The Scots College

Year 12

HSC Trial Examination

Mathematics - Extension 1

AUGUST 2005

Time Allowed: $\mathbf{2}$ Hours + 5 minutes Reading Time
Weighting: 40\%

General Instructions:

- Attempt all questions.
- USE BLUE/BLACK PEN.
- Board approved calculators may be used.
- A Table of Standard Integrals is attached.
- All necessary working should be shown for each question.
- Start each question in a new booklet.
a. Solve the inequality $\frac{4-x^{2}}{x}<0$
b.

CT is a tangent to the circle ABC , with ABT a secant intersecting the circle at A and B .
Given that $\mathrm{CT}=6, \mathrm{BT}=5$ find AB .
c. The line through the points $\mathrm{A}(2,-1)$ and $\mathrm{B}(4,1)$ intersects the line with equation $2 y-x+4=0$. Find the acute angle between the lines, to the nearest degree.
d. It is known that $(x+1)$ is a factor of the polynomial $P(x)=2 x^{3}-a x+2$. Find the value of a.
e. The line $y=k x$ intersects the circle $x^{2}+y^{2}-2 x-14 y+25=0$ at two distinct points.
(i) Show that $25\left(k^{2}+1\right)-(7 k+1)^{2}<0$.
(ii) For what value of k is the line $y=k x$ a tangent to the circle?
f. Using the substitution $u=x^{2}$ find $\int_{0}^{2} x e^{x^{2}} d x$, leaving your answer in terms of e.
(a) The function $f(x)=x^{3}-\ln (x+1)$ has one root lying between 0.5 and 1 .
(i) Show that the root lies between 0.8 and 0.9 .
(ii) Use one application of Newton's method to find a second approximation to 3 decimal places if $x=0.85$ is taken as the first approximation.
(b)
(i) Show that $\frac{d}{d x}\left(\sin ^{-1} x+\cos ^{-1} x\right)=0$ for the domain $0 \leq x \leq 1$.
(ii) Hence, or otherwise, sketch the graph of $y=\sin ^{-1} x+\cos ^{-1} x$.
(c) A container of hot water at temperature $T^{\circ} \mathrm{C}$ loses heat when placed in a cooler environment. It cools according to the rule $\frac{d T}{d t}=k\left(T-T_{0}\right)$, where t is the elapsed time in minutes, T_{0} is the environment temperature in degrees $\left({ }^{\circ} \mathrm{C}\right)$. [5]
(i) Show that $T=T_{0}+C e^{k t}$, where C a constant, is a solution to the differential equation.
(ii) A container of water at $90^{\circ} \mathrm{C}$ is placed in a freezer at $-20^{\circ} \mathrm{C}$. It cools to a temperature of $60^{\circ} \mathrm{C}$ in 3 minutes. Find the value of k.
(iii) The same container of water, now at $60^{\circ} \mathrm{C}$, is then left in an environment at $20^{\circ} \mathrm{C}$. Assuming the value of k remains constant, find, to the nearest degree, the temperature after a further 15 minutes.
(a) The point $P(3,8)$ divides the interval $A B$ externally in the ratio $k: 1$. If A is the point $(0,2)$ and B is the point $(2,6)$, find the value of k.
(b) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the tangent to the parabola at Q is $y=q x-a q^{2}$.
(ii) The tangent at Q and the line through P parallel to the y axis intersect at A. Find the coordinates of A.
(iii) Write down the co-ordinates of M, the midpoint of $Q A$.
(iv) Determine the locus of M when $P Q$ is a focal chord.
(c)
(i) On the same set of axes, sketch the graphs of $y=2 \cos \theta$ and $y=\frac{1}{2} \theta$ for $-\pi \leq \theta \leq \pi$.
(ii) Use your sketch to find the number of solutions of the equation $2 \cos \theta=\frac{1}{2} \theta$ for $-\pi \leq \theta \leq \pi$.
(a)

