

Saint Ignatius' College, Riverview Mathematics Assessment Task

2020

Year 12 Mathematics (Extension One) Task 4 Trial HSC Examination

Date : 2nd September 2020

General Instructions:	Topics Examined:	
 Reading time: 5 minutes Time Allowed: 2 hours Write using blue or black pen only NESA approved calculators may be used Attempt all questions in the space provided in the writing booklets Write your name and your teacher's code in the positions indicated Marks may not be awarded for missing or carelessly arranged working. 	Section A Multiple Choice Section B Short Answer Question 11 Question 12 Ouestion 13	10 Marks 15 Marks 15 Marks 15 Marks
Teacher's Codes :• Mr R MaxwellREM• Mr D ReidyDPR• Mr N MushanNHM• Mr J NeweyJPN	Question 14 Total	15 Marks 70 Marks

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10.

1. Let $P(x) = x^2 + bx + c$ where b and c are constants. The zeros of P(x) are α and $\alpha + 1$.

What are the correct expressions for *b* and *c* in terms of α ?

- (A) $b = -(2\alpha + 1)$ and $c = \alpha^2 + \alpha$
- (B) $b = 2\alpha + 1$ and $c = \alpha^2 + \alpha$
- (C) $b = \alpha^2 + \alpha$ and $c = -(2\alpha + 1)$
- (D) $b = \alpha^2 + \alpha$ and $c = 2\alpha + 1$
- 2. What is the derivative of $\tan^{-1}(2x-1)$?

(A)
$$\frac{1}{4x^2 - 4x + 2}$$

(B) $\frac{2x - 1}{2x^2 - 2x + 1}$
(C) $\frac{2}{2x^2 - 2x + 1}$
(D) $\frac{1}{2x^2 - 2x + 1}$

3. An experiment consisted of tossing a biased coin three times and recording the number of tails obtained. This experiment was repeated 1000 times and the results are shown in the table.

Number of tails	Frequency
0	219
1	427
2	292
3	62

Based on these results, what is the probability that the coin shows tails when tossed?

- (A) 0.3
- (B) 0.4
- (C) 0.5
- (D) 0.6

- 4. Which of the following expressions is equal to $\cos(x) + \sin(x)$?
 - (A) $\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$ (B) $2\sin\left(x+\frac{\pi}{4}\right)$ (C) $\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)$

(D)
$$2\sin\left(x-\frac{\pi}{4}\right)$$

5. The equation $y = e^{ax}$ satisfies the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$.

What are the possible values of a?

- (A) a = -2 or a = 3
- (B) a = -1 or a = 6
- (C) a = 2 or a = -3
- (D) a=1 or a=-6
- 6. The direction (slope) field for a first order differential equation is shown.

Which of the following could be the differential equation represented?

- (A) $\frac{dy}{dx} = (x+1)^3$ (B) $\frac{dy}{dx} = x(y+1)$
- (C) $\frac{dy}{dx} = (x+1)y$

(D)
$$\frac{dy}{dx} = (x-1)y$$

7. The position vectors of points A and B are \underline{a} and \underline{b} respectively. Point C is the midpoint of OB and point D is such that ABDC is a parallelogram.

Which of the following is the position vector of D?

(A) $\frac{3}{2}\underline{b} + \underline{a}$ (B) $\frac{3}{2}\underline{b} - \underline{a}$ (C) $\frac{1}{2}\underline{b} - \frac{1}{2}\underline{a}$ (D) $\frac{1}{2}\underline{b} - \underline{a}$

8. Which of the following functions is a primitive of $\frac{1}{\sqrt{4-9x^2}}$?

- (A) $\frac{1}{3}\sin^{-1}\frac{2x}{3}$ (B) $\frac{1}{9}\sin^{-1}\frac{3x}{2}$
- (C) $\frac{1}{9}\sin^{-1}\frac{2x}{3}$ (D) $\frac{1}{3}\sin^{-1}\frac{3x}{2}$
- 9. A curve *C* has parametric equations $x = \cos^2 t$ and $y = 4\sin^2 t$ for $t \in R$.

What is the Cartesian equation of C?

- (A) y = 1 x for $0 \le x \le 1$
- (B) y = 4 4x for $x \in R$
- (C) y = 4 4x for $0 \le x \le 1$
- (D) y = 1 x for $x \in R$

10. The diagram shows *OABC*, a rhombus in which $\overrightarrow{OA} = \overrightarrow{CB} = a$ and $\overrightarrow{OC} = \overrightarrow{AB} = c$.

