity where $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and x and y are measured in metres. Do NOT prove these equations.
(i) By considering the horizontal component of the particle's motion, show that $T=\frac{4}{7} \sec \theta$.
(ii) By considering the vertical component of the particle's motion and, using the result from part (a) (i), show that $4 \tan ^{2} \theta-30 \tan \theta+9=0$.
(iii) Find the particle's least possible flight time from O to B. Give your answer correct to two decimal places.
(b) Prove by mathematical induction that $4^{n}+14$ is divisible by 6 , for all positive integers $n(n \geq 1)$.
(c) (i) Prove the trigonometric identity $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$.
(ii) Use the identity from part (c) (i) and let $x=\tan \theta$, to find the roots of the cubic equation $x^{3}-3 x^{2}-3 x+1=0$ and hence find the exact value of $\tan \frac{\pi}{12}$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram below is a sketch of the graph of the function $f(x)=-\frac{x}{x+1}$.

(i) Sketch the graph of $y=(f(x))^{2}$, showing all asymptotes and intercepts.
(ii) Sketch the graph of $y=x+f(x)$, showing all asymptotes and intercepts.
(iii) Solve the equation $(f(x))^{2}=f(x)$.

Question 14 continues on page 12

Question 14 (continued)
(b) The area $A \mathrm{~cm}^{2}$ is occupied by a bacterial colony. The colony has its growth modelled by the logistic equation $\frac{d A}{d t}=\frac{1}{25} A(50-A)$ where $t \geq 0$ and t is measured in days. At time $t=0$, the area occupied by the bacteria colony is $\frac{1}{2} \mathrm{~cm}^{2}$.
(i) Show that $\frac{1}{A(50-A)}=\frac{1}{50}\left(\frac{1}{A}+\frac{1}{50-A}\right)$.

$$
A=\frac{50}{1+99 e^{-2 t}}
$$

(iii) According to this model, what is the limiting area of the bacteria colony?
(c) The table shows selected values of a one-to-one differentiable function $g(x)$ and its derivative $g^{\prime}(x)$.

x	-1	0
$g(x)$	-5	-1
$g^{\prime}(x)$	3	$\frac{1}{2}$

Let $f(x)$ be a function such that $f(x)=g^{-1}(x)$.

Find the value of $f^{\prime}(-1)$.

End of paper

Mathematics Advanced
 Mathematics Extension 1
 Mathematics Extension 2

REFERENCE SHEET

Measurement

Length
$l=\frac{\theta}{360} \times 2 \pi r$

Area

$A=\frac{\theta}{360} \times \pi r^{2}$
$A=\frac{h}{2}(a+b)$

Surface area

$A=2 \pi r^{2}+2 \pi r h$
$A=4 \pi r^{2}$
Volume
$V=\frac{1}{3} A h$
$V=\frac{4}{3} \pi r^{3}$

Functions

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
For $a x^{3}+b x^{2}+c x+d=0$:

$$
\alpha+\beta+\gamma=-\frac{b}{a}
$$

$$
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}
$$

$$
\text { and } \alpha \beta \gamma=-\frac{d}{a}
$$

Relations

$(x-h)^{2}+(y-k)^{2}=r^{2}$

Financial Mathematics
$A=P(1+r)^{n}$
Sequences and series
$T_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}(a+l)$
$T_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a\left(r^{n}-1\right)}{r-1}, r \neq 1$
$S=\frac{a}{1-r},|r|<1$

Logarithmic and Exponential Functions

$$
\begin{aligned}
\log _{a} a^{x} & =x=a^{\log _{a} x} \\
\log _{a} x & =\frac{\log _{b} x}{\log _{b} a}
\end{aligned}
$$

$$
a^{x}=e^{x \ln a}
$$

Trigonometric Functions

$\sin A=\frac{\text { opp }}{\text { hyp }}, \quad \cos A=\frac{\text { adj }}{\text { hyp }}, \quad \tan A=\frac{\text { opp }}{\text { adj }}$
$A=\frac{1}{2} a b \sin C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$l=r \theta$
$A=\frac{1}{2} r^{2} \theta$