Let ABPQC be a circle with $\mathrm{AB}=\mathrm{AC}$. Also AP intersects BC at X , and AQ intersects BC at Y . Let $\angle \mathrm{PAB}=\alpha$ and $\angle \mathrm{ABC}=\beta$.
(i) Copy the diagram into your Answer Book and state why $\angle \mathrm{AXC}=\alpha+\beta$.
(ii) Show $\angle \mathrm{PQB}=\alpha$.
(iii) Show $\angle \mathrm{AQB}=\beta$.
(iv) Prove $\angle \mathrm{XYQP}$ is a cyclic quadrilateral.
(b) Find all angles θ, where $0 \leq \theta \leq 2 \pi$, for which $\sqrt{3} \sin 2 \theta-\cos 2 \theta=1$.
(c)
(i) A particle moving in a straight line is subject to an acceleration given by $\ddot{x}=-2 e^{-x}$ where x is the displacement from the origin in metres. The particle is initially at the origin with a velocity of $2 \mathrm{~ms}^{-1}$. Prove that $v=2 e^{-x / 2}$. (You may use the fact that $\left.\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\ddot{x}\right)$.
(ii) Explain the effect on v as x increases without bound.
(d) A particle is moving in simple harmonic motion. It's displacement x at time t is given by $x=4 \sin (2 t+3)$.
(i) Find the period of the motion.
(ii) Find the maximum acceleration of particle.
(iii) Find the speed of the particle when $x=2$.
(a) Prove by mathematical induction that $1+3+3^{2}+3^{3}+\cdots------+3^{n-1}=\frac{3^{n}-1}{2}$ for all $n \geq 1$.
(b)

(i) The diagram above represents a hemispherical bowl of radius 10 cm filled with water to a depth of $h \mathrm{~cm}$. By finding the volume generated by rotating a circle $x^{2}+y^{2}=100$ between $y=10$ and $y=10-h$ about the y-axis show that the volume of water in the bowl is given by $V=\frac{\pi}{3} h^{2}(30-h)$.
(ii) The hemispherical bowl referred to in (i) above is being filled with water at a constant rate of $2 \pi \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the depth increasing when the depth of water is 2 cm ?
(c)
(i) Differentiate $x \cos ^{-1} x-\sqrt{1-x^{2}}$ with respect to x.
(ii) Use your result from \mathbf{c} (i) above to evaluate $\int_{0}^{1} \cos ^{-1} x d x$
(a)
(i) Solve the equation $2 x^{3}-7 x^{2}-12 x+45=0$, given that two of the roots are equal.
(ii) The equation in (i) above has two sets of possible solutions. Explain why only one set of values for the roots is valid.
(b) Find the value of the term that is independent of x in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{6}$.
(c) Let $f(x)=-\left(\frac{x}{1-x^{2}}\right)$
(i) For what values of x is $f(x)$ undefined?
(ii) Show that $f^{\prime}(x)<0$ at all values of x for which the function is defined.
(iii) Hence sketch the curve $y=f(x)$.
(d)
(i) Show, by means of a sketch, that the curves $y=x^{2}$ and $y=-\frac{1}{2} \ln x$ meet at a single point.
(ii) Prove that the tangents to the two curves intersect at right angles at this point of intersection.

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x+C, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x+C, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x+C, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x+C, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x+C, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan { }^{-1} \frac{x}{a}+C, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin \frac{x}{a}+C, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C \\
&
\end{array}
$$

NOTE: $\ln x \equiv \log _{e} x, \quad x>0$

Q! (12 marhs)
$\left.\begin{array}{c}\text { (a) } \begin{array}{c}\frac{4-x^{2}}{x}<0 \\ \frac{x^{2}(2-x)(2+x)}{x}\end{array}<0 \times x^{2}\end{array}\right\} \frac{1}{2}$
(2) $x(x-2)(x+2)>0\} \frac{1}{2}$
(2)

\therefore Soln $\{-2<x<0\}$ and $\{x>2\}$
(b)

Let $A B=x$
(2)

$$
\left.\begin{array}{l}
C T^{2}=A T \cdot T B \\
6^{2}=(5+x) 5 \\
36=25+5 x \\
5 x=11 \\
x=2.2 \mathrm{~cm}
\end{array}\right\} 1
$$

(c) Eq through $\left.A, B: \frac{y-1}{x-4}=\frac{-1-1}{2-4}=\frac{-2}{-2}=1\right\} 1 / 2$
$m_{1}=1$

Eq. line $\left.2 y-x+4=0 \Rightarrow y=\frac{1}{2} x-2\right\} \frac{1}{2}$.

Angle belueeen lines: $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
(2)

$$
=\frac{1-\frac{1}{2}}{1+1\left(\frac{1}{2}\right)}
$$

$$
=\frac{\frac{1}{2}}{\frac{3}{2}}
$$

$$
=\frac{1}{3}
$$

$$
\therefore \theta=18^{\circ} \text { (nearest degree) }
$$

(d) Amice $(x+1)$ is a factor $P(-1)=0 \quad\} \frac{1}{2}$

$$
\left.\begin{array}{rl}
P(-1) & =2(-1)^{3}-a(-1)+2 \\
& =-2+a+2 \\
& =a \\
& =0 \\
\therefore a & =0 .
\end{array}\right\} 1 / 2
$$

