THE SCOTS COLLEGE

YEAR 12

HSC TRIAL EXAMINATION MATHEMATICS - EXTENSION 1 AUGUST 2005

TIME ALLOWED:

2 HOURS + 5 MINUTES READING TIME

WEIGHTING:

40%

GENERAL INSTRUCTIONS:

- ATTEMPT ALL QUESTIONS.
- USE BLUE/BLACK PEN.
- BOARD APPROVED CALCULATORS MAY BE USED.
- A TABLE OF STANDARD INTEGRALS IS ATTACHED.
- ALL NECESSARY WORKING SHOULD BE SHOWN FOR EACH QUESTION.
- START EACH QUESTION IN A NEW BOOKLET.

a. Solve the inequality
$$\frac{4-x^2}{x} < 0$$

b.

CT is a tangent to the circle ABC, with ABT a secant intersecting the circle at A and B. Given that CT = 6, BT = 5 find AB. [2]

c. The line through the points A(2, -1) and B(4, 1) intersects the line with equation 2y-x+4=0. Find the acute angle between the lines, to the nearest degree. [2]

d. It is known that (x+1) is a factor of the polynomial $P(x) = 2x^3 - ax + 2$. Find the value of *a*. [1]

e. The line y = kx intersects the circle $x^2 + y^2 - 2x - 14y + 25 = 0$ at two distinct points. [3]

- (i) Show that $25(k^2+1)-(7k+1)^2 < 0$.
- (ii) For what value of k is the line y = kx a tangent to the circle?

f. Using the substitution $u = x^2$ find $\int_0^2 x e^{x^2} dx$, leaving your answer in terms of e. [2]

(a) The function $f(x) = x^3 - \ln(x+1)$ has one root lying between 0.5 and 1.

- (i) Show that the root lies between 0.8 and 0.9.
- (ii) Use one application of Newton's method to find a second approximation to 3 decimal places if x = 0.85 is taken as the first approximation.

(b)

- (i) Show that $\frac{d}{dx} \left(\sin^{-1} x + \cos^{-1} x \right) = 0$ for the domain $0 \le x \le 1$.
- (ii) Hence, or otherwise, sketch the graph of $y = \sin^{-1} x + \cos^{-1} x$.
- (c) A container of hot water at temperature $T^{\circ}C$ loses heat when placed in a cooler environment. It cools according to the rule $\frac{dT}{dt} = k(T - T_0)$, where t is the elapsed time in minutes, T_0 is the environment temperature in degrees (°C). [5]
 - (i) Show that $T = T_0 + Ce^{kt}$, where C a constant, is a solution to the differential equation.
 - (ii) A container of water at 90°C is placed in a freezer at -20°C. It cools to a temperature of 60°C in 3 minutes. Find the value of k.
 - (iii) The same container of water, now at 60° C, is then left in an environment at 20° C. Assuming the value of k remains constant, find, to the nearest degree, the temperature after a further 15 minutes.

[4]

[3]

- (a) The point P(3,8) divides the interval AB externally in the ratio k : 1. If A is the point (0,2) and B is the point (2,6), find the value of k. [3]
- (b) Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$. [6]
 - (i) Show that the equation of the tangent to the parabola at Q is $y = qx aq^2$.
 - (ii) The tangent at Q and the line through P parallel to the y axis intersect at A. Find the coordinates of A.
 - (iii) Write down the co-ordinates of M, the midpoint of QA.
 - (iv) Determine the locus of M when PQ is a focal chord.

(c)

(i) On the same set of axes, sketch the graphs of $y = 2\cos\theta$ and $y = \frac{1}{2}\theta$ for $-\pi \le \theta \le \pi$.

[3]

(ii) Use your sketch to find the number of solutions of the equation $2\cos\theta = \frac{1}{2}\theta$ for $-\pi \le \theta \le \pi$.

(a)

[12 MARKS]

Let ABPQC be a circle with AB = AC. Also AP intersects BC at X, and AQ intersects BC at Y. Let $\angle PAB = \alpha$ and $\angle ABC = \beta$. [4]

Copy the diagram into your Answer Book and state why $\angle AXC = \alpha + \beta$. (i)

(ii) Show $\angle POB = \alpha$.