Trigonometric identities
$\sec A=\frac{1}{\cos A}, \cos A \neq 0$
$\operatorname{cosec} A=\frac{1}{\sin A}, \sin A \neq 0$
$\cot A=\frac{\cos A}{\sin A}, \sin A \neq 0$
$\cos ^{2} x+\sin ^{2} x=1$

Compound angles

$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
If $t=\tan \frac{A}{2}$ then $\sin A=\frac{2 t}{1+t^{2}}$

$$
\begin{aligned}
& \cos A=\frac{1-t^{2}}{1+t^{2}} \\
& \tan A=\frac{2 t}{1-t^{2}}
\end{aligned}
$$

$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
$\sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$
$\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)]$
$\sin ^{2} n x=\frac{1}{2}(1-\cos 2 n x)$
$\cos ^{2} n x=\frac{1}{2}(1+\cos 2 n x)$

Statistical Analysis

$z=\frac{x-\mu}{\sigma}$
An outlier is a score less than $Q_{1}-1.5 \times I Q R$ or more than $Q_{3}+1.5 \times I Q R$

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3
$E(X)=\mu$
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}$

Probability

$P(A \cap B)=P(A) P(B)$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B) \neq 0$

Continuous random variables

$P(X \leq r)=\int_{a}^{r} f(x) d x$
$P(a<X<b)=\int_{a}^{b} f(x) d x$

Binomial distribution

$P(X=r)={ }^{n} C_{r} p^{r}(1-p)^{n-r}$
$X \sim \operatorname{Bin}(n, p)$
$\Rightarrow P(X=x)$

$$
=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n
$$

$E(X)=n p$
$\operatorname{Var}(X)=n p(1-p)$

Differential Calculus

Function	Derivative
$y=f(x)^{n}$	$\frac{d y}{d x}=n f^{\prime}(x)[f(x)]^{n-1}$
$y=u v$	$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$y=g(u)$ where $u=f(x)$	$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
$y=\frac{u}{v}$	$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$y=\sin f(x)$	$\frac{d y}{d x}=f^{\prime}(x) \cos f(x)$
$y=\cos f(x)$	$\frac{d y}{d x}=-f^{\prime}(x) \sin f(x)$
$y=\tan f(x)$	$\frac{d y}{d x}=f^{\prime}(x) \sec ^{2} f(x)$
$y=e^{f(x)}$	$\frac{d y}{d x}=f^{\prime}(x) e^{f(x)}$
$y=\ln f(x)$	$\frac{d y}{d x}=\frac{f^{\prime}(x)}{f(x)}$
$y=a^{f(x)}$	$\frac{d y}{d x}=(\ln a) f^{\prime}(x) a^{f(x)}$
$y=\log _{a} f(x)$	$\frac{d y}{d x}=\frac{f^{\prime}(x)}{(\ln a) f(x)}$
$y=\sin ^{-1} f(x)$	$\frac{d y}{d x}=\frac{f^{\prime}(x)}{\sqrt{1-[f(x)]^{2}}}$
$y=\cos ^{-1} f(x)$	$\frac{d y}{d x}=-\frac{f^{\prime}(x)}{\sqrt{1-[f(x)]^{2}}}$
$y=\tan ^{-1} f(x)$	$\frac{d y}{d x}=\frac{f^{\prime}(x)}{1+[f(x)]^{2}}$

Integral Calculus

$$
\begin{aligned}
& \int f^{\prime}(x)[f(x)]^{n} d x=\frac{1}{n+1}[f(x)]^{n+1}+c \\
& \text { where } n \neq-1 \\
& \int f^{\prime}(x) \sin f(x) d x=-\cos f(x)+c \\
& \int f^{\prime}(x) \cos f(x) d x=\sin f(x)+c \\
& \int f^{\prime}(x) \sec ^{2} f(x) d x=\tan f(x)+c \\
& \int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+c \\
& \int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c \\
& \int f^{\prime}(x) a^{f(x)} d x=\frac{a^{f(x)}}{\ln a}+c \\
& \int \frac{f^{\prime}(x)}{\sqrt{a^{2}-[f(x)]^{2}}} d x=\sin ^{-1} \frac{f(x)}{a}+c \\
& \int \frac{f^{\prime}(x)}{a^{2}+[f(x)]^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{f(x)}{a}+c \\
& \int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x \\
& \int_{a}^{b} f(x) d x \\
& \approx \frac{b-a}{2 n}\left\{f(a)+f(b)+2\left[f\left(x_{1}\right)+\ldots+f\left(x_{n-1}\right)\right]\right\}
\end{aligned}
$$