To prove that the diagonals of OABC are perpendicular, it is required to show that

- (A) $(\underline{a} + \underline{c}) \cdot (\underline{a} + \underline{c}) = 0.$
- (B) $(\underline{a} \underline{c}) \cdot (\underline{a} \underline{c}) = 0.$
- (C) $(\underline{a} \underline{c}) \cdot (\underline{a} + \underline{c}) = 0.$
- (D) $\underline{a} \cdot \underline{c} = 0.$

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the function $f(x) = x^2 - 4x + 6$.

(i)	Explain why the domain of $f(x)$ must be restricted if $f(x)$ is to have an inverse function.	1
(ii)	Given that the domain of $f(x)$ is restricted to $x \le 2$, find an expression for $f^{-1}(x)$.	2
(iii)	Given the restriction in part (a) (ii), state the domain and range of $f^{-1}(x)$.	2
(iv)	The curve $y = f(x)$ with its restricted domain and the curve $y = f^{-1}(x)$ intersect at the point <i>P</i> .	2

Find the coordinates of *P*.

(b) Use the substitution
$$u = 9 - x^2$$
, to find the primitive function of $\frac{x \, dx}{\sqrt{9 - x^2}}$. 2

(c) Use *t*-formulae to solve the equation $\cos x - \sin x = 1$, where $0 \le x \le 2\pi$. 3

(d) The work done, *W*, by a constant force, \tilde{E} , in moving a particle through a displacement, \tilde{s} , is defined by the formula $W = \tilde{E} \cdot \tilde{s}$. A force described by the vector $\tilde{E} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ moves a particle along the line *l* from *P*(-1, 2) to *Q*(2, -2).

(i)	Find $\underline{s} = PQ$ and hence find the value of W.	1

(ii) Hence, verify that W is also given by $W = (\vec{E} \cdot \hat{s})|s|$. 1

1

(iii) Find the component of \underline{F} in the direction of l.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) A proposed plan for a garden is shown in the diagram. The curved boundary of the garden is modelled by the function $f(x) = 6\sin^2\left(\frac{\pi x}{8}\right), 0 \le x \le 8$.

- (i) Use the identity $\sin A \sin B = \frac{1}{2} [\cos(A B) \cos(A + B)]$ to show that $\sin^2\left(\frac{\pi x}{8}\right) = \frac{1}{2} \left(1 \cos\frac{\pi x}{4}\right).$
- (ii) Use the result from part (a) (i) to find the area, A, of the garden.

Question 12 continues on page 8

2

Question 12 (continued)

- (b) A state-wide housing study found that 36% of adults in NSW have a mortgage.
 - (i) A random sample of 25 adults in NSW is to be taken to determine the proportion of those who have a mortgage.

Show that the mean and standard deviation for the distribution of sample proportions of such random samples are 0.36 and 0.096 respectively.

- (ii) In a sample of 25 adults, find the probability that 9 adults have a mortgage.
 (Give your answer correct to four decimal places)
- (iii) Part of a table of $P(Z \le z)$ values, where Z is a standard normal variable, is shown.

2

Z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964

Of a random sample of 25 adults in NSW, use the table to estimate the probability that at most three will have a mortgage. Give your answer correct to four decimal places.

Question 12 continues on page 9

Question 12 (continued)

(c) The diagram shows the graph of $y = \frac{1}{x^2 + 1}$ and the graph of $y = 1 - \frac{x}{2}$ for $0 \le x \le 1$.

- (i) Find the exact volume of the solid of revolution formed when the region bounded by 2 the graph of $y = \frac{1}{x^2 + 1}$, the y-axis and the line $y = \frac{1}{2}$ is rotated 360° about the y-axis.
- (ii) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y = 1 \frac{x}{2}$, the y-axis and the line $y = \frac{1}{2}$ is rotated 360° about the y-axis.
- (iii) Use the results from parts (c) (i) and (ii) to show that $\ln 2 > \frac{2}{3}$. 1

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) A particle is projected from a point *O* on level horizontal ground with a speed of 21 m s⁻¹ at an angle θ to the horizontal. At time *T* seconds, the particle passes through the point *B*(12, 2).

Neglecting the effects of air resistance, the equations describing the motion of the particle are:

$$x = Vt\cos\theta$$
$$y = Vt\sin\theta - \frac{1}{2}gt^{2}$$

where *t* is the time in seconds after projection, $g \text{ m s}^{-2}$ is the acceleration due to gravity where $g = 9.8 \text{ m s}^{-2}$ and *x* and *y* are measured in metres. Do NOT prove these equations.

