The Scots College

2009 Trial HSC Examination

Year 12 Mathematics

Extension 1

General Instructions

-Reading time: 5 mins
-Working time : 2 Hours
-Write using a blue or black pen

- Board approved calculators may be used
- A standard table of integrals is provided
-All necessary working should be shown in every question
- Start each question in a new booklet

Total Marks HSC: 84
Weighting : 40\%
Attempt Questions 1—7
All questions are of equal value
(a) Find $\int \frac{1}{16 x^{2}+1} d x$
(b) Using the substitution $u=x^{3}+3 x$, or otherwise, find

$$
\int\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{-3} d x
$$

(c) Solve $\frac{2}{x-3}<4$.
(d) Evaluate

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{4 \sin 2 x}{3 x} \tag{2}
\end{equation*}
$$

(e) Let A be the point $(-2,-2)$ and let B be the point $(6,10)$. Find the coordinates of the point P which divides the interval $A B$ externally in the ratio 1 : 2 .
(a) Find

$$
\frac{d}{d x}\left(x \sin ^{-1} 3 x\right)
$$

(b) Let $f(x)=2 x^{2}+3 x$. Use the definition

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

to find the derivative of $f(x)$ at the point $x=5$.
(c) Find

$$
\int_{0}^{\pi / 4} \cos ^{2} 5 x d x
$$

(d) Solve the equation

$$
2 \sin ^{2} \theta=9-15 \cos \theta \quad, \quad 0^{0} \leq \theta \leq 360^{\circ}
$$

(e) Use the principle of mathematical induction to show that $x^{n}-y^{n}$ is divisible by $x-y$ when n is a positive integer.
(a)
(i) Show that the equation
$\log _{e} x \times \sec x=1$ has a root between 1 and 2 .
(ii) Using the above and one application of Newton's method find a better approximation of the root of the equation in part (i), leaving your answer correct to three decimal places.
(b) (i) Differentiate $y=5 e^{5 x} \sin x-e^{5 x} \cos x$ with respect to x.
(ii) Hence, or otherwise, find $\int e^{5 x} \sin x d x$.
(c) The figure below is not to scale.

$N P$ is a tangent to the circle with centre 0 and $L M$ is the diameter. If $N M$ bisects the angle LMP, prove that MNP is a right angled triangle.
(d) Find the exact value of $\sin \left(2 \cos ^{-1}\left(\frac{3}{5}\right)\right)$
(a) A curve has parametric equations

$$
x=t-\frac{1}{t} \quad, \quad y=t^{2}+1+\frac{1}{t^{2}}
$$

Find the Cartesian equation for this curve.
(b) (i) Express $3 \sin x-4 \cos x$ in the form $R \sin (x-\alpha)$. Where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(2)
(ii) Hence or otherwise find the general solution of $4 \cos x-3 \sin x=2.5$
(c)

The conical vessel in the diagram is being filled with water at the rate of $10 \mathrm{~cm}^{3} / \min$. The semi-vertical angle of the vessel is 45°. The radius of the water surface is $r \mathrm{~cm}$ at any time t minutes, the perpendicular height is $h \mathrm{~cm}$ and the slant edge is $l \mathrm{~cm}$.
(i) Find the volume V of water in terms of the slant edge $\boldsymbol{\ell}$.
(ii) Find the rate at which the slant edge l is increasing when the radius of the water surface is 7 cm .

Question 5 (12 marks) Start in a SEPARATE booklet

(a) For the function $y=2 \cos ^{-1}(4 x-1)$
(i) State the largest possible domain and range.
(ii) Sketch a neat graph of the function.
(b) Aaron and David roll a die alternately in a game. The first person to roll a 6 wins the game. Aaron rolls first.
(i) What is the probability of Aaron winning in his second roll?
(ii) What is the probability of Aaron winning the game?
(2)
(c) Solve the equation $2 x^{3}-7 x^{2}-x-1=0$, given that the roots are in geometric progression.
(d) If $\cos (2 \sin x)=\sin (2 \cos x)$, then show that

$$
\sin x \pm \cos x=n \pi \pm \frac{\pi}{4}
$$

(a)