(e) (1) Ince the live inlenseca the arde

$$
\left.\begin{array}{l}
\left.x^{2}+(k x)^{2}-2 x-14(k x)+25=0 \quad 1 / 2\right\} \\
x^{2}+k^{2} x^{2}-2 x-14 k x+25=0 \\
\left(1+k^{2}\right) x^{2}-(2+14 k) x+25=0
\end{array}\right\} \frac{1}{2}
$$

Smie chere are 2 destrict roots $\Delta>0$

$$
\left.\begin{array}{l}
\therefore b^{2}-4 a c>0 \\
{[-2(1+7 k)]^{2}-4\left(1+k^{2}\right) 25>0} \\
4(7 k+1)^{2}-4(25)\left(1+b^{2}\right)>0 \\
(7 k+1)^{2}-25\left(1+k^{2}\right)>0 \\
\text { ie } \quad 25\left(k^{2}+1\right)-(7 k+1)^{2}<0
\end{array}\right\}
$$

(II) The line $y=k x$ is tangential when only one noot exists ie $\Delta=0$

$$
\left.\begin{array}{l}
25\left(k^{2}+1\right)-(7 k+1)^{2}=0 \\
25 k^{2}+25-49 k^{2}-14 k-1=0 \\
-24 k^{2}-14 k+24=0 \\
12 k^{2}+7 k-12=0 \\
(4 k-3)(3 k+4)=0 \\
\therefore k=\frac{3}{4},-\frac{4}{3}
\end{array}\right\}
$$

(f) Let $u=x^{2}$ when $\left.\begin{array}{rl}x & =0 \\ x & =2, u=0 \\ & u=4\end{array}\right\}$,

$$
\left.\begin{array}{rl}
\int_{0}^{2} x e^{x^{2}} d x & =\frac{1}{2} \int_{0}^{2} 2 x e^{x^{2}} d x \\
& =\frac{1}{2} \int_{0}^{4} e^{u} d u \\
& =\frac{1}{2}\left[e^{4}\right]_{0}^{4} \\
& =\frac{1}{2}\left(e^{4}-e^{0}\right) \\
& =\frac{1}{2}\left(e^{4}-1\right)
\end{array}\right\}
$$

$Q 2$
(a)

$$
\left.\begin{array}{rl}
f(x)= & x^{3}-\ln (x+1) \\
f(0.8) & =(0.8)^{3}-\ln (1.8) \\
& =0.512-0.588 \\
& <0 \\
f(0.9) & =(0.9)^{3}-\ln (1.9) \\
& =0.729-0.642 \\
& >0
\end{array}\right\}
$$

$\left.\begin{array}{l}\text { Amia } f(0.8) \text { and } f(0.9) \text { bie on opposite } \\ \text { sides of the } x \text { axis } \therefore \text { a root lies }\end{array}\right\}$, belwieen 0.8 and 0.9
(ii) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}$

4

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-\frac{1}{x+1} \quad f(x)=x^{3}-\ln (x+1) \\
& f^{\prime}(0.85)=3(0.85)^{2}-\frac{1}{1.85} \quad f(0.85)=(0.85)^{3}-\ln (1.85) \\
& =1.627 \\
& =-0.001 \\
& x_{1}=0.85-\frac{-0.001}{1.627} \\
& =0.851
\end{aligned}
$$

(b)

$$
\left.\begin{array}{rl}
& \frac{d}{d x}\left(\sin ^{-1} x+\cos ^{-1} x\right) \\
= & \frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}} \\
=0
\end{array}\right\} 1
$$

(11) Amice $f^{\prime}(x)=0 \quad \therefore f(x)=C$, a constant. when $x=0, f(0)=\sin ^{-1} 0+\cos ^{-1} 0$

3

$$
=\frac{\pi}{2}
$$

$\therefore f(x)=\sin ^{-1} x+\cos x=\frac{\pi}{2}$.