- (i) By considering the horizontal component of the particle's motion, show that $T = \frac{4}{7} \sec \theta$.
- (ii) By considering the vertical component of the particle's motion and, using **2** the result from part (a) (i), show that $4\tan^2\theta 30\tan\theta + 9 = 0$.
- (iii) Find the particle's least possible flight time from *O* to *B*. Give your answer correct 2 to two decimal places.

(b) Prove by mathematical induction that $4^n + 14$ is divisible by 6, for all positive integers $n(n \ge 1)$.

(c) (i) Prove the trigonometric identity
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$
. 3

(ii) Use the identity from part (c) (i) and let
$$x = \tan \theta$$
, to find the roots of the cubic equation $x^3 - 3x^2 - 3x + 1 = 0$ and hence find the exact value of $\tan \frac{\pi}{12}$.

4

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram below is a sketch of the graph of the function $f(x) = -\frac{x}{x+1}$.

(i)	Sketch the graph of $y = (f(x))^2$, showing all asymptotes and intercepts.	2
(ii)	Sketch the graph of $y = x + f(x)$, showing all asymptotes and intercepts.	2
(iii)	Solve the equation $(f(x))^2 = f(x)$.	1

Question 14 continues on page 12

Question 14 (continued)

(b) The area $A \text{ cm}^2$ is occupied by a bacterial colony. The colony has its growth modelled by the logistic equation $\frac{dA}{dt} = \frac{1}{25}A(50 - A)$ where $t \ge 0$ and t is measured in days. At time t = 0, the area occupied by the bacteria colony is $\frac{1}{2} \text{ cm}^2$.

(i) Show that
$$\frac{1}{A(50-A)} = \frac{1}{50} \left(\frac{1}{A} + \frac{1}{50-A} \right).$$
 2

- (ii) Using the result from part (b) (i), solve the logistic equation and hence show that $A = \frac{50}{1 + 99e^{-2t}}.$
- (iii) According to this model, what is the limiting area of the bacteria colony? 2
- (c) The table shows selected values of a one-to-one differentiable function g(x) 3 and its derivative g'(x).

x	-1	0
g(x)	-5	-1
g'(x)	3	$\frac{1}{2}$

Let f(x) be a function such that $f(x) = g^{-1}(x)$.

Find the value of f'(-1).

End of paper

Mathematics Advanced Mathematics Extension 1 Mathematics Extension 2

REFERENCE SHEET

Measurement	Financial Mathematics
Length	$A = P(1+r)^n$
$l = \frac{\theta}{360} \times 2\pi r$	Sequences and series
Area	$T_n = a + (n-1)d$
$A = \frac{\theta}{360} \times \pi r^2$	$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2}(a+l)$
$A = \frac{h}{2}(a+b)$	$T_n = ar^{n-1}$
Surface area $A = 2\pi r^2 + 2\pi rh$	$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}, r \neq 1$
$A = 4\pi r^2$	$S = \frac{a}{1-r}, \ r < 1$
$V = \frac{1}{3}Ah$	
$V = \frac{4}{3}\pi r^3$	
Functions	Logarithmic and Exponential Functions
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\log_a a^x = x = a^{\log_a x}$
For $ax^3 + bx^2 + cx + d = 0$:	$\log_a x = \frac{\log_b x}{\log_b a}$
$\alpha + \beta + \gamma = -\frac{b}{a}$	$a^{x} = e^{x \ln a}$
$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$	
and $\alpha\beta\gamma = -\frac{d}{a}$	
Relations $(x-h)^{2} + (y-k)^{2} = r^{2}$	

Trigonometric Functions

$$\sin A = \frac{\operatorname{opp}}{\operatorname{hyp}}, \quad \cos A = \frac{\operatorname{adj}}{\operatorname{hyp}}, \quad \tan A = \frac{\operatorname{opp}}{\operatorname{adj}}$$

$$A = \frac{1}{2}ab\sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\frac{\sqrt{2}}{45^{\circ}} 1$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

$$l = r\theta$$

$$A = \frac{1}{2}r^{2}\theta$$
Trigonometric identities
$$\sec A = \frac{1}{\cos A}, \quad \cos A \neq 0$$

$$\operatorname{cosec} A = \frac{1}{\sin A}, \, \sin A \neq 0$$
$$\operatorname{cos} A = \frac{\cos A}{\sin A}, \, \sin A \neq 0$$
$$\operatorname{cos}^{2} x + \sin^{2} x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

$$z = \frac{x - \mu}{\sigma}$$
An outlier is a score
less than $Q_1 - 1.5 \times IQR$
or
more than $Q_3 + 1.5 \times IQR$