$P\left(2 a t, a t^{2}\right)$ is any point on the parabola $x^{2}=4 a y$.
(i) show that the equation of the Normal at P is

$$
y=a t^{2}+2 a-\frac{x}{t}
$$

(ii) Q is another point on the parabola such that the Normals at P and Q are at right angles to each other and intersect at K. Find the coordinates of the point Q in terms of t.
(iii) Show that the coordinates of K are

$$
x=a t-\frac{a}{t} \quad \text { and } y=a t^{2}+a+\frac{1}{t^{2}}
$$

Question 6 continued

\qquad
(b) The time is 10:20 a.m. and Arun has just finished making two cups of coffee which have a temperature of $95{ }^{\circ} \mathrm{C}$. The coffees are loosing heat according to Newton's law of cooling $\frac{d T}{d t}=-k(T-20)$ where T is the temperature of the coffee in degrees Celsius after t minutes, k is a positive constant and the temperature of the room is $20^{\circ} \mathrm{C}$.
(i) Show that $T=20+75 e^{-k t}$ is a solution of the equation.
(ii) At 10:30 a.m. the coffees have cooled to $75^{\circ} C$. Find the value of k to two decimal places.
(iii) The second cup of coffee is for Lawrie who will drink it as long as its temperature is not less than $60^{\circ} \mathrm{C}$. What is the latest time that he could arrive to drink his coffee?
(a) In a scientific cloud seeding experiment a projectile is fired from O with a velocity V at angle of θ to level ground. The cloud is at a height h above the ground. The projectile returns to the ground at a horizontal distance of Z metres.

The equations of motion of the projectile are

$$
x=V t \cos \theta, \quad y=-\frac{1}{2} g t^{2}+V t \sin \theta
$$

(You are NOT Required to prove the above equations)
(i) Show that when the projectile returns to the ground level

$$
Z=\frac{V^{2} \sin 2 \theta}{g} \text { metres. }
$$

(ii) If the projectile MUST pass through the cloud twice then show that

$$
h<\frac{V^{2} \sin ^{2} \theta}{2 g}
$$

(iii) Consider $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, \quad \theta=60^{\circ}, \quad V=320 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $h=3000 \mathrm{~m}$. Find the times at which the projectile passes through the clouds. Leave your answer correct to one decimal.
(iv) Find the horizontal distance covered between the two times found in part (iii).

Question 7 continued.........

(b) A particle is moving so that $\ddot{x}=32 x^{3}-48 x^{2}+16 x$ Initially the velocity is $24 \mathrm{~m} / \mathrm{s}$ and $x=3$ metres.
(i) Show that $v^{2}=16 x^{2}(x-1)^{2}$
(ii) Hence or otherwise show that

$$
\begin{equation*}
\int \frac{1}{x(x-1)} d x=4 t, \text { where } t \text { is time elapsed. } \tag{2}
\end{equation*}
$$

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x+C, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE : $\ln x \equiv \log _{e} x, x>0$

$$
=\frac{1}{16} \int \frac{1}{x^{2}+\left(\frac{1}{4}\right)^{2}} d x
$$

$$
=\frac{1}{16} \times \frac{1}{1 / 4} \tan ^{-1}(4 x)+c
$$

$$
=\frac{1}{4} \tan ^{-1}(4 x)+c
$$

$$
\text { (b) } \begin{aligned}
\int\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{-3} d x & \begin{aligned}
u & =x^{3}+3 x \\
\frac{d u}{d x} & =3 x^{2}+3 \\
d x & =\frac{d u}{3\left(x^{2}+1\right)}
\end{aligned}
\end{aligned}
$$

$$
\therefore \int\left(x^{2} f(1) u^{-3} \frac{d u}{3\left(x^{2}+1\right)}\right.
$$