where $a=x_{0}$ and $b=x_{n}$

Combinatorics

${ }^{n} P_{r}=\frac{n!}{(n-r)!}$
$\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
$(x+a)^{n}=x^{n}+\binom{n}{1} x^{n-1} a+\ldots+\binom{n}{r} x^{n-r} a^{r}+\ldots+a^{n}$

Vectors

$|\underline{u}|=|x \underset{\sim}{i}+y \underset{\sim}{j}|=\sqrt{x^{2}+y^{2}}$
$\underset{\sim}{u} \cdot \underset{\sim}{v}=|\underset{\sim}{u}||v| \operatorname{vin} \mid \cos \theta=x_{1} x_{2}+y_{1} y_{2}$,
where $\underset{\sim}{u}=x_{1} \underset{\sim}{i}+y_{1} \underset{\sim}{j}$
and $\underset{\sim}{v}=x_{2} \underset{\sim}{i}+y_{2} \underset{\sim}{j}$
$\underset{\sim}{r}=\underset{\sim}{a}+\lambda \underset{\sim}{b}$

Complex Numbers

$$
\begin{aligned}
& \left.\left.\begin{array}{rl}
z=a+i b & =r(\cos \theta
\end{array}\right)+i \sin \theta\right) \\
& \\
& =r e^{i \theta}
\end{aligned} \begin{aligned}
{[r(\cos \theta+i \sin \theta)]^{n} } & =r^{n}(\cos n \theta+i \sin n \theta) \\
& =r^{n} e^{i n \theta}
\end{aligned}
$$

Mechanics

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& x=a \cos (n t+\alpha)+c \\
& x=a \sin (n t+\alpha)+c \\
& \ddot{x}=-n^{2}(x-c)
\end{aligned}
$$

\qquad

Saint Ignatius' College

Saint Ignatius’ College, Riverview

Mathematics Assessment Task

2020

Year 12
Mathematics (Extension One)
Task 4
Trial HSC Examination
Date $: 2^{\text {nd }}$ September 2020

General Instructions:

- Reading time: 10 minutes
- Time Allowed: 2 hours
- Write using blue or black pen only
- NESA approved calculators may be used
- Attempt all questions in the space provided in the writing booklets
- Write your name and your teacher's code in the positions indicated
- Marks may not be awarded for missing or carelessly arranged working.

Teacher's Codes :

- Mr R Maxwell

REM

- Mr D Reidy
- Mr N Mushan
- Mr J Newey

DPR NHM JPN

Topics Examined:

Section A
10 Marks
Multiple Choice
Section B
Short Answer
Question 11 15 Marks

Question 12 15 Marks

Question 13
15 Marks
Question 14
15 Marks

Total
70 Marks
\qquad

Year 12 Mathematics Ext 1 - Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B

C \bigcirc
D \bigcirc

- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$C \bigcirc$
$\mathrm{D} \bigcirc$
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A

Correct
D \bigcirc

Range

1.	A	-	B	\bigcirc	C	\bigcirc	D	\bigcirc
2.	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	-
3.	A	\bigcirc	B	-	C	\bigcirc	D	\bigcirc
4.	A	-	B	\bigcirc	C	\bigcirc	D	\bigcirc
5.	A	\bigcirc	B	\bigcirc	C	-	D	\bigcirc
6.	A	\bigcirc	B	\bigcirc	C	-	D	\bigcirc
7.	A	\bigcirc	B	(2)	C	\bigcirc	D	\bigcirc
8.	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	-
9.	A	\bigcirc	B	\bigcirc	C	-	D	\bigcirc
10.	A	\bigcirc	B	\bigcirc	C	-	D	\bigcirc