(c) (1)

$$
\begin{aligned}
T & =T_{0}+C e^{k t} \\
\frac{d T}{d t} & =k c e^{k t} \\
& =k\left(T-T_{0}\right)
\end{aligned}
$$

$$
\therefore T=T_{0}+C e^{k t} \text { is a soln of } \frac{d T}{d t}=k\left(T-T_{i}\right.
$$

(11)

$$
\begin{aligned}
\text { At } t & =0, T=90 \\
t & =3, T=60 \\
T & =T_{0}+C e^{k t} \\
90 & =-20+C e^{\circ} \\
\therefore C & =110 \\
T & =T_{0}+110 e^{k t}
\end{aligned}
$$

$$
T_{0}=-20 .
$$

For $t=3, \quad 60=-20+110 e^{3 k .}$

$$
\left.\begin{array}{l}
80=110 e^{3 k} \\
\therefore \begin{array}{l}
3 k \\
3 k \\
3 k \\
k
\end{array} \\
k=\frac{8}{3}\left(\frac{8}{11}\right) \\
\\
=-0.106 \ldots \\
11 \\
\hline
\end{array}\right\}
$$

(11)

$$
\left.\begin{array}{rl}
\text { At } t & =0, T=60 \\
t & =15, T=? \\
T & =T_{0}+c_{1} e^{k t} \\
60 & =20+c_{1} e^{0} \\
\therefore c_{1}=40 \\
T & =T_{0}+40 e^{k t} \\
T & =20+40 e^{15(-0.106)} \\
& =28^{\circ} \mathrm{c}
\end{array}\right\} 1
$$

$\therefore Q_{3}$
(a).

(3)

$$
\left.x_{p}=\frac{k x_{2}+l x_{1}}{k+l} ; \quad y_{p}=\frac{k y_{2}+l y_{1}}{k+l}\right\}
$$

$$
\left.3=\frac{2 k-1(0)}{k-1} \quad 8=\frac{6 k-2(1)}{k-1}\right\} 1
$$

$$
3 k-3=2 k
$$

$$
\therefore h=3
$$

(b)

(1)

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
x^{2}=4 a y, \\
2 x=4 a y^{\prime} \\
y^{\prime}=\frac{2 x}{4 a}=\frac{2 \cdot 2 a q}{4 a}=q
\end{array}\right\} 1 \\
\text { eq.tangent at } \left.Q: \begin{array}{l}
\frac{y-a q^{2}}{x-2 a q}=q \\
y-a q^{2}=q x-2 a q^{2} \\
y=q x-a q^{2}
\end{array}\right\} 1
\end{array}\right\}
$$

6
(11) Powit of intersection A :

$$
\left.\begin{array}{rl}
y & =q x-a q^{2} \text { and } x=2 a p . \\
\therefore y & =q \cdot 2 a p-a q^{2}=2 a p q-a q^{2}
\end{array}\right\} 1
$$

$\therefore A$ has co-ards $\left.\left[2 a p,\left(2 a p q-a q^{2}\right)\right]\right]$
(iii)

$$
\left.\begin{array}{rl}
\text { Cooonds of } M & \left.: \frac{(2 a p+2 a q}{2}, \frac{a q^{2}+2 a p q-a q^{2}}{2}\right) \\
& =[a(p+q), a p q]
\end{array}\right\}
$$

(111) If $P Q$ is a focal chand $p q=-1\}$,

Now,

$$
\begin{aligned}
x & =a(p+q), y= \\
\therefore y & =a(-1)=-a
\end{aligned}
$$

hocus of M is $y=-a$

(11) No solutions; 2$\} 1$
$\because Q 4$

(1) $\angle A \times C=\alpha+\beta \quad($ ext. L of $\triangle A \times B)\}$,
(11) $\angle P Q B=\angle P A B=\alpha$ (angles at curompler) 4 on same are PB.
(ii) $\angle A Q B=\angle B C A \quad$ (angles on same are $A B)$ $\left.=\angle A B C \quad\left(\mathrm{eq} . \mathrm{Li}_{\Delta}, \operatorname{sis} \Delta A B C\right)\right\} 1$

$=\beta$

(iv) $\angle Y X A=\angle Y Q P=\alpha+\beta$.
$\therefore \quad X Y Q P$ is cyclic (ext L ep int opp L)
(b) $\sqrt{3} \sin 2 \theta-\cos 2 \theta=1 \quad \therefore 0 \leqslant 2 \theta \leqslant 4 \pi>$ $\frac{\sqrt{3}}{2} \sin 2 \theta-\frac{1}{2} \cos 2 \theta=\frac{1}{2}$.