(iii) Show $\angle AQB = \beta$.

- (iv) Prove $\angle XYQP$ is a cyclic quadrilateral.
- Find all angles θ , where $0 \le \theta \le 2\pi$, for which $\sqrt{3} \sin 2\theta \cos 2\theta = 1$. **(b)** [3]

(c)

- A particle moving in a straight line is subject to an acceleration given by $\ddot{x} = -2e^{-x}$ **(i)** where x is the displacement from the origin in metres. The particle is initially at the origin with a velocity of $2ms^{-1}$. Prove that $v = 2e^{-x/2}$. (You may use the fact that $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \ddot{x}.$
- **(ii)** Explain the effect on v as x increases without bound.
- (d) A particle is moving in simple harmonic motion. It's displacement x at time t is given by $x = 4\sin\left(2t + 3\right).$

[3]

[2]

- (i) Find the period of the motion.
- **(ii)** Find the maximum acceleration of particle.
- Find the speed of the particle when x = 2. (iii)

QUESTION 5

Prove by mathematical induction that $1+3+3^2+3^3+\cdots+3^{n-1}=\frac{3^n-1}{2}$ for all $n \ge 1$. **(**a**)** [3]

(b)

(c)

- **(i)** The diagram above represents a hemispherical bowl of radius 10cm filled with water to a depth of h cm. By finding the volume generated by rotating a circle $x^2 + y^2 = 100$ between y = 10 and y = 10 - h about the y-axis show that the volume of water in the bowl is given by $V = \frac{\pi}{3}h^2(30-h)$.
- **(ii)** The hemispherical bowl referred to in (i) above is being filled with water at a constant rate of 2π cm³/min. At what rate is the depth increasing when the depth of water is 2cm?
- Differentiate $x \cos^{-1} x \sqrt{1 x^2}$ with respect to x. (i)

[4]

[5]

Use your result from c (i) above to evaluate $\int_{0}^{1} \cos^{-1} x \, dx$ (ii)

[12 MARKS]

[4]

[3]

(a**)**

(d)

- (i) Solve the equation $2x^3 7x^2 12x + 45 = 0$, given that two of the roots are equal.
- (ii) The equation in (i) above has two sets of possible solutions. Explain why only one set of values for the roots is valid.
- (b) Find the value of the term that is independent of x in the expansion of $\left(x^2 \frac{2}{x}\right)^6$. [2]

(c) Let
$$f(x) = -\left(\frac{x}{1-x^2}\right)$$
 [3]

- (i) For what values of x is f(x) undefined?
- (ii) Show that f'(x) < 0 at all values of x for which the function is defined.
- (iii) Hence sketch the curve y = f(x).
- (i) Show, by means of a sketch, that the curves $y = x^2$ and $y = -\frac{1}{2} \ln x$ meet at a single point.
- (ii) Prove that the tangents to the two curves intersect at right angles at this point of intersection.

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}+C, \ n\neq -1; x\neq 0, \text{if } n<0$
$\int \frac{1}{x} dx$	$= \ln x + C, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}+C, a\neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax + C, \ a \neq 0$
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax + C, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax + C, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax + C, \ a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}+C, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a} + C, \ a > 0, \ -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln \left(x + \sqrt{x^2 - a^2} \right) + C, \ x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2+a^2}\right)+C$

