

Centre Number

Student Number

2009

HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 1

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x}$

1
$2: 3$ where $A(1,-4)$ and $B(6,9)$.
(c) Solve for x :

$$
\frac{4}{x-1} \geq 1
$$

(d) The angle between two lines $y=m x$ and $y=\frac{1}{3} x$ is $\frac{\pi}{4}$.

Find the exact values of m.
(e) If α, β and γ are the roots of $x^{3}-3 x+5=0$ find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(f) Use the table of standard integrals to find $\int \sec 2 x \tan 2 x d x$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a)

$F B$ is a tangent meeting a circle at $A . C E$ is the diameter, O is the centre and D lies on the circumference. $\angle B A E=36^{\circ}$.
(i) Find the size of $\angle A C E$, giving reasons.
(ii) Find the size of $\angle A D C$, giving reasons.
(b) Find $\int \frac{d x}{\sqrt{25-4 x^{2}}}$
(c) (i) If $\sin x-\sqrt{3} \cos x=R \sin (x-\alpha)$ find R and α where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Find the general solution for $\sin x-\sqrt{3} \cos x=\sqrt{2}$ (leave your answer in exact form).
(d) Colour blindness effects 5% of all men. What is the probability that any random sample of 20 men should contain:
(i) no colour blindness.
(ii) two or more colour blind men (to 3 decimal places).

2
1

2

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\int_{0}^{\frac{3}{2}} \sqrt{9-x^{2}} d x$ using the substitution $x=3 \sin \theta$.
(b) Twelve points lie inside a circle. No three points are collinear. Seven of the points lie in sector 1 , four lie in sector 2 and the other point lies in sector 3.

(i) Show that 220 triangles can be made using these points.
(ii) One triangle is chosen at random from all possible triangles. Find the probability that the triangle chosen has one vertex in each sector.
(iii) Find the probability that the vertices of the triangle chosen all lie in the same sector.
(c) (i) Sketch the graph of the function $f(x)=e^{x}-2$.
(ii) On the same diagram sketch the graph of the inverse function $f^{-1}(x)$.
(iii) State the equation of the function $f^{-1}(x)$.
(iv) Explain why the x co-ordinate of any point of intersection of the graphs $y=f(x)$ and $y=f^{-1}(x)$ satisfies the equation $e^{x}-x-2=0$.
(v) One root of the equation $e^{x}-x-2=0$ lies between $x=1$ and $x=2$. Use one application of Newton's method, with a starting value of $x=1.5$, to approximate the root, to 2 decimal places.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) $\quad P\left(4 p, 2 p^{2}\right)$ is a variable point on the parabola $x^{2}=8 y$. The normal at P cuts the y-axis at A and R is the midpoint of $A P$.
(i) Show that the normal at P has equation $x+p y=4 p+2 p^{3}$.
(ii) Show that R has co-ordinates $\left(2 p, 2 p^{2}+2\right)$.
(iii) Show that the locus of R is a parabola and find its vertex and focus.
(b) The graph of $y=a \cos ^{-1} b x$ is drawn below.

(i) Find a and b.
(ii) Find the exact area bound by the curve and the y-axis for $0 \leq y \leq \frac{\pi}{2}$.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a)

An open, flat topped water trough is in the shape of a triangular prism.
Its rectangular top measures 200 cm by 400 cm and its triangular cross-section has a vertical height of 25 cm .

When the water depth is $h \mathrm{~cm}$ the water surface measures $x \mathrm{~cm}$ by 400 cm .
(i) Show that when the water depth is $h \mathrm{~cm}$ the volume $V \mathrm{~cm}^{3}$ of water in the trough is given by $V=1600 h^{2}$.

Water is being emptied through a hole in its base at a constant rate of 16 L per second.
(ii) Find the rate at which the depth of water is changing when $h=10 \mathrm{~cm}$.

Question 5 continues on page 7

(b) After cooking her cheesecake, Donna puts it in the fridge. The fridge is running at a constant temperature of $8^{\circ} \mathrm{C}$. At time t minutes the temperature T of the cheesecake decreases according to the equation:

$$
\frac{d T}{d t}=-k(T-8) \text { where } k \text { is a positive constant. }
$$

Donna puts the cheesecake in the fridge at 9.00 am when its temperature is $85^{\circ} \mathrm{C}$.
(i) Show that $T=8+77 e^{-k t}$ satisfies both this equation and the initial conditions. 2
(ii) Donna checks the temperature of the cheesecake at 10.00 am and it is $40^{\circ} \mathrm{C} .3$

It is best served when it reaches a temperature of $10^{\circ} \mathrm{C}$.
At what time (to the nearest minute) should Donna serve the cheesecake?
(c) In the expansion of $(1+a x)^{10}$, the coefficient of x^{6} is twice the coefficient of $x^{7} .3$ Find the value of a.