$$
\sin \alpha=\frac{1}{2}
$$

$\sin 2 \theta \cos \alpha-\cos 2 \theta \sin \alpha=\frac{1}{2} . \quad \alpha=\frac{\pi}{6}$. $\sin (2 \theta-\alpha)=\frac{1}{2}$
(3) $\therefore 2 \theta-\frac{\pi}{6}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}$ \}
$2 \theta=\frac{\pi}{3}, \pi, \frac{14 \pi}{6}, \frac{18 \pi}{6}$
$=\frac{\pi}{3}, \pi, \frac{2 \pi}{3}, 3 \pi$
$\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}$.
(c) (1) $\quad \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-2 e^{-x}$

$$
\frac{1}{2} v^{2}=-2 \int e^{-x} d x
$$

$$
=\frac{-2 e^{-x}}{-1}+c
$$

$$
\frac{1}{2} v^{2}=2 e^{-x}+c
$$

at $t=0, x=0, v=2$

$$
\therefore \frac{1}{2} \cdot 4=2 e^{0}+c \text {. }
$$

$$
2=2+c
$$

(2) $\quad \begin{aligned} \therefore c & =0 \\ \frac{1}{2} v^{2} & =2 e^{-x}\end{aligned}$

$$
\begin{aligned}
v^{2} & =4 e^{-x} \\
v & =\sqrt{4 e^{-x}} \\
& =2 e^{-\frac{x}{2}}
\end{aligned}
$$

(11) as $x \rightarrow \infty, v \rightarrow 2 e^{-\frac{\infty}{2}} \rightarrow 0$. as x mereases without bound $v \rightarrow 0$
(d) $x=4 \sin (2 t+3)$ is of form $x=a \sin (n t+\alpha)$
(1) Perucd $\left.T=\frac{2 \pi}{n}=\frac{2 \pi}{2}=\pi_{\text {sec. }}\right\}$,
(ii) $\ddot{x}=-n^{2} x$.

Moxa ace when $x=a$
(3) $\left.\therefore \ddot{x}=-2^{2} \cdot 4=-16 \mathrm{~m} / \mathrm{s}^{2}\right\} 1$
(iii) $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$
$=2^{2}\left(4^{2}-2^{2}\right)$
$=4(12)=48$
$v=\sqrt{48}$
$=4 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Q5

(a) assume $1+3+3^{2}+\ldots+3^{n-1}=\frac{3^{n}-1}{2}$ is +rue. 7
when $n=1, \begin{aligned} & \text { LAS }=1 \\ & \text { R HS }=\frac{3^{\prime}-1}{2}=1\end{aligned}$
\therefore assumphom true for $n=1$
assume $1+3+3^{2}+\cdots+3^{n-1}=\frac{3^{n}-1}{2}$ is true for $n=k$) $\therefore 1+3+3^{2}+\cdots+3^{k-1}=\frac{3^{k-1}}{2}$ is true For $n=k+1$

$$
1+3+3^{2}+\cdots+3^{k-1}+3^{k}=\frac{3^{k}-1}{2}+3^{k}
$$

$$
=\frac{3^{2}}{2}+\frac{2.3^{r}}{2}-\frac{1}{2}
$$

$$
\begin{aligned}
& =\frac{3^{k+1}}{2}-\frac{1}{2} \\
& =\frac{3^{k+1}-1}{2}
\end{aligned}
$$

\therefore statement true for $n=k+1$
Amie soldement is true for $n=1$, it is tricefon $n=2$ Ames element is true for $n=2$, it is hue for $n=3$ and so on.
\therefore statement is hive for all $n \geqslant 1$
(b)

$$
\begin{aligned}
v & =\pi \int_{10-h}^{h} x^{2} d y . \\
& =\pi \int_{10-h}^{h}\left(100-y^{2}\right) d y
\end{aligned}
$$

$\left.(5)=\pi\left[100 y \cdot \frac{y^{3}}{6}\right]_{10-h}^{10}\right\} 1$

$$
\begin{aligned}
& =\pi\left[\left(1000-\frac{10^{3}}{3}\right)-\left[100(10-h)-\frac{(10-h)^{3}}{3}\right]\right. \\
& \left.=\pi\left[1000-1000+100 h+\frac{(10-h}{3}\right)^{3}-\frac{10^{3}}{3}\right] \\
& =\frac{\pi}{3}\left[300 h+(10-h)^{3}-10^{3}\right]
\end{aligned}
$$

$=\frac{\pi}{3}\left[300 h+1000-300 h+30 h^{2}-h^{3}-1000\right]$
$=\frac{\pi}{3}\left[30 h^{2}-h^{3}\right]$
$=\frac{\pi}{3} h^{2}[30-h]$
(11) $\quad V=\frac{\pi}{3}\left(3 o h^{2}-h^{3}\right)$
$\frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t}$
$\frac{d V}{d t}=\frac{\pi}{3}\left(60 h-3 h^{2}\right) \frac{d h}{d t}$.
$2 \pi=\frac{\pi}{3}\left[60(2) \sim 3\left(2^{2}\right)\right] \frac{d h}{d t}$
$6=(120-12) \frac{d h}{d t}$
$6=108 \frac{d h}{d t}$
$\therefore \frac{d h}{d t}=\frac{6}{108}=\frac{1}{18} \mathrm{~cm} / \mathrm{sec}$

$$
\doteq 0.55 \mathrm{~mm} / \mathrm{sec}
$$

(c) (1) $\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)$

$$
=\frac{d}{d x}\left(x \cos ^{-1} x-(1-x)^{2} / 2\right)
$$

$$
\left.=\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}-\frac{1}{2} \frac{(-2 \dot{2})}{\sqrt{1-x^{2}}}\right\}
$$