Sugeested Sourtions (Muttiple Chaice)
Q1 $\quad P(x)=x^{2}+b x+c$
zeros are $x=\alpha$ and $x=\alpha+1$

$$
\begin{array}{rr}
\text { sum of roati }=\alpha+\alpha+1 & \text { product freats }=\alpha(\alpha+1) \\
=2 \alpha+1 & =\alpha^{2}+\alpha \\
2 \alpha+1=(-b) & \therefore \alpha^{2}+\alpha=(c / a) \\
2 \alpha+1=-b / 1 & \alpha^{2}+\alpha=c \\
b=-(2 \alpha+1) & \therefore c=\alpha^{2}+\alpha
\end{array}
$$

Q2

$$
\begin{aligned}
\frac{d}{d x} \tan ^{-1} f(x) & =\frac{f^{\prime}(x)}{1+[f(x)]^{2}} \\
\frac{d}{d x} \tan ^{-1}(2 x-1) & =\frac{2}{1+(2 x-1)^{2}} \\
& =\frac{2}{1+4 x^{2}-4 x+1} \\
& =\frac{2}{4 x^{2}-4 x+2} \\
& =\frac{2(1)}{2\left(2 x^{2}-2 x+1\right)} \\
& =\frac{1}{2 x^{2}-2 x+1}
\end{aligned}
$$

Q3

$$
P(x)=\frac{1197}{3000}=0.399(\div 0.4)
$$

Q4

$$
\begin{aligned}
R \sin (x+\alpha) & =R[\sin x \cos \alpha+\cos x \sin \alpha] \\
& =R \cos \alpha \sin x+R \sin \alpha \cos x \\
& =R \sin \alpha \cos x+R \cos \alpha \sin \alpha
\end{aligned}
$$

Fquate $1 \cos x+1 \sin x=R \sin \alpha \cos x+R \cos \alpha \sin x$
then $R \sin \alpha=1$... (1)

$$
\begin{equation*}
R \cos \alpha=1 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (1) }-(2) \quad \tan \alpha=1 \\
& \alpha=\pi / 4 \\
& \text { (1) }{ }^{2}+\text { (2) } \quad R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=2^{\prime} \\
& R=\sqrt{2} . \\
& \therefore \sqrt{2} \sin (x+\pi / 4)
\end{aligned}
$$

Start your answer here.
Q5 $y=e^{a x} \quad \frac{d y}{d x}=a e^{a x} \quad \frac{d^{2} y}{d x^{2}}=a^{2} e^{a x}$

$$
\begin{aligned}
& \therefore \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0 \\
& a^{2} e^{a x}+a e^{a x}-6 e^{a x}=0 \\
& e^{a x}\left[a^{2}+a-6\right]=0 \\
& e^{a x}[(a+3)(a-2)]=0 \\
& \therefore a=2,-3
\end{aligned}
$$

Q6 At $(0,0) \quad \frac{d y}{d x}=0 \therefore$ NOT A
At $(-1,1) \quad \frac{d y}{d x}=0 \quad \therefore$ NOT B or D
\therefore correct answer is C.

QT

$$
\begin{align*}
\overrightarrow{O D} & =\overrightarrow{O C}+\overrightarrow{C D} \tag{B}\\
& =\frac{1}{2} \overrightarrow{O B}+\overrightarrow{A B} \\
& =\frac{1}{2} \overrightarrow{O B}+\overrightarrow{A O}+\overrightarrow{O B} \\
& =\frac{1}{2} p-a+b \\
& =\frac{3}{2} p-a
\end{align*}
$$

QB

$$
\begin{align*}
\int \frac{1}{\sqrt{4-9 x^{2}}} & =\int \sqrt{\left.\frac{d x}{9\left(\frac{4}{9}-x^{2}\right.}\right)} \tag{D}\\
& =\frac{1}{3} \int \sqrt{\left(\frac{2}{3}\right)^{2}-x^{2}} \\
& =\frac{1}{3} \sin ^{-1}\left(\frac{x}{2}\right)+C \\
& =\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{2}\right)+C
\end{align*}
$$