NOTE : $\ln x \equiv \log_e x$, x > 0

(a) (1) Since the line intersects the circle

$$z^{2} + (kx)^{2} - 2x - 14(kx) + 25 = 0$$
 $\frac{1}{2}$
 $z^{2} + k^{2}x^{2} - 2x - 14kx + 25 = 0$ $\frac{1}{2}$
 $(1+k^{2})x^{2} - (2+14k)x + 25 = 0$ $\frac{1}{2}$
Since there are 2 distinct pools $\Delta > 0$
 $\therefore b^{2} - 4ac > 0$. $\frac{1}{2}$
 $\left[-2(1+7k)\right]^{2} - 4(1+k^{2})25 > 0$
 $4(7k+1)^{2} - 25(1+k^{2}) > 0$. $\frac{1}{2}$
 (1) The line $y = kx$ is tangential where only
one noot ensot is $\Delta = 0$
 $25(k^{2}+1) - (7k+1)^{2} < 0$
(1) The line $y = kx$ is tangential where only
one noot ensot $z + 25 = 0$
 $25(k^{2}+1) - (7k+1)^{2} = 0$
 $25(k^{2}+1) - (7k+1)^{2} = 0$
 $25(k^{2}+1) - (7k+1)^{2} = 0$
 $12k^{2} + 7k - 12 = 0$
 $(4k - 3)(3k + 4) = 0$
 $\therefore h = \frac{3}{4}, 0^{-\frac{4}{3}}$
(f) Let $u = x^{2}$ when $x = 0, u = 0$
 $\therefore h = \frac{3}{4}, 0^{-\frac{4}{3}}$
(f) Let $u = x^{2}$ when $x = 0, u = 0$
 $\therefore du = 2x dx$ $x = 2, u = 4$
 $\int_{0}^{2} x e^{x^{2}} dx = \frac{1}{2} \int_{0}^{2} 2x e^{x^{2}} dx$
 $= \frac{1}{2} \int_{0}^{4} e^{-4} du$
 $z = \frac{1}{2} \left[e^{u}-1\right]_{0}^{4}$

TKIAL

2005

$$\begin{array}{c} (2) \ 7(1) \ f(x) = 7^{3} - ln(x+1) \\ f(0,8) = (0,8)^{3} - ln(1,8) \\ = 0.512 \cdot 0.588 \\ < 0 \\ f(0,q) = (0,q)^{3} - ln(1,q) \\ = 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(0,8) \ and \ f(0,q) \ lis \ on \ eqposite \\ > 1, 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(0,8) \ and \ f(0,q) \ lis \ on \ eqposite \\ > 1, 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(0,8) \ and \ f(0,q) \ lis \ on \ eqposite \\ > 1, 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(0,8) \ and \ f(0,q) \ lis \ on \ eqposite \\ > 1, 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(0,8) \ and \ f(0,q) \ lis \ on \ eqposite \\ > 1, 0.72q \cdot 0.642 \\ > 0 \end{array}$$

$$\begin{array}{c} line \ f(x) = 3x^{2} - \frac{1}{x+1} \\ f(0,85) = 3(0,85)^{2} - \frac{1}{1,85} \\ = 1.627 \\ = 1.627 \\ = 0.951 \end{array}$$

$$\begin{array}{c} line \ f(x) = 0.95 - \frac{-0.001}{1.627} \\ = 0.951 \\ \hline line \ f(x) = 0.951 \\ \hline line \ f(x$$

$$\begin{array}{c} (\mathbb{Q} + \mathbb{Q} +$$

(a) addume
$$(1+3+3^{2}+...+3^{n^{n}} = \frac{3^{n}}{2} \cdot 1 + 15 + 1000$$

Where $n = 1$, $LHS = 1$,
 $RHS = \frac{3^{n}}{2} \cdot 1 = 1$
Addume $(1+3+3^{2}+...+3^{n^{n}} = 3\frac{n}{2} \cdot 1 + 1000$ for $n = 10$
Addume $(1+3+3^{2}+...+3^{n^{n}} = 3\frac{n}{2} \cdot 1 + 1000$ for $n = 1000$
 $r = 1+3+3^{2}+...+3^{n^{n}} + 3\frac{n}{2} = 3\frac{n}{2} \cdot 1 + 3\frac{n}{2}$
 $r = \frac{3^{n}+1}{2} - \frac{1}{2}$
 $r = \frac{1}{2}$

$$= \frac{\pi}{3} \left[\frac{300 \text{ k}^{2} + 1000 - 300 \text{ k} + 30 \text{ h}^{2} - \text{ h}^{3} - 1000}{3} \right]$$