$\left.\begin{array}{rl}(4) & =\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}+\frac{x}{\sqrt{1-x^{2}}} \\ & =\cos ^{-1} x .\end{array}\right\}$
(ii) $\left.\cos ^{-1} x=\frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)\right)$

$$
\begin{aligned}
\int_{0}^{1} \cos ^{-1} x & \left.=\int_{0}^{1} \frac{d}{d x}\left(x \cos ^{-1} x-\sqrt{1-x^{2}}\right)\right]^{\prime} \\
& =\left[x \cos ^{-1} x-\sqrt{1-x^{2}}\right]_{0}^{1} \\
& =\left(\cos ^{-1} 1-0\right)-(0-1) \\
& =0+1 \\
& =1
\end{aligned}
$$

Qb
(a) (1) Let the roots be α, α, β
sum of roost $\alpha+\alpha+\beta=-\frac{b}{a}$
product paris $\alpha \alpha+\alpha \beta+\alpha \beta=\frac{c}{a} 1 / 2$
product of roose $\alpha \alpha \beta=-\frac{\alpha}{a}$

$$
\begin{aligned}
& 2 \alpha+\beta=\frac{7}{2} \\
& \alpha^{2}+2 \alpha \beta=-\frac{12}{2}=-6 \\
& \alpha^{2} \beta=-\frac{45}{2}
\end{aligned}
$$

From (1) $\quad \beta=\frac{7}{2}-2 \alpha$
From (2) $\alpha^{2}+2 \alpha\left(\frac{1}{2}-2 \alpha\right)=-6$

$$
\alpha^{2}+7 \alpha-4 \alpha^{2}=-6
$$

$$
3 \alpha^{2}-7 \alpha-6=0
$$

(4) $\begin{array}{r}(3 \alpha+2)(\alpha- \\ \therefore \alpha=3,-\frac{2}{3}\end{array}$

$$
\text { as } x \rightarrow 1^{1}, y \rightarrow-\infty
$$

$$
\beta=-\frac{5}{2}, \frac{29}{6}
$$

$$
\cos x \rightarrow-1^{+}, y \rightarrow \infty
$$

$$
\Delta x \rightarrow-1^{-} \quad y \rightarrow-\infty
$$

\therefore possible solus are $3,3,-\frac{5}{2}$ and $-\frac{2}{3}, \frac{-2}{3}, \frac{29}{6}$
$\left.\begin{array}{l}\text { (ii) Substitution of }-\frac{2}{3},-\frac{2}{3}, \frac{29}{6} \text { in } \alpha^{2} \beta>0 \text { mot } \frac{-45}{2} \\ \therefore \text { only roots are } 3,3,-\frac{5}{2}\end{array}\right\}$,
(b) $\left.T_{k+1}={ }^{6} C_{k}\left(x^{2}\right)^{6-k}\left(-2 x^{-1}\right)^{k}\right)$
$\left.\begin{array}{rl} & ={ }^{6} C_{k} x^{12-2 k}(-2)^{k} x^{-k} \\ & ={ }^{6} C_{k}\left(-2^{k}\right) x^{12-3 k}\end{array}\right\}$
Term mode-pendent when $12-3 k=0$

$$
\therefore b=4
$$

$\therefore T_{5}$ required $={ }^{6} C_{4}(-2)^{4}=15 \times 16=240$
(c) $f(x)=-\left(\frac{x}{1-x^{2}}\right)=\frac{-x}{(1+x)(1-x)}$
(1) Sic $(1-x)(1+x) \neq 0$
(3) $\therefore x$ undefined at $x=1,-1$
(1) $\quad f(x)=\frac{-x}{1-x^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(1-x^{2}\right)(-1)-(-x)(-2 x)}{\left(1-x^{2}\right)^{2}} \\
&= \frac{-1+x^{2}-2 x^{2}}{\left(1-x^{2}\right)^{2}} \\
&= \frac{-\left(1+x^{2}\right)}{\left(1-x^{2}\right)^{2}} \\
&\left.<0 \text { sine } 1+x^{2}\right)\left(1-x^{2}\right)^{2}>0 \\
& \text { for all } x, x \neq-1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } x= \\
& \text { as } x \\
& \text { as } x \\
& \text { as } x \\
& \text { as } x
\end{aligned} \text { (d) (1) }
$$