$$
\Rightarrow \quad \frac{1}{3} \frac{u^{-2}}{(-2)}+c
$$

$$
\Rightarrow-\frac{1}{6\left(x^{3}+3 x\right)}+c
$$

(c) $\frac{2}{x-3}<4$

$$
2(x-3)<4(x-3)^{2}
$$

$$
4(x-3)^{2}-2(x-3)>0
$$

$$
2(x-3)[2(x-3)-1]>0
$$

$$
2(x-3)(2 x-7)>0
$$

$$
x<3 \text { or } x>\frac{7}{2}
$$

(d) $\lim _{x \rightarrow 0} 4 \frac{\sin 2 x}{3 x}$

$$
\begin{aligned}
& =\frac{4}{3} \times 2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \\
& =\frac{8}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \begin{array}{l}
m: n \\
1:-2 \\
(-2,-2) \quad(6,10) \\
\frac{m x_{2}+n x_{1}}{m+n} \quad \frac{m y_{2}+n y_{1}}{m+n} \\
\frac{1(6)-2(-2)}{1-2} \quad \frac{1(10)-2(-2)}{1-2} \\
=-10 \quad=-14 \\
(-10,-14)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q. } 2 \\
& \text { (a) } \frac{d}{d x}\left(x \sin ^{-1} 3 x\right) \\
& =\sin ^{-1} 3 x(1)+x \frac{1}{\sqrt{1-9 x^{2}}}(3) \\
& =\sin ^{-1} 3 x+\frac{3 x}{\sqrt{1-9 x^{2}}} \\
& \text { (b) } \quad f(a)=2 a^{2}+3 a \\
& \begin{aligned}
f(a+h) & =2(a+h)^{2}+3(a+h) \\
& =2 a^{2}+4 a h+2 h^{2}+3 a
\end{aligned} \\
& =2 a^{2}+4 a h+2 h^{2}+3 a+3 h \\
& f^{\prime}(a)=\frac{2 h^{2}+4 a h+2 h^{2}+3 h a h-3 h-2 h^{2}+3 / a}{h} \\
& =4 a+3 \text {. } \\
& \text { Q. } 2 \\
& \begin{aligned}
\frac{d}{d x} & \left(x \sin ^{-1} 3 x\right) \\
& =\sin ^{-1} 3 x(1)+x \frac{1}{\sqrt{1-9 x^{2}}}(3) \\
& =\sin ^{-1} 3 x+\frac{3 x}{}
\end{aligned} \\
& f^{\prime}(5)=4 \times 5+3=23 \\
& \text { (c) } \int_{0}^{\pi / 4} \cos ^{2} 5 x d x \\
& \begin{array}{l}
\int_{0}^{\pi / 4} \frac{1}{2}+\frac{1}{2} \cos 10 x d x . \\
{\left[\frac{1}{2} x+\frac{1}{2} \sin 10 x \times 10\right]_{0}^{\pi / 4} .}
\end{array} \\
& {\left[\frac{x}{2}+5 \sin 10 x\right]_{0}^{\pi / 4}} \\
& \frac{\pi}{8}+5 \sin \frac{5}{2} \pi-0-5 \times 0 \\
& \frac{\pi}{8}+5 \sin \frac{5 \pi}{2} \\
& \text { (d) } 2 \sin ^{2} \theta=9-15 \cos \theta \\
& 2\left(1-\cos ^{2} \theta\right)=9-15 \cos \theta \\
& 2-2 \cos ^{2} \theta=9-15 \cos \theta \\
& 2 \cos ^{2} \theta-15 \cos \theta+7=0 \\
& (2 \cos \theta-1)(\cos \theta-7)=0 \\
& \cos \theta=\frac{1}{2} \text { or } \cos \theta=7 \\
& 60^{\circ}, 300^{\circ}
\end{aligned}
$$

Q. 2
(e)
$x^{n}-y^{n}$ is diviseble -ky $x-y$
(a) for $n=1 \quad x-y$ is divsuible by $x-y$
\therefore Truce for $n=1$
(6) Assume thit it is Airue for $n=k$ 1e. $x^{k}-y^{k}$ is divrsitile ky $x-y$ (hypothios)
conisiber $x^{k+1}-y^{k+1}=x^{k} \cdot x-y^{k} \cdot y$

$$
=x^{k} \cdot x-x^{k} \cdot y+x^{k} \cdot y-y^{k} \cdot y \quad *
$$

$$
=x^{k}(x-y)+y\left(x^{k}-y^{k}\right)
$$

The first term is dwisisble by $(x-y)$
The $2^{\text {nol }}$ term is duviacible ky $(x-y)$ the to statiment/assecnption -(1).
ie. $x^{k+1}-y^{k+1}$ is divisible by $x-y$
(c) Hence by the principle of mathermatial induction
it "s tirue for all positive integral values of n.
Q. 3.
(a) If $f(x)=\cos x-\log _{e} x$

Assume $x_{0}=1.5$.

$$
\begin{aligned}
f^{\prime}(x) & =-\sin x-\frac{1}{x} \\
x_{1} & =x_{0}-\frac{f^{(1.5)}}{f^{\prime}(1.5)} \\
& =1.5-\frac{(-0.3347)}{-1.6642} \\
& =1.29888 \\
& =1.299
\end{aligned}
$$

