The Scots College

2009 Trial HSC Examination

Year 12 Mathematics

Extension 1

General Instructions •Reading time: 5 mins •Working time : 2 Hours •Write using a blue or black pen •Board approved calculators may be used •A standard table of integrals is provided •All necessary working should be shown in every

questionStart each question in a new booklet

Total Marks HSC: 84 Weighting : 40% Attempt Questions 1—7 All questions are of equal value

Question 1 (12 marks) Start in a SEPARATE booklet

(a) Find
$$\int \frac{1}{16 x^2 + 1} dx$$
 (2)

(b) Using the substitution
$$u = x^3 + 3x$$
, or otherwise, find (3)

$$\int (x^2 + 1)(x^3 + 3x)^{-3} dx$$

(c) Solve
$$\frac{2}{x-3} < 4$$
. (3)

$$\lim_{x \to 0} \frac{4 \sin 2x}{3x}$$

(e) Let A be the point (-2, -2) and let B be the point (6, 10). Find the (2) coordinates of the point P which divides the interval AB externally in the ratio 1 : 2.

Marks

Question 2 (12 marks) Start in a SEPARATE booklet

(a) Find

(c)

$$\frac{d}{dx} (x \sin^{-1} 3x)$$

Let $f(x) = 2x^2 + 3x$. Use the definition (b)

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

to find the derivative of f(x) at the point x = 5.

Find (3) $\int_0^{\pi/4} \cos^2 5x \ dx$

 $2\sin^2\theta = 9 - 15\cos\theta$, $0^0 \le \theta \le 360^0$

Use the principle of mathematical induction to show that $x^n - y^n$ is divisible by (3) (e) x - y when *n* is a positive integer.

Marks

(2)

(2)

(a)	(i) Show that the equation lo has a root between 1 and 2.	$\log_e x \times \sec x = 1$	(1)
	(ii) Using the above and one application of Newton's method find a better approximation of the root of the equation in part (i), leaving your answer correct to three decimal places.		(3)
(b)	(i) Differentiate $y = 5e^{5x} \sin x -$	$e^{5x}\cos x$ with respect to x .	(2)

		(1)
(ii) Hence, or otherwise, find	$\int e^{5x} \sin x dx$.	(-)

(c) The figure below is not to scale.

NP is a tangent to the circle with centre 0 and LM is the diameter. If NM bisects the angle LMP, prove that MNP is a right angled triangle.

(d) Find the exact value of $\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$ (2)

0 4 1

(3)

Marks

Question 3 (12 marks) Start in a SEPARATE booklet

Question 4 (12 marks) Start in a SEPARATE booklet

(a) A curve has parametric equations

 $x = t - \frac{1}{t}$, $y = t^2 + 1 + \frac{1}{t^2}$

Find the Cartesian equation for this curve.

(b) (i) Express
$$3\sin x - 4\cos x$$
 in the form $R\sin(x - \alpha)$. (3)
Where $R > 0$ and $0 < \propto < \frac{\pi}{2}$.

(ii) Hence or otherwise find the general solution of
$$4\cos x - 3\sin x = 2.5$$

(c)

The conical vessel in the diagram is being filled with water at the rate of $10 \ cm^3/_{min}$. The semi-vertical angle of the vessel is 45^o . The radius of the water surface is $r \ cm$ at any time t minutes, the perpendicular height is $h \ cm$ and the slant edge is $l \ cm$.

(i) Find the volume V of water in terms of the slant edge ℓ .

(ii) Find the rate at which the slant edge l is increasing when the radius of the water surface is 7 cm.

(2)

(3)

Marks

(2)

(2)

Question 5 (12 marks) Start in a SEPARATE booklet		
(a)	For the function $y = 2 \cos^{-1}(4x - 1)$	
	(i) State the largest possible domain and range.	(2)
	(ii) Sketch a neat graph of the function.	(2)
(b)	Aaron and David roll a die alternately in a game. The first person to roll a 6 wins tl game. Aaron rolls first.	ne
	(i) What is the probability of Aaron winning in his second roll?	(1)
	(ii) What is the probability of Aaron winning the game?	(2)

(c) Solve the equation $2x^3 - 7x^2 - x - 1 = 0$, given that the roots are in (3) geometric progression.

(d) If $\cos(2\sin x) = \sin(2\cos x)$, then show that (2)

 $\sin x \pm \cos x = n\pi \pm \frac{\pi}{4}$

(a)

 $P(2at, at^2)$ is any point on the parabola $x^2 = 4ay$.