(11)

$$
\left.\begin{array}{ll}
y_{1}=x^{2} & y_{2}=-\frac{1}{2} \ln x \\
y_{1}^{\prime}=2 x & y_{2}^{\prime}=-\frac{1}{2 x}
\end{array}\right\} 1
$$

Let P have abscissa $x=a$

$$
\begin{aligned}
& \therefore m_{1}=2 a \quad m_{2}=-\frac{1}{2 a} . \\
& m_{1} m_{2}=2 a \times-\frac{1}{2 a}=-1 . \\
& \therefore \text { tangents are perp. at } P .
\end{aligned}
$$

- Q 7
- (a). (1)
$a 4$
$b 8$

$$
\left.\begin{array}{rl}
(1+x)^{2 n} & ={ }^{2 n} c_{0}+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\cdots{ }^{2 n} c_{1} x^{n}+\cdots{ }^{2 n} c_{2 n} x^{2 n} \\
& =1+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+\cdots+{ }^{2 n} c_{1} x^{r}+\cdots+x^{2 n}
\end{array}\right\} 1
$$

(ii) When $x=1$

$$
\left.\left.\begin{array}{rl}
2^{2 n} & ={ }^{2 n} c_{0}^{2 n} c_{1}+{ }^{2 n} c_{2}+\cdots{ }^{2 n} c_{n}+\cdots{ }^{2 n} C_{2 n-1}+{ }^{2 n} c_{2 n} \\
& =\left[{ }^{2 n} C_{0}+{ }^{2 n} c_{1}+\cdots+{ }^{2 n} c_{n}\right]-{ }^{2 n} c_{n}+\left[{ }^{2 n} c_{n}+\ldots+{ }^{2 n} c_{2 n}\right] \\
& =2\left[{ }^{2 n} c_{0}+{ }^{2 n} c_{1}+\cdots{ }^{2 n} c_{n}\right]-{ }^{2 n} c_{n} \\
\therefore 2 & {\left[{ }^{2 n} c_{0}+{ }^{2 n} c_{1}+\cdots+{ }^{2 n} c_{n}\right]=2^{2 n}-{ }^{2 n} c_{n}}
\end{array}\right\} 1\right\}
$$

4

$$
2 \sum_{r=0}^{n} C_{r}^{2 n}=2^{2 n}-{ }^{2 n} C_{n}
$$

$$
\left.\begin{array}{rl}
\sum_{r=0}^{n}{ }^{2 n} C_{r} & =2^{2 n-1}-\frac{1}{2}{ }^{2 n} C_{n} \\
& =2^{2 n-1}-\frac{1}{2} \cdot \frac{(2 n)!)}{(n)!(n!)} \\
& =2^{n-1}-\frac{(2 n)!}{2(n!)^{2}}
\end{array}\right\}
$$

(b)
(i)

8

Horizontally

$$
\begin{gathered}
\ddot{x}=0 \\
\therefore \dot{x}: \int 0 d t=c_{1}
\end{gathered}
$$

at $t=0, \dot{x}=v \cos \alpha$

$$
x=\int \dot{x} d t=\int(V \cos \alpha) d t=V t \cos \alpha+c_{\}}
$$

at $t=0, x=0 \quad \therefore c_{2}=0$

$$
x=v t \cos \alpha
$$

Vertically $\ddot{y}=-9$

$$
\dot{y}=-\int g d t=-g t+c_{1}
$$

at $t=0, \dot{y}=r \sin \alpha$

$$
\therefore c_{1}=\operatorname{ran} \alpha
$$

$$
\begin{aligned}
\dot{y} & =-g t+V \sin \alpha \\
y & =\int \dot{y} d t=\int(-g t+V \sin \alpha) d t \\
& =-\frac{1}{2} g t^{2}+V t \sin \alpha+c_{2}
\end{aligned}
$$

at $t=0, y=h . \quad \therefore h=c_{2}$

$$
y=-\frac{1}{2} g t^{2}+v t \sin \alpha+h
$$

(ii) From (1), $t=\frac{x}{v \cos \alpha}$

$$
\left.\begin{array}{rl}
y & =-\frac{1}{2} g\left(\frac{x}{v \cos \alpha}\right)^{2}+v\left(\frac{x}{v \cos \alpha}\right)^{\sin \alpha}+h \\
& =-\frac{1}{2} g \frac{x^{2}}{v^{2} \cos ^{2} \alpha}+x \tan \alpha+h \\
y & =h+x \tan \alpha-\frac{g x^{2}}{2 v^{2} \cos ^{2} \alpha}
\end{array}\right\}
$$