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) (i) In the expansion of $(a+b)^{20}$ show that $\frac{T_{n+1}}{T_{n}}$ is given by:

$$
\frac{21-n}{n} \frac{b}{a}
$$

(where $\left.T_{n+1}={ }^{20} C_{n} a^{20-n} b^{n}\right)$
(ii) In the game of craps, 2 dice are thrown and the score is recorded as the sum of the uppermost faces of the dice.
α) Find the probability that a score of 7 is recorded.
β) If two dice are rolled 20 times, what is the most probable number of scores of 7 thrown? Calculate the probability that this occurs.
(b) (i) Use the method of mathematical induction to show that if x is a positive integer then $(1+x)^{n}-1$ is divisible by x for all positive integers $n \geq 1$.
(ii) Factorise $12^{n}-4^{n}-3^{n}+1$.
(iii) Without using the method of mathematical induction, deduce that $12^{n}-4^{n}-3^{n}+1$ is divisible by 6 for all positive integers $n \geq 1$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Show that in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$, the term independent of x is $(-1)^{n} \times{ }^{2 n} C_{n}$.
(ii) Show that $(1+x)^{2 n}\left(1-\frac{1}{x}\right)^{2 n}=\left(x-\frac{1}{x}\right)^{2 n}$
(iii) Deduce that:

$$
\begin{equation*}
\left({ }^{2 n} C_{0}\right)^{2}-\left({ }^{2 n} C_{1}\right)^{2}+\left({ }^{2 n} C_{2}\right)^{2}-\ldots+\left({ }^{2 n} C_{2 n}\right)^{2}=(-1)^{n} \times{ }^{2 n} C_{n} \tag{2}
\end{equation*}
$$

(b) (i)

In the diagram above, the diagonals of quadrilateral $A B C D$ intersect at X.
Show that if $A X . X C=B X . X D, A B C D$ is a cyclic quadrilateral.
(ii)

Consider the parabola $y=x^{2}+p x-q$, where $q>0$.
Let the parabola intercept the y-axis at A and the x-axis at the distinct points B and C.
D is the point $(0,1)$
$\alpha)$ Find the co-ordinates of B and C.
β) Show that $A B D C$ is a cyclic quadrilateral.

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $1 \mathrm{n} x=\log _{e} x, \quad x>0$

Extension 1 Mathematics Trial USC 2009-Solutions
Q)

Rear - 3

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x}{5 x} & =\frac{3}{5} \lim _{x \rightarrow \infty} \frac{\operatorname{sn} 3 x}{3 x} \\
& =\frac{3}{5} \times 1 \\
& =\frac{3}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
& A(1,-4) B(6,9) \\
& \begin{aligned}
x=\frac{3 \times 1+-2 \times 6}{-2+3} \quad y & =\frac{3 x-4+-2 \times 9}{-2+3} \\
& =-\frac{9}{1} \\
& =-9
\end{aligned} \quad \begin{aligned}
1 & =-30 \\
& \quad P(-9,-30)
\end{aligned}
\end{aligned}
$$

c)

$$
\begin{aligned}
(x-1)^{2} \frac{4}{x-1} & \geqslant 1(x-1)^{2} \\
4(x-1) & \geqslant x^{2}-2 x+1 \\
4 x-4 & \geqslant x^{2}-2 x+1 \\
0 & \geqslant x^{2}-6 x+5
\end{aligned}
$$

sluich $y=x^{2}-6 x+5$

$$
=(x-5)(x-1)
$$

$$
1<x \leq 5
$$

d)

$$
\begin{aligned}
& \left|\frac{m-\frac{1}{3}}{1+n+\frac{1}{3}}\right|=\tan \frac{\pi}{4} \\
& \frac{\left|m-\frac{1}{3}\right|}{\left|1+\frac{m}{3}\right|}=1 \\
& \left|m-\frac{1}{3}\right|=\left|1+\frac{m}{3}\right|
\end{aligned}
$$

Don well

These who used the 'cross' method uss wore sacusisl then tho ar rel forme.