Qq

$$
\begin{align*}
& x=\cos ^{2} t \ldots \text { (1) } \tag{c}\\
& y=4 \sin ^{2} t \ldots \text { (2) } \Rightarrow \frac{4}{4}=\sin ^{2} t
\end{align*}
$$

$$
\text { (1)+(3) } \begin{aligned}
x+y / 4 & =\cos ^{2} t+\sin ^{2} t \\
x+y / 4 & =1 \\
4 x+y & =4
\end{aligned}
$$

But $0 \leqslant \cos ^{2} t \leqslant 1$

$$
\begin{aligned}
& \therefore 0 \leqslant x \leqslant 1 \\
& \therefore y=4-4 x \text { for } 0 \leqslant x \leqslant 1
\end{aligned}
$$

Q1O. $O B$ i $C A$

$$
\overrightarrow{O B}=a+c \quad \overrightarrow{C A}=a-c
$$

\therefore Since they are perpendicular need to show

$$
\begin{gathered}
\overrightarrow{C A} \cdot \overrightarrow{O B}=0 \\
(a-c)(a+c)=0
\end{gathered}
$$

Question II
ali)

$$
f(x)=x^{2}-4 x+6
$$

is a parabrala
Except for the turing paint $(2,2)$
for each value of $f(x)$ in the range.
there are two x-values.
re fail the houzental line torn
(ii) Nate $x<2$
interchange x and y

$$
\begin{aligned}
x & =y^{2}-4 y+6 \\
x-6 & =y^{2}-4 y \\
x-6+4 & =y^{2}-4 y+4 \\
x-2 & =(y-2) \\
\therefore y-2 & = \pm \sqrt{x-2}
\end{aligned}
$$

(Nate discard $\sqrt{x-2}$ an $y \leqslant 2$)

$$
\begin{aligned}
& \therefore y=-\sqrt{x-2}+2 \\
& f^{-1}(x)=-\sqrt{x-2}+2
\end{aligned}
$$

iii) Domain: $x \geqslant 2$ as $x-2 \geqslant 0$

$$
\text { Range: } y \leqslant 2 \quad \text { a }-\sqrt{x-2} \leq 0
$$

(iv) $y=f(x)$ and $y=f^{-1}(x)$ have. a common intersection with the line $y=x$.

$$
\begin{array}{r}
\therefore \quad x^{2}-4 x+6=x \\
x^{2}-5 x+6=0 \\
(x-3)(x-2)=0 \\
x=2,3
\end{array}
$$

When $x=2 \quad y=2$ and x $(2,2)$ un on the line $y=x$

When $x-3 \quad y=1$ does nat lie of the lune $y=x$
\therefore co-ordinales of P are $(2,2)$
b) $\int \frac{x d x}{\sqrt{9-x^{2}}}$

$$
\text { let } \begin{aligned}
u & =9-x^{2} . \\
\frac{d u}{d x} & =-2 x \\
d u & =-2 x d x \\
-\frac{1}{2} d u & =x d x
\end{aligned}
$$

convertiy integral $i-$ terms of 4 .
$=-\frac{1}{2} \int u^{-\frac{1}{2}} d u$

$$
=-\frac{1}{2}\left[\frac{u^{1 / 2}}{\frac{1}{2}}\right]
$$

$$
=-\frac{1}{2}\left[2 u^{1 / 2}\right]
$$

$$
\begin{aligned}
& =-\left[u^{1 / x}\right] \\
& =-\sqrt{9-x^{2}}+c
\end{aligned}
$$

Start your answer here.
Suasion II (continisad)
c) lot $\cos x=\frac{1-t^{2}}{1+t^{2}} \quad \sin x=\frac{2 t}{1+t^{2}}$
where $t=\tan \frac{x}{2}$

$$
\begin{array}{r}
\therefore \frac{1-t^{2}}{1+t^{2}}-\frac{2 t}{1+t^{2}}=1 \\
\frac{1-t^{2}-2 t}{1+t^{2}}=1 \\
\therefore 1-t^{2}-2 t=1+t^{2} \\
0=2 t^{2}+2 t \\
0=2 t(t+1) \\
\begin{array}{r}
2 t=0 \quad \text { or } \quad t+1=0 \\
t=0 \quad \\
\tan \frac{x}{2}=0 \quad \\
\frac{x}{2}=0, \pi \\
\therefore x=0,2 \pi
\end{array} \quad \tan \frac{x}{2}=-1 \\
\therefore \quad x=\frac{3 \pi}{2} \\
\hline x
\end{array}
$$