(III) The ball clears the fence when $y \geqslant h, x \geqslant 1$

$$
\begin{gathered}
\therefore \quad h+R \tan \alpha-\frac{g R^{2}}{2 v^{2} \cos ^{2} \alpha} \geqslant h \\
R \tan \alpha-\frac{g R^{2}}{2 v^{2} \cos ^{2} \alpha} \geqslant 0 . \\
\frac{R^{2} g}{2 v^{2} \cos ^{2} \alpha} \leqslant R \tan \alpha \\
\frac{2 v^{2} \cos ^{2} \alpha}{R^{2} g} \geqslant \frac{1}{R \tan \alpha} \\
v^{2} \geqslant \frac{R^{2} g}{R \tan \alpha)\left(2 \cos ^{2} \alpha\right)} \\
V^{2} \geqslant \frac{g R}{2 \tan \alpha \cos ^{2} \alpha} \\
V^{2} \geqslant \frac{g R}{2 \sin \alpha \cos \alpha}
\end{gathered}
$$

(iv) at $C, y=0, x=R+r$

$$
\left.\begin{array}{c}
\therefore 0=h+(R+r) \tan \alpha-\frac{(R+r)^{2} g}{2 v^{2} \cos ^{2} \alpha} \frac{1}{2} \\
-\frac{(R+r)^{2} g}{2 v^{2} \cos ^{2} \alpha}=(R+r) \tan \alpha+h \\
\frac{g}{2 \cos ^{2} \alpha}=v^{2}\left[\frac{\tan \alpha}{(R+r)}+\frac{h}{(R+r)^{2}}\right] \\
\geqslant \frac{g R}{2 \sin \alpha \cos \alpha}\left[\frac{\tan \alpha}{(R+r)}+\frac{h}{(R+r)^{2}}\right] \\
\frac{1}{\cos \alpha} \geqslant \frac{R}{\sin \alpha}\left[\frac{\tan \alpha}{(R+r)}+\frac{h}{(R+r)^{2}}\right]
\end{array}\right\}
$$

$$
\begin{aligned}
& \sin \alpha \\
& \cos \alpha
\end{aligned} \frac{R \tan \alpha}{(R+r)}+\frac{R h}{(R+r)^{2}}, \begin{aligned}
& \tan \alpha-\frac{R \tan \alpha}{R+r} \geqslant \frac{R h}{(R+r)^{2}} \\
& \tan \alpha\left(1-\frac{R}{R+r}\right) \geqslant \frac{R h}{(R+r)^{2}} \\
& \tan \alpha\left[\frac{R+r-R}{R+r}\right] \geqslant \frac{R h}{(R+r)^{2}} \\
& \tan \alpha\left(\frac{r}{R+r}\right) \geqslant \frac{R h}{(R+r)^{2}} \\
& \tan \alpha \geqslant \frac{R h}{r(R+r)}
\end{aligned}
$$

(v) $\quad v^{2} \geqslant \frac{g R}{2 \cos \alpha \sin \alpha}$

$$
\begin{aligned}
2 \sin \alpha \cos \alpha & \geqslant \frac{g R}{r^{2}} \\
\sin 2 \alpha & \geqslant \frac{g R}{r^{2}} \\
& \geqslant \frac{10(80)}{50^{2}}=\frac{800}{2500}=0.32 . \\
\therefore 2 \alpha & \geqslant 18.66^{\circ}, 161.34^{\circ} \\
\alpha & \geqslant 9.33^{\circ}, 80.67^{\circ}
\end{aligned}
$$

Ance closest distance requered
$\alpha=80.67^{\circ}$

$$
\alpha=80.67^{\circ}
$$

$$
\tan \alpha \geqslant \frac{R h}{r(R+r)}
$$

$$
\tan 80.67^{\circ} \geqslant \frac{80(1)}{r(80+r)}
$$

$$
\begin{aligned}
& r^{2}+80 r \geqslant \frac{80}{\tan 80.67} \\
& r^{2}+80 r-13.14 \geqslant 0 \\
& r=\frac{-80 \pm \sqrt{(-80)^{2}-4(1)(-13.14)}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{80 \pm, 80.32}{2} \\
& =\frac{0.32}{2}, \frac{-160.32}{2} \\
& =0.16,-80.16
\end{aligned}
$$

Smice $r>0, r=0.16 \mathrm{~m}$ ie 16 cm beyond B