- Silly algubien mistaduy were mede hora Take your tome with el Also $x \neq 1$

You rend to emender excel values A trig ratios. ii $\tan \frac{\pi}{4}=1$ of $\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& M-\frac{1}{3}=1+\frac{m}{3} \text { or } m-\frac{1}{3}=-1-\frac{m}{3} \\
& 3 m-1=3+m \\
& 3 m-1=-3-m \\
& 2 m=4 \\
& 4 m=-2 \\
& M=2 \\
& M=-\frac{1}{2}
\end{aligned}
$$

e)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\alpha \beta+\beta \gamma+\alpha \gamma}{\alpha \beta \gamma} \\
& =\frac{-3}{-5} \\
& =\frac{3}{5}
\end{aligned}
$$

f) $\int \sec 2 x \tan 2 x d x=\frac{1}{\sqrt{2}} \sec 2 x+c$

Q2 a):) $\angle A C E=36^{\circ}$ (angh between tangut and
Rens 3
wo.... 3
(ak L i) $\angle C A E=90^{\circ}$ (angh in a semi-circh)

$$
\begin{aligned}
\angle F A C & =180-90-36 \text { (angle sun of a st. Iine) } \\
& =54^{\circ}
\end{aligned}
$$

chord eqeals augh n allernet segrent)

Dene wl!
$\angle A D C=54^{\circ}$ (angh between tanget and chord equals argh in albucke seguen)
b)

$$
\begin{aligned}
\int \frac{d x}{\sqrt{25-4 x^{2}}} & =\frac{1}{2} \int \frac{d x}{\sqrt{25}-x^{2}} \\
& =\frac{1}{2} \sin ^{-1}\left(\frac{2 x}{5}\right)+c
\end{aligned}
$$

c) i)

$$
\begin{aligned}
\sin x-\sqrt{3} \cos x & =R \sin x \cos a-R \cos x \sin x \\
\therefore R \sin \alpha & =\sqrt{3} \ldots(1) \\
R_{\cos } \cos x & =1 \ldots(2)
\end{aligned}
$$

(1) \div (2) $\quad \tan \alpha=\sqrt{3}$

$$
\alpha=\frac{\pi}{3}
$$

$$
\begin{gathered}
Q^{2}+(2)^{2}=R^{2} \sin ^{2} \alpha 2 R^{2} \cos ^{2} \alpha=(\sqrt{3})^{2}+1^{2} \\
R^{2}=4 \\
R=2 / \operatorname{css} R>0 \\
\therefore \sin x-\sqrt{3} \cos x=2 \sin \left(x-\frac{\pi}{3}\right)
\end{gathered}
$$

ii)

$$
\begin{aligned}
& \sin x-\sqrt{3} \cos x=\sqrt{2} \\
& 2 \sin \left(x-\frac{\pi}{3}\right)=\sqrt{2} \\
& \sin \left(x-\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2} \\
& x-\frac{\pi}{3}=n \pi+(-1)^{\prime} \frac{\pi}{4} \\
& x=n \pi+(-1)^{\wedge} \frac{\pi}{4}+\frac{\pi}{3}
\end{aligned}
$$

d) poob of colar blinduess $=0.0 r$
pass of not ioler slinheas $=0.95$

1) P

$$
\begin{aligned}
P(x=0) & ={ }^{20} C_{0}(0.05)^{0}(0.95)^{20} \\
& =0.358
\end{aligned}
$$

ii)

$$
\begin{aligned}
P(x \geqslant 2) & =1-[p(x=0)+P(x=1)] \\
& \left.=1-\left((0.95)^{20}+{ }^{20} c_{1}(0.05)(0.95)^{19}\right)\right] \\
& =0.264
\end{aligned}
$$

$$
\begin{aligned}
\text { Q3 a) } \\
\text { Reac }-3
\end{aligned} \int_{0}^{3 / 2} \sqrt{9-x^{2}} d x \quad x=3 \sin \theta
$$

$$
d x=3 \cos \theta d \theta \quad x=0 \quad \theta=0
$$

$$
\begin{aligned}
& =\frac{9}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 6} \\
& =\frac{9}{2}\left[\left(\frac{\pi}{6}+\frac{1}{2} \sin \frac{\pi}{3}\right)-(0+0)\right] \\
& =\frac{9}{2}\left(\frac{\pi}{6}+\frac{\sqrt{3}}{4}\right) \\
& =\frac{3 \pi}{4}+\frac{9 \sqrt{3}}{8}
\end{aligned}
$$

b)i)

$$
\begin{aligned}
N_{0} \text { of triangles } & ={ }^{12} C_{3} \\
& =220
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { No of trieyhs } & ={ }^{7} c_{1} \times{ }^{4} c_{1} \times{ }^{1} c_{1} \\
& =2 \gamma \\
\therefore P_{10 b}=\frac{28}{720} & =\frac{7}{55}
\end{aligned}
$$

ii.)