If. $f(x)=\log _{e} x \sec x-1=$

$$
\begin{aligned}
f^{\prime}(x) & =\log _{e} x \sec x \tan x+\sec x \cdot \frac{1}{x} \\
x_{0} & =1.5 \\
x_{1} & =1.5-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =1.5-\frac{4.73}{90.25} \\
& =1.4476 \\
& =1.448
\end{aligned}
$$

(b)

Construet $L N$

Let $\angle \angle M N=\angle N M P=x \quad[$ givian $]$
$\angle L N M=90^{\circ}$ (Angle in a $\begin{gathered}\text { Semnicorice) }\end{gathered}$
$\angle L N Q=\angle N M L=x$ (ABt. Seq. \& . Tarigelt \#hemen)
$\angle P N M=180-(90+x)$
$\Rightarrow \angle P N M=90-x$

IN triangle MNP
$\angle M P N=90^{\circ}$

$$
\because \text { sum of angles in a }
$$

$$
\left.\begin{array}{cc}
=90^{\circ} \quad \text { trucengle is } 180 . \\
(\not 2 y+90-2 x+\angle M P N=180) \\
\angle M P N=90^{\circ}
\end{array}\right) .
$$

Hence proved.

(d) $\quad \sin \left(2 \cos ^{-1}\left(\frac{3}{5}\right)\right)$

$\sin 2 \theta=2 \sin \theta \cos \theta$
$=2 \times \frac{4}{5} \times \frac{3}{5}$
$=\frac{24}{25}$
(a)

$$
\begin{aligned}
& x=t-\frac{1}{t}, y=t^{2}+1+\frac{1}{t^{2}} \\
& y=t^{2}-2 t \times \frac{1}{t}+\frac{1}{t^{2}}+11+2 \\
& y=\left(t-\frac{1}{t}\right)^{2}+3 \\
& y=x^{2}+3 \\
& \text { (b) (i) } \begin{aligned}
3 \sin x-4 \cos x & =R \sin (x-\alpha) \\
& =R \sin x \cos \alpha-R \cos x \sin \alpha
\end{aligned} \\
& y
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow R \cos \alpha & =3 \\
-R \sin \alpha & =-4
\end{aligned}
$$

$$
R^{2}=3^{2}+4^{2}
$$

$$
R= \pm 5
$$

$$
\frac{5}{3}
$$

$$
\text { (2) } \div(1) \Rightarrow \tan \alpha=\frac{4}{3}
$$

$$
\alpha=\tan ^{-1}\left(\frac{4}{3}\right)=0.93^{\circ} \quad\left[53^{\circ} 8^{\prime}\right]
$$

$$
\therefore 3 \sin x-4 \cos x=5 \sin \left(x-\tan ^{-1}(4 / 3)\right)
$$

(ii) $-5 \sin \left(x-\tan ^{-1}(4 / 3)\right)=2.5$

$$
\begin{aligned}
& \sin \left(x-\tan ^{-1}(4 / 3)\right)=-1 / 2 \\
& \sin \left(x-\tan ^{-1}(4 / 3)\right)=-\sin (1 / 2)
\end{aligned}
$$

$$
x-\tan ^{-1}(4 / 3)=n \pi+(-1)^{n}\left(-\sin ^{-1}(1 / 2)\right)
$$

$$
x=n \pi+\tan ^{-1}(4 / 3)+(-1)^{n}\left(-\sin ^{-1}(1 / 2)\right)
$$

$$
\begin{aligned}
& \text { (c) } h=r \text { since semiverticil angle }=45^{\circ} \\
& \left.\begin{array}{l|l}
l^{2}=\hbar^{2}+r^{2} \\
l^{2}=2 r^{2} \\
r=l / \sqrt{2}
\end{array} \right\rvert\, \begin{array}{l}
\frac{d V}{d t}=\frac{d V}{d l} \times \frac{d l}{d t} \\
\end{array} \\
& r=l / \sqrt{2} \\
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{3} \\
& =\frac{1}{3} \pi\left(\frac{l}{\sqrt{2}}\right)^{3} \\
& \frac{d W}{d l}=\frac{\pi e^{2}}{2^{3 / 2}}
\end{aligned}
$$