Normal distribution

r r

$$P(X \le r) = \int_{a}^{b} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^{n}C_{r}p^{r}(1-p)^{n-r}}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {\binom{n}{x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n}$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

Differential Calculus		Integral Calculus
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{1} [f(x)]^{n+1} + c$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int_{0}^{n} \frac{(x)[f(x)]}{n+1} \frac{dx}{n+1} = n+1$ where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$f'(x) \sin f(x) dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x) \sec^2 f(x) dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int \frac{f'(x)}{dx} dx = \sin^{-1} \frac{f(x)}{dx} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \sqrt{a^2 - [f(x)]^2} = a$ $\int \frac{f'(x)}{f'(x)} = 1 - \frac{1}{f(x)}$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \tan \frac{f(x)}{a} + c$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int_{a}^{b} f(x)dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\approx \frac{b-a}{2n} \{ f(a) + f(b) + 2[f(x_1) + \dots + f(x_{n-1})] \}$ where $a = x_0$ and $b = x_0$.
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	n n

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{aligned} |\underline{u}| &= |x\underline{i} + y\underline{j}| = \sqrt{x^2 + y^2} \\ \underline{u} \cdot \underline{v} &= |\underline{u}| |\underline{v}| \cos \theta = x_1 x_2 + y_1 y_2, \\ \text{where } \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \text{and } \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \\ \underline{r} &= \underline{a} + \lambda \underline{b} \end{aligned}$$

Complex Numbers

 $z = a + ib = r(\cos \theta + i\sin \theta)$ = $re^{i\theta}$ $[r(\cos \theta + i\sin \theta)]^n = r^n(\cos n\theta + i\sin n\theta)$ = $r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

Student's Name:

Teacher's Code

Saint Ignatius' College RIVERVIEW

SUGGESTED SOLUTIONS & MARKER'S COMMENTS Saint Ignatius' College, Riverview Mathematics Assessment Task 2020

Year 12 Mathematics (Extension One) Task 4 **Trial HSC Examination** Date : 2nd September 2020

Topics Examined: General Instructions: Section A **10 Marks** • Reading time: **10 minutes Multiple** Choice • Time Allowed: 2 hours • Write using blue or black pen only Section **B** • NESA approved calculators may be used Short Answer • Attempt all questions in the space provided in the writing booklets 15 Marks **Question 11** • Write your name and your teacher's code in the positions indicated 15 Marks **Question 12** • Marks may not be awarded for missing or carelessly arranged working. 15 Marks **Question 13 Teacher's Codes : 15 Marks Question 14** REM • Mr R Maxwell DPR • Mr D Reidy • Mr N Mushan NHM • Mr J Newey JPN Total 70 Marks

Start your answer here. SUGGESTED SOLUTIONS (Multiple Chaice) $QI \quad P(x) = x^2 + bx + C$ zeros are and ar= a+1 Sum of roats = $\alpha + \alpha + 1$ product of roats = $\alpha(\alpha + 1)$ $= 2\alpha + 1$ $= \alpha^2 + \alpha'$ $2\alpha + 1 = (-b_{a})$ $\alpha^2 + \alpha = (\alpha)$ Ser , $2\alpha + 1 = -b_1$ $\alpha^2 + \alpha = C$ $b = -(2\alpha + 1)$ $\therefore c = \alpha^2 + \alpha$ $02 \quad dx \quad \tan^{-1} f(x) = f'(x)$ $1 + [f(x)]^2$ dy tan" (2x-1) = 21+ $(2x-1)^2$ = 2 $1 + 4x^2 - 4x + 1$ = 2 $4x^2 - 4x + 2$. = 2(1) $2(2x^2-2x+1)$ $2x^2 - 2x + 1$

Q3 R f fac x Number of Tails Frequency 0 219 0 427 427 1 292 584 2 3 62 186 ZAPM Zfx = 1197 $P(\alpha) = \frac{1197}{3000} = 0.399 \quad (= 0.4)$ Q4 Rsin(x+a) = R[sinxcona + constina] (A)= RCOVGINX + RGINVCOX = Reinarcon + R cood sings Fquate 1 cox + 1 sinx = RSing cox + Rcox Sinx then $Rsin \alpha = 1$... ∞ $R \cos \alpha = 1$ $n \div 2$ $\tan \alpha = 1$ a=th $(0)^{2} + (2)^{2}$ $R^{2}(\sin^{2}\alpha + \cos^{2}\alpha) = 2^{2}$ R=12. $\sqrt{2}\sin(x+\frac{\pi}{4})$ Additional writing space on back page.