$$
\begin{aligned}
\text { No of triaghs } & =7 c_{3}+c_{3} \\
& =35+4 \\
& =39 \\
\text { Pros }=\frac{39}{220} &
\end{aligned}
$$

ii) $f(x): y=e^{x}-2$ intecharg x ad y

$$
\begin{gathered}
x=e^{y}-2 \\
x+2=e^{y} \\
y=\ln (x+2)
\end{gathered}
$$

iv) As the graph of $y=f^{-1}(n)$ is a reflection of the graph of $y=f(x)$ in the lie $y=x$, paints of neverection lu on $y=n$
\therefore they satisfy $e^{x}-2=x$

$$
\therefore e^{x}-x-2=0 .
$$

v)

$$
\begin{aligned}
f(x) & =e^{x}-x-2 \\
f^{\prime}(x) & =e^{x}-1 \\
\therefore x_{2} & =1.5-\frac{f(1.5)}{f^{\prime}(1.5)} \\
& =1.5-\frac{e^{1.5}-1.5-2}{e^{1.5}-1} \\
& =1.22\left(b{ }^{2} \text { dec. pl.). } \quad \text { (ale } 2\right.
\end{aligned}
$$

$$
\text { Q4 a) i) } x^{2}=8 y
$$

R2a>-5

$$
\begin{array}{rl}
& y \\
=\frac{x^{2}}{8} \\
\frac{d y}{d x} & =\frac{x}{4} \\
\therefore \text { at } P M_{t y} & =\frac{4 p}{4} \\
& =p \\
\therefore M_{12 x} & =-\frac{1}{p} \\
\therefore y_{0} & 2 p^{2}=-\frac{1}{p}(x-4 p) \\
\rho y-2 p^{3} & =-x+4 p \tag{com}\\
x+p y & =2 p^{3}+4 p .
\end{array}
$$

ii)

$$
\begin{aligned}
& A: x=0 \quad 0+\rho y=2 \rho^{3}+4 \rho \\
& y=2 \rho^{2}+4 \\
& \therefore A\left(0,2 \rho^{2}+4\right) \quad p\left(4 \rho, 2 \rho^{2}\right) \\
& \therefore \text { Midpt }\left(\frac{0+4 \rho,}{2} \frac{2 \rho^{2}+4+2 \rho^{2}}{2}\right) \\
& =\left(2 \rho, 2 \rho^{2}+2\right) \quad \text { Rec >-2 }
\end{aligned}
$$

Dene reassembly mil
The key pout is that $f(x)$ ad $f^{-1}(x)$ intersect $x y=x$.

Done var mil
ii)

$$
\begin{aligned}
& x=2 \rho \quad y=2 \rho^{2}+2 \\
& p=\frac{x}{2} \text { sub wis } y_{2} \\
& y=2\left(\frac{x}{2}\right)^{2}+2 \\
& y=2 \frac{x^{2}}{4}+2 \\
& 4 y=2 x^{2}+8 \\
& 2 y-4=x^{2} \\
& x^{2}=2(y-2) \\
& \therefore 4 a=2 a=\frac{1}{2} \text { telex }(0,2) \text {. } \\
& \text { form }\left(\begin{array}{l}
2 \\
0
\end{array}, a_{\frac{1}{2}}\right) \text {. }
\end{aligned}
$$

b) 1) $a=3$

$$
b=\frac{1}{2}
$$

i.)

$$
\begin{aligned}
y= & 3 \cos ^{-1} \frac{x}{2} \\
\frac{y}{3} & =\cos ^{-1} \frac{n}{2} \\
\frac{x}{2} & =\cos \frac{y}{3} \\
\therefore A & =2 \cos \frac{y}{3} \\
\therefore 1 / 2 & \int_{0}^{\frac{y}{3}} d y \\
= & 2\left[3 \sin \frac{y}{3}\right]_{0}^{\pi / 2} \\
= & 6\left(\sin \frac{\pi}{6}-\sin 0\right) \\
& =6 \times \frac{1}{2} \\
& =3 \sin { }^{2}
\end{aligned}
$$