(a) $\quad y=2 \cos ^{-1}(4 x-1)$
$\frac{y}{2}=\cos ^{-1}(4 x-1)$
(i) Somain: $-1 \leq 4 x-1 \leq 1$

$$
0 \leq 4 x \leq 2
$$

$$
0 \leq x \leq \frac{1}{2}
$$

Range : $\quad 0 \leqslant \frac{y}{2} \leq \pi$
$0 \leqslant y \leqslant 2 \pi$
(ii)

(b)
(i) P (Aoron wrining in the $\left.2^{\text {nd Roll }}\right)=\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=\frac{25}{216}$
(ii) P (Aaron winning) $=\frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\cdots \cdots$

$$
\begin{aligned}
& a=\frac{1}{6} \quad r=\left(\frac{5}{6}\right)^{2} \\
& s=\frac{a}{1-r} \\
&=\frac{1 / 6}{1-\left(\frac{5}{6}\right)^{2}}=\frac{1 / 6}{\frac{36-25}{36}}=\frac{1 / 6}{11 / 36} \\
&=\frac{1}{6} \times \frac{36}{11} \\
&=\frac{6}{11}
\end{aligned}
$$

Q. (5) Method 1
$2 x^{3}-7 x^{2}+7 x-2=0$
Let α, β, γ be the roots.
$\therefore \frac{\beta}{\alpha}=\frac{\gamma}{\beta}=\gamma \quad$ [G.P].

$$
\beta^{2}=\alpha \gamma-0
$$

$$
\text { Also } \alpha+\beta+\gamma=\frac{7}{2} \text { - (2) }
$$

$$
\alpha \beta+\alpha \gamma+\beta \gamma=\frac{7}{2}-(3)
$$

$$
\begin{equation*}
\alpha \beta \gamma=1 \tag{4}
\end{equation*}
$$

$\alpha \beta+\beta^{2}+\beta \gamma=\frac{7}{2}[\sin$ (1) in (3)
$\beta(\alpha+\beta+\gamma)=\frac{7}{2}$ $\beta\left(\frac{7}{2}\right)=\frac{7}{2} \quad[$ subbing (2).

$$
\beta=1
$$

$$
\begin{aligned}
\beta=1 \\
\therefore \quad \alpha \gamma=1 \quad[\operatorname{sub} \beta=1 \text { in }(4)
\end{aligned}
$$

$$
\gamma=\frac{1}{\alpha}
$$

use this info. in (2) $\alpha+1+\frac{1}{\alpha}=\frac{7}{2}$. $2 \alpha^{2}-5 \alpha+2=0$ $(2 \alpha-1)(\alpha-2)=0$

$$
\alpha=\frac{1}{2} \text { or } \alpha=2
$$

When $\alpha=\frac{1}{2} \quad \gamma=2$
$\alpha=2 \quad 8=\frac{1}{\alpha}$.
Answer: $\frac{1}{2}, 1,2$ or $2,1,1 / 2$.

Werthod 2
Let the roots be

$$
\begin{aligned}
& \frac{\alpha}{\gamma}, \alpha, \gamma \alpha . \\
& \dot{\theta} \frac{\alpha}{\gamma}+\alpha+\gamma \alpha=\frac{7}{2}-(1)
\end{aligned}
$$

$$
\frac{\alpha}{\gamma} \alpha+\frac{\alpha}{\gamma} \times \gamma \alpha+\alpha \gamma \alpha=\frac{7}{2}-(2)
$$

$$
\frac{\alpha}{\gamma} \times \alpha \times \gamma \alpha=1 \text { - (3) }
$$

$$
\alpha^{3}=1
$$

$$
\alpha=1
$$

$$
\text { sub } \alpha=1 \text { in (1). }
$$

$$
\begin{aligned}
& \frac{1}{r}+1+r=\frac{7}{2} \\
& 2 r^{2}-5 r+2=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 r^{2}-5 r+2=0 . \\
&
\end{aligned}
$$

$$
\begin{aligned}
& (2 r-1)(r-2)=0 \\
& r-1 \quad a r=2 .
\end{aligned}
$$

$$
r=\frac{1}{2} \quad \text { ar } \quad r=2
$$

$$
\begin{aligned}
& \text { If } r=\frac{1}{2} \quad \text { the rorts are } 2,1, \frac{1}{2} \text {. } \\
& \text { If } r=2 \quad \text { the roots are } \frac{1}{2}, 1,2 \text {. }
\end{aligned}
$$