d) Substitute

Markén Comments
into

$$
\begin{aligned}
W & =E \cdot 5 \\
& =\binom{4}{-2} \cdot\binom{3}{-4} \\
& =4 \times 3+-2 \times-4 \\
& =12+8 \\
& =20
\end{aligned}
$$

ii) Unit vector is the duection

$$
\overrightarrow{P Q} \text { is } \frac{\hat{S}}{2}=\frac{1}{5}\binom{3}{-4}
$$

substulute

$$
E=\binom{4}{-2} \cdot \hat{S}=\frac{1}{5}\binom{3}{-4} \quad\left|\frac{5}{2}\right|=5
$$

into

$$
\begin{aligned}
W & \left.=\left(\begin{array}{ll}
\underset{\sim}{E} & \hat{S}
\end{array}\right) \right\rvert\, 61 \text { gives } \\
W & =\left(\binom{4}{2} \stackrel{1}{5}\binom{3}{-4}\right) 5 \\
& =20
\end{aligned}
$$

iii) The component of E is the duration of L is given by $\left(\frac{F \cdot S}{|S|^{2}}\right)^{S}$ Projefted vector

$$
\begin{aligned}
& =\frac{20}{25}\binom{3}{-4} \\
& =\frac{4}{5}\binom{3}{-4} \\
& =\binom{2 \cdot 4}{-3 \cdot 2}
\end{aligned}
$$

$$
\text { ire } \hat{\sim}
$$

dot product is a scalene.
(not a vector).

Quesmon 12
a) ;

$$
\begin{aligned}
\text { a) i) } \operatorname{Sin} A \sin B & =\frac{1}{2}[\operatorname{Cos}(A-B)-\operatorname{Cos}(A+B)] \\
\sin \frac{\pi x}{8} \cdot \operatorname{Sin} \frac{\pi x}{8} & =\frac{1}{2}\left[\operatorname{Cos}[0]-\operatorname{Cos} \frac{2 \pi x}{8}\right] \\
\operatorname{Sin}^{2} \frac{\pi x}{8} & =\frac{1}{2}\left[1-\operatorname{Cos} \frac{\pi c}{4}\right] 1 m k
\end{aligned}
$$

ii)

$$
\begin{aligned}
A & =\int_{0}^{8} 6 \sin ^{2} \frac{\pi x}{8} d x \\
& =6 \int_{0}^{8} \frac{1}{2}\left[1-\cos \frac{\pi c}{4}\right] d x \\
& =3 \int_{0}^{8}\left(1-\cos \frac{\pi x}{4}\right) d x \\
& =3\left[x-\frac{4}{\pi} \sin \frac{\pi c}{4}\right]_{0}^{8} \\
& =3\left[\left(8-\frac{4}{\pi} \sin 2 \pi\right)-(0-0)\right] \\
& =3[8-0] \\
& =24 u^{2} .
\end{aligned}
$$

Too many "forgot" the "6"!!!
b) 1)

$$
\begin{aligned}
E(\hat{p}) & =p \\
& =0.36 \leftarrow 1 m k \\
\operatorname{Var}(\hat{p}) & =\frac{p(1-p)}{n} \\
& =\frac{0.36(0.64)}{25} \\
& =0.009216 \\
\therefore S D & =0.096 \leftarrow \operatorname{lmk} .
\end{aligned}
$$

ii) Number with mortgage $25 \times 0.36=9$

$$
\begin{aligned}
P(x=9) & ={ }^{25} c_{q}(0.36)^{9}(0.64)^{16} \leftarrow 1 m k \\
& =0.1644 \leftarrow \operatorname{lmk}
\end{aligned}
$$