$$= \frac{\pi}{3} \left[\frac{30 \text{ h}^{2} - \text{ h}^{3}}{3} \right]$$

$$= \frac{\pi}{3} \text{ h}^{2} \left[\frac{30 - \text{ h}}{3} \right]$$

$$= \frac{\pi}{3} \text{ h}^{2} \left[\frac{30 - \text{ h}}{3} \right]$$

$$\frac{\text{d} \text{ Y}}{\text{d} \text{t}} = \frac{\pi}{3} \left(\frac{30 \text{ h}^{2} - \text{ h}^{3}}{\text{d} \text{t}} \right)$$

$$\frac{\text{d} \text{ Y}}{\text{d} \text{t}} = \frac{\pi}{3} \left(\frac{60 \text{ h}^{2} - \text{ h}^{2}}{\text{d} \text{t}} \right) \frac{\text{d} \text{ h}}{\text{d} \text{t}}$$

$$\frac{1}{2 \text{ H}} = \frac{\pi}{3} \left[\frac{60 \text{ (a)} - 3 \text{ h}^{2}}{3 \text{ (a)}} \right] \frac{\text{d} \text{ h}}{\text{d} \text{t}}$$

$$6 = (120 - 12) \frac{\text{d} \text{ h}}{\text{d} \text{t}}$$

$$6 = 108 \frac{\text{d} \text{ h}}{\text{d} \text{t}}$$

$$\frac{1}{108} = \frac{1}{18} \text{ cm/sec}$$

$$= 0.55 \text{ mm/sec}$$

$$\begin{array}{l} \hat{S}_{1} \hat{S}_{2} \\ \hat{S}_{3} \\ \hat{S}_{4} \\ \hat{S}_$$

$$\begin{array}{c} & \mathfrak{Q} \ T, \qquad \mathfrak{Q} \ T & \mathfrak{Q} \ \mathfrak{Q} \\ & \mathfrak{Q} \\$$

$$\frac{\sin A}{\cos d} > \frac{R+and}{(R+r)} + \frac{RR}{(R+r)^{2}}$$

$$\tan d = \frac{R+and}{R+r} > \frac{RA}{(R+r)^{2}}$$

$$\tan d \left(1 - \frac{R}{R+r}\right) > \frac{RA}{(R+r)^{2}}$$

$$\tan d \left(1 - \frac{R}{R+r}\right) > \frac{RA}{(R+r)^{2}}$$

$$\tan d \left(\frac{r}{R+r}\right) > \frac{RA}{(R+r)^{2}}$$

$$\tan d \left(\frac{r}{R+r}\right) > \frac{RA}{(R+r)^{2}}$$

$$\tan d \left(\frac{r}{R+r}\right) > \frac{RA}{(R+r)^{2}}$$

$$\tan d > \frac{RA}{r(R+r)}$$
(V) $V^{2} > \frac{gR}{2 \tan d \sin d}$

$$2 \sin d \cos d > \frac{4R}{V^{2}}$$

$$3 \frac{10(90)}{50^{2}} = \frac{300}{2500} = 0.32$$

$$i \quad 2d > \frac{3R}{V^{2}}$$

$$d = 9.33^{\circ}, 80.67^{\circ}$$

$$d = 80.67^{\circ}$$

$$\tan d > \frac{RA}{r(R+r)}$$

$$r^{2} + 80r < r(R+r)$$

$$r^{2} + 80r < r(R+r)$$

$$r^{1} + 80r > \frac{80}{r(R+r)}$$

$$r^{1} + 80r > \frac{80}{r(R+r)}$$

$$r^{1} + 80r > \frac{80}{r(R+r)}$$

$$r^{1} + 80r > \frac{80}{22} = \frac{300}{2}$$

$$R = -\frac{80 \pm \sqrt{80.32}}{2}$$

$$= 0.32, -\frac{160.32}{2}$$

$$= 0.16, -80.16$$

$$A = 16 \text{ cm}$$

$$d = 16 \text{ cm}$$

l