Q5 a).

$$
\begin{aligned}
V & =A h \\
& =\frac{1}{2} x h \times 400 \\
& =200 n h
\end{aligned}
$$

Con 2
Cake- 3 row by similar toriangus

$$
\begin{aligned}
\frac{x}{h} & =\frac{200}{25} \\
x & =8 h \\
\therefore \quad V & =200 \times 8 h \times h \\
& =1600 h^{2}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d V}{d t} & =-16 L / \mathrm{s} \quad \mid L=1000 \mathrm{~cm}^{3} \\
& =-16000 \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

find $\frac{d h}{d t}$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{d h}{d v} \times \frac{d v}{d t} \\
\frac{d v}{d h}=3200 h \cdot \sqrt{d h} & =\frac{1}{3200 h} \times-16000 \\
\therefore \cdot \frac{d h}{d t} & =-\frac{5}{h}
\end{aligned}
$$

\therefore who $h=10$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{-5}{10} \\
& =-\frac{1}{2} \mathrm{~cm} / \mathrm{s} . \quad \text { cak }-3
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { LHS }=\frac{d T}{d t} \quad \text { RHS }=-k(T-8) \\
& =-k \times 77 e^{-k t} \\
& \therefore L H S=R H\rangle \\
& \therefore T=8+77 e^{-k t} \text { satirfus } \text { d. Dl. eqn. } \\
& \text { when } t=0 \\
& T=8+77 e^{-k+0} \\
& =8+77 \\
& =85^{\circ}
\end{aligned}
$$

ii)

$$
\begin{aligned}
t=60 \quad T & =40 \\
\therefore 40 & =8+71 e^{-k \times 60} \\
32 & =77 e^{-k \times 60} \\
\frac{32}{77} & =e^{-k \times 60} \\
-60 k & =\ln \frac{32}{71} \\
k & =-\frac{\ln (32 / 71)}{60}
\end{aligned}
$$

fund t when $T=10$

Most stidents arruel a) $\frac{d h}{d L}=\frac{d u}{d v} \times \frac{d v}{d t}$
b-1 made a mistak with units
i.e $16 \mathrm{~L}=16000 \mathrm{~cm}^{3}$

Yo can' 1 mix unit,
"Ahere questions

Yo, need to be caret,
-h stive questions Yos ned to have more then $\frac{d T}{d t}=-k 7 \tau_{e}^{-1 t}$

$$
=-k(T-8)
$$

initral conditass wes also m.sud by

Done very -all.

$$
\begin{aligned}
& 10=8+77 e^{-k t} \\
& 2=77 e^{-k t} \\
& \frac{2}{77}=e^{-k t} \\
&-k t=h^{2 / 77} \\
& t=\frac{\ln \left(\frac{2}{47}\right)}{-k} \\
&=249 \cdot 45 \ldots \text { miaks } \\
&=4 h r s 9_{\text {min }} \\
& 1: 09 \text { pn. }
\end{aligned}
$$

c)

$$
\begin{aligned}
\text { coell of } x^{6} & :{ }^{10} c_{6} a^{6} \\
\text { wefl of } x^{7} & :{ }^{10} c_{7} a^{7} \\
\therefore 210 a^{6} & =2 \times 120 a^{7} \\
a & =\frac{210}{240} \\
& =\frac{7}{8}
\end{aligned}
$$

Mosl csmmen mirtek -cs $2 \times 10 a^{6}=12097$

Q6 a) i)

$$
=\frac{21-n}{n} \frac{b}{a}
$$

ii) $\alpha) P(7)=\frac{1}{6}$
B) $p(7)={ }^{20} c_{n}\left(\frac{5}{6}\right)^{30-1}\left(\frac{1}{6}\right)^{n}$ find n sueh thent $\frac{T_{n+1}}{T_{n}}>1$

$$
\therefore \frac{21-n}{n} \frac{\frac{1}{6}}{\frac{5}{6}}>1 \text { from i). }
$$

$$
\begin{aligned}
& \frac{21-n}{n} \times \frac{1}{5}>1 \\
& \begin{aligned}
\frac{21-n}{5 n} & >1 \\
21-n & >5 n \quad \text { a> } n>0 \\
6 n & <21 \\
n & <\frac{21}{6} \\
\therefore n & =3
\end{aligned}
\end{aligned}
$$