ar writing space on back

Start your answer here. $\frac{Q5}{dx} = \frac{e^{0x}}{dx} = \frac{d^2y}{dx^2} =$ $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$ $a^2e^{\alpha x} + ae^{\alpha x} - 6e^{\alpha x} = 0$ $e^{0x}[a^2+a-6] = 0$ $e^{\alpha x} [(a+3)(a-2)] = 0$ a = 2, -3Q6 At (0,0) dy = 0 ... NOT A (C At (-1,1) dy = 0 ... NOT B or \mathbb{T} 2, TOO & LILLOND · correct answer is C. $\overline{OO} = OC + CD$ B Q7 = $\frac{1}{2}\overrightarrow{OB}$ + \overrightarrow{AB} $= \frac{1}{2}\overrightarrow{OB} + \overrightarrow{AO} + \overrightarrow{OB}$ = 2 2 - 2 + 2 = 36-9

Start your answer here. Markers Comments Quartion $a(x) f(x) = x^2 - 4x + 6$ is a parabala Except for the turning paint (2,2) for each value of f(x) in the range. or the inverse there are two or-values or would fail ie fails the honigental line toot vertical line test (ii) Nate x < 2 intoichange it and y $x = y^2 - 4y + 6$ Swapping se and y for f-1(22) $x - 6 = y^2 - 4y$ $x-6+4 = y^2 - 4y + 4$ $x-2 = (y-2)^2$ $y - 2 = \pm \sqrt{x - 2}$ (Note discard JI-2 as y52) must be negative version · y= - Va-2 +2 $f'(x) = -\sqrt{x+2}$ Also: an inverse function (ii) Domain: $\alpha > 2$ as $\alpha - 2 > 0$ has domain and range opposite to y= fm). Range: y≤2 ao -√2-2≤0

Marken Comments iv) y = f(x) and y = f'(x) have. a common intervection with the line y= x. $x^2 - 4x + 6 = x$ $\frac{1}{10} \text{ attempt}}{10} = x$ $x^2 - 5x + 6 = 0$ $(\alpha - 3)(\alpha - 2) = 0$ or f(n) = f'(n)Alternative (graphical x = 2, 31 g=-fire) When x=2 y=2 and xo^{-1} (2,2) ties on the line y=x y(2,2) y=f-(x) When x=3 y=1 does not like of the line y=x when y = firs was .: co-ordinales of P are (2,2) verter is (2,2). When reflected in y=n we get (2,2) b) $\int \frac{x \, dx}{\sqrt{2}}$ lot $u=q-x^2$. $\frac{dy}{dx} = -2x$ du = -2x dx $-\frac{1}{2}du = x dx$ converting integral $\frac{-1}{2}\int \sqrt{u}$ $=-\frac{1}{2}\int u^{-\frac{1}{2}} du$ $= -\frac{1}{2} \left[\frac{u^2}{2} \right]$ --5 [242] Additional writing space on back page. = - [u 1/2] = - 19-22 + C

Start your answer here. Marker's Comments Question Il (continued) c) let $cox = 1 - t^2$ cinx = 2t $1 + t^2$ $1 + t^2$ where $t = \tan \frac{x}{2}$ all on formula sheet no excuse for getting these wrong. $\frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} = 1$ $\frac{1-t^2-2t}{1+t^2} = 1$ $1 - t^2 - 2t = 1 + t^2$ $0 = 2t^2 + 2t$ Several people messed up factorising 0 = 2t(t+1)· 2t=0 or t+1=0 V evaluate t. t=0 t=-1 $\frac{\tan \frac{\pi}{2} = 0}{\frac{\pi}{2} = 0} \quad \frac{\tan \frac{\pi}{2} = -1}{\frac{\pi}{2} = 0}$ finding 3 values $x = \frac{3\pi}{3}$ $x = 0, 2\pi$ d) substitute $F = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ and $S = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ P(-1,2) < 3 4 Q(2 - 2)

Marken Comments into $W = E \cdot s$ dot product is a scalar. (not a vector). $= (4) \cdot (3) - (-4) -$ = 4×3 + -2×-4 = 12 + 8 = 20 ite $\hat{s} = \frac{\hat{z}}{|s|}$ ii) Unit vector in the direction \overrightarrow{PQ} is $\overrightarrow{S} = \overrightarrow{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ substitute. $E = \begin{pmatrix} 4 \\ -2 \end{pmatrix}, S = \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix} |S| = 5$ into W = (ES) 161 gives: $W = \left(\begin{pmatrix} 4 \\ 2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix} \right) 5$ = 20 iii) The component of E in the direction . of L is given by (F.S) & Projected Vector OR @ 2.41-3.2j $=\frac{20}{25}\begin{pmatrix}3\\-4\end{pmatrix}$ $=\frac{4}{5}\left(\frac{3}{-4}\right)$ 号 R 121+15j Additional writing space on back page. = (24)