5(d)
$\cos (2 \sin x)=\sin (2 \cos x)$
$\cos (2 \sin x)=\cos (\pi / 2-2 \cos x)$
$2 \sin x=2 n \pi \pm\left(\frac{\pi}{2}-2 \cos x\right) \begin{gathered}\text { eisenal } \\ \text { solution }\end{gathered}$
$2 \cdot \sin x=2 n \pi \pm \frac{\pi}{2} \mp 2 \cos x$
$2 \sin x \pm 2 \cos x=2 n \pi \pm \frac{\pi}{2}$
$\sin x \pm \cos x=r \pi \pm \frac{\pi}{4}$
$\sqrt{2} \sin \left(x \pm \frac{\pi}{4}\right)=n \pi \pm \frac{\pi}{4}$

$$
\sin \left(x \pm \frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\left(n \pi \pm \frac{\pi}{4}\right)
$$

96
(a) (i)

$$
\begin{aligned}
& x^{2}=4 a y \quad P\left(2 a t, a t^{2}\right) \\
& y=\frac{z^{2}}{4 a} \\
& \frac{d y}{d x}=\frac{x}{2 a .}
\end{aligned}
$$

at $x=2$ at gradient $=\frac{2 a t}{2 a}=t$ for the tangent at P.
grackient of Normal is $-\frac{1}{t}$
\therefore equation of Normal (PK) is

$$
\begin{align*}
& y-a t^{2}=-\frac{1}{t}(x-2 a t) \\
& y-a t^{2}=-\frac{x}{t}+2 a . \\
& y=a t^{2}+2 a-\frac{x}{t} \tag{1}
\end{align*}
$$

(ii) Let the point Q be ($2 a q, a{ }^{2}$)
\therefore The gradicit of Normal at Q is $-\frac{1}{q}$.
This normal is perpendicular to PK

$$
\begin{gathered}
\therefore \quad-\frac{1}{q} \times-\frac{1}{t}=-1 \\
\Rightarrow \quad q=-\frac{1}{t}
\end{gathered}
$$

\therefore The coorctinates of Q are $\left(2 a\left(-\frac{1}{t}\right), a\left(-\frac{1}{t}\right)^{2}\right)$

$$
\left(-\frac{2 a}{t}, \frac{a}{t^{2}}\right) .
$$

(iii) Funnel equation QK and solve QK \& PK simultumionoly.

Gradient of $P K=-\frac{1}{t}$
Gradient of $Q K=t \quad(\because$ it \perp to $P K)$.
Equation of $Q R$ is

$$
\begin{align*}
& y-\frac{a}{t^{2}}=t\left(x+\frac{2 a}{t}\right) \\
& y=t x+2 a+\frac{a}{t^{2}} \tag{2}
\end{align*}
$$

Q. 6 (a) cont:-:
(iii) Solving (1) \& (2)

$$
\begin{aligned}
a t^{2}+2 a-\frac{x}{t} & =t x+2 a+\frac{a}{t^{2}} \\
a t^{4}+2 a t^{2}-x t & =x t^{3}+2 a t^{2}+a \\
x t^{3}+x t & =a t^{4}-a \\
x\left(t^{3}+t\right) & =a\left(t^{4}-1\right) . \\
x & =a \cdot \frac{\left(t^{2}+1\right)\left(t^{2}-1\right)(t+1)}{t\left(t^{2}+1\right)} \\
& =\frac{a\left(t^{2}-1\right)}{t} \\
x & =a\left(t-\frac{1}{t}\right)
\end{aligned}
$$

substituting this in (2)

$$
\begin{aligned}
y & =t a\left(t-\frac{1}{t}\right)+2 a+\frac{a}{t^{2}} \\
& =a t^{2}-a+2 a+\frac{a}{t^{2}} \\
y & =a t^{2}+a+\frac{a}{t^{2}}
\end{aligned}
$$

(iii) $60^{\circ}=20^{\circ}+75 e^{-k t}$

$$
\frac{40}{75}=e^{-k t}
$$

$$
\ln \left(\frac{40}{75}\right)=-k t
$$

$$
t=-\frac{1}{k} \ln \left(\frac{40}{75}\right)
$$

$$
=\frac{\ln (40 / 75)}{\frac{1}{L_{0}} \ln (1 / 15)}
$$

$=20.26$ minulté
Lawrie should arrive on ar before 10:40:17 a.m.
(a)
(i) $x=v t \cos \theta$
$y=-\frac{1}{2} g t^{2}+v t \sin \theta$
$y=0$ whin the projertite heturns to ghnound at Z
$\Rightarrow \quad v t \sin \theta=\frac{1}{2} g t^{2}$ $t\left(1 \sin \theta-\frac{1}{2} g t\right)=0$