\therefore the most likily number of 7 's thrown is 3

$$
\begin{aligned}
P(7) & ={ }^{20} C_{3}\left(\frac{5}{6}\right)^{17}\left(\frac{1}{6}\right)^{3} \\
& =0.238 \quad(103 \text { d.p. })
\end{aligned}
$$

b) i) show tree for $n=1$

$$
\begin{aligned}
(1+x)^{\prime}-1 & =1+x-1 \\
& =x
\end{aligned}
$$

which is divisible by x.
assume true for $n=k$
$\therefore(1+n)^{k}-1=M_{n}$ where M is an integer show tree for $n=k+1$
positive nteges
\therefore rex pl is true for $n=k+1$ Decs -3
\therefore we hare show they if it is true for $a=1$ then the excl is tree for $n=k+1$. Te results tree for $n=1 \therefore$ by the principle of Mathematical Fraluction therexil is tome for all postie n.

$$
\begin{aligned}
& \text { ide. }(1+x)^{k+1}-1=Q x \text { where } Q \text { is an inky. } \\
& \text { aus }=(1+x)^{k+1}-1=(1+x)(1+x)^{k}-1 \\
& =(1+n)(M n+1)-1 \text { from about } \\
& =m x+1+m x^{2}+n-1 \\
& =n(m+m n+1) \\
& =Q X \cdot \text { as } M \text { ain as }
\end{aligned}
$$

ii)

$$
\begin{aligned}
12^{n}-4^{n}-3^{n}+1 & =3^{n}+4^{n}-4^{n}-3^{n}+1 \\
& =4^{n}\left(3^{n}-1\right)-1\left(3^{n}-1\right) \\
& =\left(3^{n}-1\right)\left(4^{n}-1\right)
\end{aligned}
$$

iii)

$$
\begin{aligned}
& 12^{n}-4^{n}-3^{n}+1=\left(3^{n}-1\right)\left(4^{n}-1\right) \\
& =\left((2+1)^{n}-1\right)\left((3+1)^{n}-1\right) \\
& n=(2+1)^{n}-1 \text { is dinsise by } 2 \text { from i) } \\
& \text { d }(3+1)^{n}-1 \text { is divisible by from i) } \\
& \therefore\left(3^{2}-1\right)\left(4^{n}-1\right) \text { is diwisble by } 2 \times 3=6 .
\end{aligned}
$$

$\theta 7 a) i)$

$$
\begin{aligned}
\left(x-\frac{1}{x}\right)^{2 n} & =\sum_{r=0}^{2 n}{ }^{2 n} c_{r}(x)^{2 n-r}\left(-\frac{1}{x}\right)^{r} \\
& =\sum_{r=0}^{2 n}{ }^{2 n} c_{r}(x)^{2 n-r}(-x)^{-r}
\end{aligned}
$$

\therefore for the tum independent of x :

$$
\begin{gathered}
2 n-r-r=0 \\
2 r=2 n \\
r=n \\
\therefore \text { term is }{ }^{2 n} c_{n}(x)^{2 n-n}(-x)^{-n} \\
={ }^{2 n} c_{n}(-1)^{n} \quad R \ldots, 2
\end{gathered}
$$

ii)

$$
\begin{aligned}
\text { LIS }=(1+x)^{2 n}\left(1-\frac{1}{x}\right)^{2 n} & =\left[(1+x)\left(1-\frac{1}{x}\right)\right]^{2 n} \\
& =\left(1-\frac{1}{x}+x-1\right)^{2 n} \\
& =\left(x-\frac{1}{x}\right)^{2 n} \text { Conn-1 } \\
& =\text { RUS. }
\end{aligned}
$$

iii) expand $(1+x)^{2 n}\left(1-\frac{1}{x}\right)^{2 n}$

$$
\left.\begin{array}{l}
=\left({ }^{2 n} c_{0}+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\ldots .+{ }^{2 n} c_{2 n} x^{2 n}\right) \\
\times\left({ }^{2 n} c_{0}-{ }^{2 n} c_{1}\left(\frac{1}{x}\right)+{ }^{2 n} c_{2}\left(\frac{1}{x^{2}}\right)-\ldots+{ }^{2 n} c_{2 n} \frac{1}{x^{n n}}\right) \\
=\ldots .+{ }^{2 n} c_{0} \times{ }^{2 n} c_{0}-{ }^{2 n} c_{1} x^{2 n} c_{1}\left(\frac{1}{x}\right)+\ldots+{ }^{2 n} c_{2 n} x^{2 n} \times{ }^{2 n} c_{2 n} \frac{1}{x^{2 n}}
\end{array}\right)
$$