III)

$$
\begin{aligned}
\text { Score } & =\frac{3}{25} \quad z \\
& =\frac{x-\mu}{\sigma} \\
& =\frac{0.12-0.36}{0.096} \\
& =-2.5 \leftarrow \operatorname{lmk} \\
P(z<-2.5) & =1-P(z<2.5) \\
& =1-0.9938 \\
& =0.0062 \leftarrow \operatorname{lmk}
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=\frac{1}{x^{2}+1} \\
& x^{2}+1=\frac{1}{y} \\
& x^{2}=\frac{1}{y}-1 \\
V= & \pi \int_{0.5}^{1} x^{2} d y \\
= & \pi \int_{0.5}^{1}\left(\frac{1}{y}-1\right) d y \\
= & \pi[\ln y-y]_{0.5}^{1} \\
= & \pi[(\ln 1-1)-(\ln 0.5-0.5)] \\
= & \pi\left[-\ln \frac{1}{2}-\frac{1}{2}\right] \\
= & \pi\left[\ln 2-\frac{1}{2}\right] u^{3}
\end{aligned}
$$

1i)

$$
\begin{aligned}
\text { Veone } & =\frac{1}{3} \pi r^{2} K^{\operatorname{lm} k} O R \quad V=\pi \int_{\frac{1}{2}}^{1}(2-2 y)^{2} d y \\
& =\frac{1}{3} \pi \cdot 1^{2} \cdot \frac{1}{2} \\
& =\frac{\pi}{6} u^{3} \Leftarrow \ln k \rightarrow \frac{\pi}{6} .
\end{aligned}
$$

III)

$$
\begin{aligned}
& \pi\left.\pi \ln 2-\frac{1}{2}\right]>\frac{\pi}{6} \nwarrow \\
& \therefore \quad \ln 2-\frac{1}{2}>\frac{1}{6} . \\
& \ln 2>\frac{2}{3}
\end{aligned}
$$

Markén Comments
 can be projected at to gel to $(12,2)$

Question 13
b)

Show the for $n=1$

$$
\begin{aligned}
& 4^{\prime}+14 \\
& 4+14
\end{aligned}
$$

$=18$ which is divisule by 6
Assume twi for $n=K$

$$
\begin{aligned}
& \frac{4^{k}+14}{6}=M \quad \begin{array}{l}
\text { (where } M \text { is an } \\
\text { integer) }
\end{array} \\
& 4^{k}+14=6 M
\end{aligned}
$$

or

$$
4^{k}=6 M-14
$$

Provetme for $n=k+1$

$$
\begin{aligned}
& 4^{k+1}+14 \\
&= 4^{k} 4^{\prime}+14 \\
&= 4 \cdot 4^{K}+14 \\
&= 4(6 M-14)+14 \\
&= 24 K-56+14 \\
&= 24 K-42 \\
&= 6(4 K-7) \\
&= 6 \mathrm{~J} \quad \text { (where } J \text { is an } \\
& \text { integer) }
\end{aligned}
$$

Markén Commento

$$
\begin{aligned}
& 13 . \\
& \text { c) Alternative Solution. } \\
& \text { (i) } \sin 3 \theta=\sin (\theta+2 \theta) \quad \mid \cos 3 \theta=\cos (\theta+2 \theta) \\
& =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta=\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& \begin{aligned}
=2 \sin \theta \cos \theta \cos \theta+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta \\
=2 \sin \theta \cos ^{2} \theta+\cos ^{2} \theta \sin \theta-\sin ^{3} \theta
\end{aligned}\left|\begin{array}{c}
\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cos \theta \\
\end{array}\right|-2 \sin \theta \cos \theta \sin \theta \\
& =3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta \left\lvert\, \begin{aligned}
= & \cos ^{3} \theta-\sin ^{2} \theta \cos \theta \\
& -2 \sin ^{2} \theta \cos \theta \\
= & \cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta
\end{aligned}\right. \\
& \tan 3 \theta=\frac{\sin 3 \theta}{\cos 3 \theta}=\frac{3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta}{\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta} \\
& \text { Divide top } \& \text { bottom by } \cos ^{3} \theta \\
& \tan 3 \theta=\frac{3 \sin \theta \cos ^{2} \theta}{\cos ^{3} \theta}-\frac{\sin ^{3} \theta}{\cos ^{3} \theta} \\
& \frac{\cos ^{3} \theta}{\cos ^{3} \theta}-\frac{3 \sin ^{2} \theta \cos \theta}{\cos ^{3} \theta} \\
& \tan 3 \theta=3 \frac{\sin \theta}{\cos \theta}-\tan ^{3} \theta \\
& 1-\frac{3 \sin ^{2} \theta}{\cos ^{2} \theta} \\
& \tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \\
& \text { Marker's Comments } \\
& \text { Well } \\
& \text { Answered. }
\end{aligned}
$$

13.