Question 12

a):
$$Sin A Sin B = \frac{1}{2} \left[Cos(A-B) - Cos(A+B) \right]$$

 $Sin \frac{TDC}{8} \cdot Sin \frac{TDC}{8} = \frac{1}{2} \left[Cos[O] - Cos \frac{2TTX}{8} \right]$
 $Imk \quad Sin^{2} \frac{TDC}{8} = \frac{1}{2} \left[1 - Cos \frac{TDC}{4} \right] \quad Imk$

(i)
$$H = \int_{0}^{8} 6 \sin^{2} \frac{\pi 2}{8} dn$$

 $= 6 \int_{0}^{8} \frac{1}{2} (1 - \cos \frac{\pi 2}{4}) dn$
 $= 3 \int_{0}^{8} (1 - \cos \frac{\pi 2}{4}) dn \int mk$
 $= 3 \left[\chi - \frac{4}{\pi} \sin \frac{\pi 2}{4} \right]_{0}^{8}$
 $= 3 \left[\chi - \frac{4}{\pi} \sin 2\pi \right] - (0 - 0) \right]$
 $= 3 \left[8 - 0 \right] \int mk$
 $= 24 u^{2}$.

6) 1) $E(\hat{p}) = P$ = 0.36 ~ [mk $Var(\hat{P}) = P(I-P)$ = 0-36 (0.64) 25 = 0.009216 : SD = 0.096 + lmk. 11) Number with mortgage 25×0.36=9 $P(x=q) = 25_{cq} (0.36)^q (0.64)^{16} \in 100$ = 0.1644 ~ lmk $III) Score = \frac{3}{a5}$ Z=x-M \mathcal{O}^{-} = 0.12 = 0.12 - 0.360.096 = -2.5 + mk P(2 < -2.5) = 1 - P(2 < 2.5)= 1- 0.9938 = 0.0062 + lmk.

$$C) = y = \frac{1}{\chi' + 1},$$

$$\chi'' + 1 = \frac{1}{\chi},$$

$$\chi'' = \frac{1}{\chi'} - 1,$$

$$V = \Pi \int_{0.5}^{1} \chi' \, dy$$

$$= \Pi \left[\ln y - y \right]_{0.5}^{1},$$

$$= \Pi \left[(\ln 1 - 1) - (\ln 0.5 - 0.5) \right],$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[-\ln \frac{1}{2} - \frac{1}{2} \right] \chi$$

$$= \Pi \left[\ln \chi - \frac{1}{2} \right] \chi$$

$$= \frac{1}{3} \Pi \Gamma^{1} h^{2} \int_{0}^{1} (22y)^{2} dy$$

$$= \frac{1}{3} \Pi \Gamma^{1} h^{2} \int_{0}^{1} (22y)^{2} dy$$

$$= \frac{1}{3} \Pi \Gamma^{1} h^{2} \int_{0}^{1} \frac{1}{6} \int_{0}^{1} (mk) dk$$

$$= \Pi \left[\ln 2 - \frac{1}{2} \right] \gg \frac{\Pi}{6} \int_{0}^{1} (mk) dk$$

$$= \Pi \left[\ln 2 - \frac{1}{2} \right] \gg \frac{\Pi}{6} \int_{0}^{1} (mk) dk$$

Start your answer here. Marker's Comments Quartion 13 a(i) substitute Well Answered. x=12, V=21 and t=Tinto x=Vt(DD $12 = 2T(D\theta)$ $T = \frac{12}{21(10)} \left(\frac{1}{600} = 6ec\theta \right) \sqrt{2}$ $T = \frac{4}{7} \sec \theta$ (ii) $y = Vt\sin \theta - \frac{1}{2}gt^2$ $2 = 21 (\frac{4}{5} \sec \theta) \sin \theta - \frac{1}{2} (9.8) (\frac{4}{7} \sec \theta)^2$ Well Answered. $2 = 12 \tan \Theta - \frac{8}{5} \sec^2 \Theta$ $2 = 12\tan\theta - \frac{8}{5}\left(1 + \tan^2\theta\right)$ 10 = 10 + 100 + \therefore $8\tan^2\theta - 60\tan\theta + 18 = 0$ $4\tan^2\theta - 30\tan\theta + 9 = 0$ as required