$\because R \quad v \sin \theta-\frac{1}{2} g t=0$
$\therefore \quad t=\frac{2 v \sin \theta}{g}$
And $z=x=v\left(\frac{2 v \sin \theta}{g}\right) \cos \theta$
$=\frac{v^{2} 2 \sin \theta \cos \theta}{g}$
$=\frac{v^{2} \sin 2 \theta}{g}$

$$
\begin{aligned}
& \text { (ii) When } y=h \\
& h=-\frac{1}{2} g t^{2}+r t \sin \theta \\
& 2 h=-g t^{2}+2 r \sin \theta . \\
& g t^{2}-2 r t \sin \theta+2 h=0 \quad \text { [quabuatic in } t \text {]. } \\
& t=\frac{2 r \sin \theta \pm \sqrt{4 r^{2} \sin ^{2} \theta-4 g 2 h}}{2 g}=\text { (1) }
\end{aligned}
$$

to perss thurght the clonds twice t mort have two distinct values.

$$
\begin{array}{r}
4 v^{2} \sin ^{-2} \theta-4 g 2 h>0 \\
v^{2} \sin ^{2} \theta-2 g h>0 \\
v^{2} \sin ^{2} \theta>2 g h \\
h<\frac{v^{2} \sin ^{2} \theta}{2 g}
\end{array}
$$

$$
\begin{aligned}
& \text { Q. } 6 . \\
& \text { (b) (i) } T=20^{\circ}+75 e^{-k t} \\
& \frac{d T}{d t}=75 e^{-k t} x-k \\
& =-k 75 e^{-k t} \\
& =-k(T-20) \\
& \text { (ii) } T=20^{\circ}+75 e^{-k t} \\
& 75^{\circ}=20^{\circ}+75 e^{-10 k} \\
& \frac{55}{75}=e^{-10 k} \\
& \ln \frac{71}{15}=-10 k \\
& k=-\frac{1}{10} \ln \left(\frac{11}{15}\right) \\
& =0.03
\end{aligned}
$$

```
tyex
    (a)
        (iii) From equatioic (1) in part (ii)
            t=\frac{2v\operatorname{sin}0\pm\sqrt{}{4\mp@subsup{v}{}{2}\mp@subsup{\operatorname{sin}}{}{2}0-4g2h}}{2g}
            t=\frac{v\operatorname{sin}0\pm\sqrt{}{\mp@subsup{v}{}{2}\mp@subsup{\operatorname{sin}}{}{2}0-2gh}}{g}
            t=\frac{320\times\sqrt{}{3}/2 \pm\sqrt{}{320\times3/4-2\times10\times3000}}{10}
            = 277.13\pm129.6
            t1 = 14.8 t2 = 40.67
    (iv) }\quad\mp@subsup{x}{1}{}=320\times14.8\times\operatorname{cos}6
        \mp@subsup{x}{2}{}}=320\times40.67\times\operatorname{cos}6
        \mp@subsup{x}{2}{}-\mp@subsup{x}{1}{}=320\times\operatorname{cos}60(40.67-14.8)
            =4,139.2 m
Q.7 (b) (i) }\ddot{x}=\frac{d}{dx}(\frac{1}{2}\mp@subsup{v}{}{2})=32\mp@subsup{x}{}{3}-48\mp@subsup{x}{}{2}+\frac{16\mp@subsup{x}{}{2}}{m
```



```
                        24}\mp@subsup{4}{}{2}=16\times\mp@subsup{3}{}{4}-32\times\mp@subsup{3}{}{3}+16\times\mp@subsup{3}{}{2}+
    x=3,v=24
        \therefore\quadv v}=16\mp@subsup{x}{}{4}-32\mp@subsup{x}{}{3}+16\mp@subsup{x}{}{2
        \frac{dx}{dt}=v=>\frac{dt}{dx}=\frac{1}{v}\quad\int\frac{dt}{dx}dp=\int\frac{1}{4x(x-1)}dx
```