\therefore terms naleadent of x in this expansion
are:

$$
\left.\left({ }^{2 n} c_{0}\right)^{2}-\left({ }^{2 n} c_{1}\right)^{2}+\left({ }^{2 n} c_{2}\right)^{2}-\cdots+{ }^{2 n} c_{2 n}\right)^{2}
$$

Dou Carly -11

Easy melt thun
any by
J, st became thin question is canplicatid thane are shill easy pol, Man students dice which terms -b melt.pl togehe.
now $(1+x)^{2 n}\left(1-\frac{1}{x}\right)^{2 n}=\left(x-\frac{1}{x}\right)^{2 n}$
and the term nolepadut of $x n\left(x-\frac{1}{x}\right)^{2 n}$

$$
\text { is }(-1)^{h} n_{n}
$$

$$
R e \leadsto-2
$$

\therefore equetry teras

$$
\left({ }^{2 n} c_{0}\right)^{2}-\left({ }^{2 n} c_{1}\right)^{2}+\left({ }^{2 n} c_{2}\right)^{2}-\cdots \cdot+\left(^{2 n} c_{2 n}\right)^{2}=(-1)^{n}{ }^{2 n} c_{n}
$$

b) i) In $\triangle A \times B$ and $\triangle D \times C$

$$
\begin{aligned}
& \frac{A X}{D X}=\frac{X B}{X C} \quad(\text { as } A X, X C=B X \cdot X D) \\
& \angle B X A=\angle C X D \text { (vert. opp aghs are eq.) }
\end{aligned}
$$

$\therefore \triangle A X B\|\| \triangle X C$ (tws pairg of sicess in the same ratio ad the incland angh is eq-al)
$\therefore \quad \angle A B X=\angle D C X$ (cocr. anghs an similar triages) proof.
$\therefore A B C D$ is a eyelue q-edr.latuol as aghes in the same segmentare eqoel.
ii) α) B and C an x-nkenets $\therefore y=0$

$$
\begin{aligned}
& \therefore x^{2}+p x-q=0 \\
x & =\frac{p \pm \sqrt{p^{2}-4 \cdot 1 \cdot-q}}{2 \times 1} \\
& =-\frac{p \pm \sqrt{p^{2}+4 q}}{2}
\end{aligned}
$$

$\therefore B\left(\frac{-p-\sqrt{p^{2}+4 q}, 0}{2}\right) \& c\left(\frac{-p+\sqrt{p^{2}+4 q}}{2}, 0\right)$

$$
\begin{aligned}
\therefore O B=\left|\frac{-p-\sqrt{\rho^{2}+4 q} \mid}{2}\right| \quad O C & =\left|\frac{-p+\sqrt{\rho^{2}+4 q} \mid}{2}\right| \\
=\frac{p+\sqrt{\rho^{2}+4 q}}{2} & =\frac{-p+\sqrt{\rho^{2}+4}}{2}
\end{aligned} \quad \begin{aligned}
\therefore O B \times O C & =\frac{\rho+\sqrt{\rho^{2}+4 q}}{2} \times \frac{-p+\sqrt{p^{2}+4 q}}{2} \\
& =\frac{-\rho^{2}+\rho \sqrt{\rho^{2}+4 q}-p \sqrt{\rho^{2}+4 q}+\left(\sqrt{\rho^{2}+4 q}\right)^{2}}{4}
\end{aligned}
$$

Pre will for tox siderts to knew what to do!

Be caeful reat OB ad $O C$ ane lengths $\leq O B=\left|-\frac{p-\sqrt{p^{2}+q}}{2}\right|$

$$
\begin{aligned}
&= \frac{-p^{2}+p^{2}+4 q}{4} \\
&= q \\
& O A=|-q| \\
&==1 \\
& \therefore O A \times O D=|1| \\
& \therefore O B+1 \\
& \therefore O B==q \\
& \therefore A B C O D
\end{aligned}
$$