	Marken Comments
iii) Least flight time when	
$4 \tan^2 \theta - 30 \tan \theta + 9 = 0$	
quadratic formula	First Parts was
$\tan \theta = 30 \pm \sqrt{900 - 4(4)(9)}$	Well Answered
8	
tant = 30 ± 156	
8	
$tan \theta = 0.3130 \text{ at } 7.1869$	V
$\theta = 0.303$ $\theta = 1.432$	C
4	Some Students
$T = \frac{4}{3} \sec 0.303$ $T = \frac{3}{3} \sec 1.432$	made silly
= 0.60, = 4.13	calculating errors
	at the last
least possible + light time is	stage.
0.606ecs.	
(12,2)	
(-21)	
Two possible angles particle	
can be projected at to get	
bo (12,2) Add	itional writing space on back page.

Start your answer here.	Markers	Commento
Question 13		
b)		
Show twe for n=1		
4'+14	1	
4 + 14		
= 18 which is divisulle by 6		2
Acoume true for n=K	Well	Answered.
$4^{k} + 14 = M$ (where M is an		
6 integer)		
$4^{K} + 14 = 6M$		
ĊT		
$4^{K} = 6M - 14$		
Provetuce for n=K+1		
4 ^{K+1} + 14		
$= 4^{k}4^{l} + 14^{l}$		
= 4 4 ^K + 14		
= 4 (6M-14) + 14		
= 24 K - 56 + 14		
= 24K - 42		
= 6(4K-7)		
= 6 J (where J is an		
uleger j	*	

	Marken Comments
Since it is true for $n=1$, proven true for $n=K+1$, hence by mathematical inductions true for $n=2, 3, 4, \cdots$ $(n \ge 1)$.	
c) $\tan 2\Theta = 2\tan \Theta$ (i) $1 - \tan^2 \Theta$	Well
tan (A+B) = tan A+tan B I-tan A-tan B	Answered.
$\tan(2\theta + \theta) = \tan 2\theta + \tan \theta$ $1 - \tan 2\theta \tan \theta$	\checkmark
$= 2\tan\theta + \tan\theta$ $1 - \tan^2\theta = 1$	· · · · · · · · · · · · · · · · · · ·
1 - 2tane tane 1-tane	
$= 2\tan\theta + \tan\theta - \tan^3\theta$ $1 - \tan^2\theta$	\mathbb{Z}
$\frac{1-\tan^2\theta}{1-\tan^2\theta}$	
$= 3 \tan \theta - 7 \tan^3 \theta$ $1 - 3 \tan^2 \theta$	
as required	
Additi	onal writing space on back page.

13.
c) Alternative Solution.
(i)
$$Gh_{3} = Gh_{0}(0+20)$$

= $Gh_{2} = Go_{3} = Gh_{0}(0+20)$
= $2Gh_{0} = Gh_{0}(0+20)$
= $2Gh_{0}(0+20)$
= $2Gh_{0}($

$$\frac{\cos \Theta}{1 - \frac{3 \sin^2 \Theta}{\cos^2 \Theta}}$$

$$\tan 3\Theta = 3\tan \Theta - \tan^3 \Theta$$

$$1 - 3\tan^2 \Theta$$

Well Answered.

Marker's Comments

13.)
(i)
$$(\cos \theta + i \sin \theta)^{3} = \cos 3\theta + i \sin 3\theta$$
.
 $\cos^{3}\theta + 3\cos^{3}\theta i \sin \theta + 3\cos \theta i^{3} \sin^{2}\theta + i^{3} \sin^{3}\theta =$
 $\cos 3\theta + i \sin 3\theta$
Equalse real parts ϕ imaginary parts
 $\cos 3\theta = \cos^{3}\theta - 3 \sin^{2}\theta \cos \theta$
 $\sin 3\theta = 3\cos^{2}\theta \sin \theta - \sin^{3}\theta$
 $\tan 3\theta = 3\cos^{2}\theta \sin \theta - \sin^{3}\theta$
 $\tan 3\theta = 3\cos^{2}\theta \sin \theta - \sin^{3}\theta$
 $\cos^{2}\theta - 3\sin^{2}\theta \cos \theta$
Divide top and bottom by $\cos^{3}\theta$
 $\tan^{3}\theta = 3\tan \theta - \tan^{3}\theta$
 $\tan^{3}\theta = 3\tan \theta - \tan^{3}\theta$

Well Auswered.