Marker's Comments
c)
(i) $(\cos \theta+i \sin \theta)^{3}=\cos 3 \theta+i \sin 3 \theta$.
$\cos ^{3} \theta+3 \cos ^{2} \theta i \sin \theta+3 \cos \theta i^{2} \sin ^{2} \theta+i^{3} \sin ^{3} \theta=$

$$
\cos 3 \theta+i \sin 3 \theta
$$

Equate real parts $\&$ imaginary parts

$$
\begin{aligned}
& \cos 3 \theta=\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta \\
& \sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta
\end{aligned}
$$

$$
\tan 3 \theta=\frac{3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta}
$$

Well
Answered.

Divide Gop and bottom by $\cos ^{3} \theta$

$$
\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

Markés Comments

$$
x=2 \pm \sqrt{3}
$$

Surice $\tan \frac{\pi}{12}<\tan 5 \pi / 12$

Markén Comments
iii)

$$
\begin{aligned}
& (f(x))^{2}-f(x) \\
& (f(x))^{2}-f(x)=0 \\
& f(x)[f(x)-1]=0 \\
& f(x)=0 \quad \text { or } \quad f(x)=1 \\
& -\frac{x}{x+1}=0
\end{aligned} \quad \frac{-x}{x+1}=\frac{1}{1}, \begin{aligned}
\therefore x=0 & -x=x+1 \\
& -1=2 x \\
& \therefore x=-\frac{1}{2}
\end{aligned}
$$

$$
\therefore x=-\frac{1}{2}, 0 .
$$

OR
The graph of $y=f(x)$ and $y=(f(x))^{2}$ intersect at 0 where $x=0$
The graphs of $y=f(x)$ and $y=(f(x))^{2}$ intersect on the wire $y=1$ where $x=-\frac{1}{2}$.

Markén Commento

Question 14
b)

$$
\begin{aligned}
\text { RHS } & =\frac{1}{50}\left(\frac{1}{A}+\frac{1}{50-A}\right) \\
& =\frac{1}{50}\left(\frac{50-A+A}{A(50-A)}\right) \\
& =\frac{1}{50}\left(A\left(\frac{50}{(50-A)}\right)\right. \\
& =\frac{1}{A(50-A)} \\
& =L H S
\end{aligned}
$$

ii) $\quad \frac{d A}{d t}=\frac{1}{25} A(50-A)$

$$
\frac{d t}{d A}=\frac{25}{A(50-A)}
$$

spit the integrals

$$
\begin{aligned}
& \int d t=\int \frac{25}{A(50-A)} d A \\
& t=25 \int \frac{1}{A(50-A)} d A \\
& t=\frac{25}{50} \int \frac{1}{A}+\frac{1}{50-A} d A \\
& t=\frac{1}{2}[\ln (A)-\ln (50-A)]+C \\
& t=\frac{1}{2} \ln \left[\frac{A}{50-A}\right]+C
\end{aligned}
$$

Quantion
iii)

$$
\begin{aligned}
& a_{s} t \rightarrow \infty \quad \frac{99}{e^{2 t}} \\
& \begin{aligned}
A & =\frac{50}{1+99 e^{-2 t}} \\
& =\frac{50}{1+0} \\
& =\frac{50}{1} \\
& =50 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Many student only got 1/2 as their explanation was either in adequate or incomplete
C) From the table

$$
f(x)=g^{-1}(x)
$$

so $f(-1)=g^{-1}(-1)=0$

$$
\begin{aligned}
f^{\prime}(-1) & =\frac{1}{g^{\prime}(f(-1))} \\
& =\frac{1}{g^{\prime}(0)} \\
& =\frac{1}{\frac{1}{2}} \\
& =2
\end{aligned}
$$