Marker's Connents

Start your answer here. Marker's Comments Question 13c(ii) $x^3 - 3x^2 - 3x + 1 = 6$ $\tan^3 \Theta - 3 \tan^2 \Theta - 3 \tan \Theta + 1 = 0$ 1 - 3tan29 = 3tane - tan30 \therefore 3tan θ - tan³ θ = 1 $1 - 3 \tan^2 \Theta$ Well Answered. $\tan 3\theta = 1$ 30 = tan-1(1) + KTT where K is on integer $\Theta = \frac{\pi}{12} + \frac{K\pi}{3}$ Many studels $\Theta = \pi$, $\delta \pi$, $\Theta \pi$ (3π) did not jud 3 roobs. tan 2 = - 1 and so one factor of the cube is sc+1. $x^3 - 3x^2 - 3x + 1 = (x + 1)(x^2 - 4x + 1)$ Some Students tan T2 and tan 51/0 did not use are roots of $x^2 - 4x + 1 = 0$ the identity and equation $x = 4 \pm \sqrt{16 - 4(1)(1)}$ from partici) $\frac{x=4\pm\sqrt{12}}{2}$ $x = \frac{4 \pm 2\sqrt{3}}{2}$

Marken Comments They used a ban (A-B) welchool $\mathcal{X} = 2\pm\sqrt{3}$ since tan # < tan 5th to find ban II tantia is the smaller root 3 substituting I for A x=2-13 and the yor B. I did not award any marks for using this metchad. To the question you were specifically asked be use identiby and equation given Additional writing space on back page.

	Marken Comments
$(f(\alpha))^2 = f(\alpha)$	
$(f(x))^2 - f(x) = 0$	
f(x)[f(x) - 1] = 0	
f(x) = 0 or f(x) = 1	
$-\infty = 0 - \infty = 1$	
x+1 X+1 T	
$-\infty = 0 \qquad -\infty = \infty + 1$	
-1 = 254	
$x = -\frac{1}{2}$	
$\gamma, \alpha = -\frac{1}{2}, 0$	
OR .	
The graphs of y=f(3) and y = (f(a)	2
interpret at 0 where x=0	
The graphs of y=f(x) and y=(f(x))	-
intersect on the line y=1 where it.	-1/2
E	
	6
	-
	P
Additi	onal writing space on back page.

	Marken Comments
Rearranging	
$2t = ioge(\frac{A}{50-A}) + 2C$	
$2t-2C = loge(\frac{A}{50-A})$	
$\frac{A}{50 - A} = e^{2t - 2C}$	
$\frac{A}{50-A} = e^{-2C} e^{2t}$	
$\frac{A}{50-A} = A_0 e^{2t} (\text{where } A$	$0 = e^{-2c}$
and hence $A_0 > 0$ when $t=0$ $A=\frac{1}{2}$ so $A_0=\frac{1}{qq}$	
$\frac{1}{99}e^{2t} = \frac{A}{50-A}$	
$e^{2t} = 99k$	
50-A	
$(50-A)e^{2t} - 99A$	/
$50e^{2t} = A(99 + e^{2t})$	
$50e^{2t} = A \qquad (divid)$	
99+e ^{2t} term	by ett)
A = 50 1+99e ^{-2t}	
A	additional writing space on back page.

L'C

Start your answer here. Marker's Comments Question 14 b) RHS = $\frac{1}{50} \left(\frac{1}{A} + \frac{1}{50-A} \right)$ $= \frac{1}{50} \left(\frac{50-A+A}{A(50-A)} \right)$ $= \frac{1}{50} \left(\frac{50}{A(50-A)} \right)$ A(50-A) = LHS $\frac{dA}{dt} = \pm A (50 - A)$ <u>ii)</u> $\frac{dt}{dA} = \frac{25}{4}$ A(50-A) oput the integrals $\int dt = \int \frac{25}{A(50-A)} dA$ $t = 25 \int \frac{1}{A(50-A)} dA$ using part (1) $t = \frac{25}{50} \int \frac{1}{A} + \frac{1}{50-A} dA$ $t = \frac{1}{2} \left[\ln(A) - \ln(50 - A) \right] + C$ $t = \frac{1}{2} \ln \left[\frac{A}{50-A} \right] + C$

Start your answer here. Markers Comments Question $\frac{99}{e^{2t}} \rightarrow 0$ iii) ast→∞ Many Student A = 50only got $1 + 99e^{-2t}$ = 50 explanation 1 + 0 was either = 50 inaclequate or incomplete $= 50 \text{ cm}^2$ c) From the table $f(x) = g^{-1}(x)$ so f(-1) = g-1 (-1) = 0 cly f'(-1) = 1g'(f(-1)) 9'(0) 12 = 2