(i) show that the equation of the Normal at P is

$$y = at^2 + 2a - \frac{x}{t}$$

(ii) Q is another point on the parabola such that the Normals at P and Q are at right angles to each other and intersect at K. Find the coordinates of the point Q in terms of t. (2)

(iii) Show that the coordinates of K are

$$x = at - \frac{a}{t}$$
 and $y = at^2 + a + \frac{1}{t^2}$.

Marks

(3)

(2)

Question 6 continued.....

(b) The time is 10:20 a.m. and Arun has just finished making two cups of coffee which have a temperature of 95 ${}^{o}C$. The coffees are loosing heat according to Newton's law of cooling $\frac{dT}{dt} = -k(T-20)$ where T is the temperature of the coffee in degrees Celsius after t minutes, k is a positive constant and the temperature of the room is 20 ${}^{o}C$.

(i) Show that $T = 20 + 75 e^{-kt}$ is a solution of the equation.	(1)
--	-----

(ii) At 10:30 a.m. the coffees have cooled to 75 o C. Find the value of k to two (2) decimal places.

(iii) The second cup of coffee is for Lawrie who will drink it as long as its (2) temperature is not less than 60° C. What is the latest time that he could arrive to drink his coffee?

Question 7 (12 marks) Start in a SEPARATE booklet

(a) In a scientific cloud seeding experiment a projectile is fired from O with a velocity V at angle of θ to level ground. The cloud is at a height h above the ground. The projectile returns to the ground at a horizontal distance of Z metres.

The equations of motion of the projectile are

$$x = Vtcos\theta$$
, $y = -\frac{1}{2}gt^2 + Vtsin\theta$

(You are NOT Required to prove the above equations)

(i) Show that when the projectile returns to the ground level (2)

$$Z = \frac{V^2 \sin 2\theta}{g} \quad metres.$$

(ii) If the projectile MUST pass through the cloud twice then show that (2)

$$h < \frac{V^2 \sin^2 \theta}{2g}$$

- (iii) Consider $g = 10\frac{m}{s^2}$, $\theta = 60^\circ$, $V = 320\frac{m}{s}$ and h = 3000 m. (2) Find the times at which the projectile passes through the clouds. Leave your answer correct to one decimal.
- (iv) Find the horizontal distance covered between the two times found in (2) part (iii).

Question 7 continued......

(b) A particle is moving so that $\ddot{x} = 32x^3 - 48x^2 + 16x$ Initially the velocity is 24 m/s and x = 3 metres.

(i) Show that
$$v^2 = 16x^2 (x-1)^2$$
 (2)

(ii) Hence or otherwise show that

(2)

 $\int \frac{1}{x(x-1)} dx = 4t$, where *t* is time elapsed.

Standard Integrals

 $= \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; x \neq 0, \text{ if } n < 0$ $\int x^n dx$ $\int \frac{1}{r} dx$ $= \ln x + C, \quad x > 0$ $=\frac{1}{a}e^{ax}+C, a \neq 0$ $\int e^{ax} dx$ $\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax + C, \ a \neq 0$ $\int \sin ax \, dx \qquad \qquad = -\frac{1}{\alpha} \cos ax + C, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad \qquad = \frac{1}{a} \tan ax + C, \ a \neq 0$ $\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax + C, \quad a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - r^2}} dx = \sin^{-1} \frac{x}{a} + C, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right) + C, \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$

NOTE : $\ln x \equiv \log_e x$, x > 0

YR 12 HSC ExTI TRIAL

Solution
(a)
$$\int \frac{1}{18x^{2+1}} dx = \frac{1}{16} \int \frac{1}{x^{2} + 1/2} dx = \frac{1}{16} \int \frac{1}{x^{2} + 1/2} dx = \frac{1}{16} x \frac{1}{1/4} + \frac{1}{4} \tan^{-1}(4x) + c = \frac{1}{4} \tan^{-1}(4x) + c$$

$$= \frac{1}{4} \tan^{-1}(4x) + c$$
(b)
$$\int (x^{2}+1)(x^{2}+3x)^{-3} dx = \frac{1}{4x} = \frac{3}{4x} + \frac{3}{4x} + \frac{3}{4x} = \frac{3}{4x} + \frac{3}{4x} + \frac{3}{4x} = \frac{3}{4x} + \frac{3}{4x} + \frac{3}{4x} = \frac{3}{4x} + \frac{3}{4x} +$$

 $\lim_{x \to 0} \frac{4 \frac{3in 2x}{3x}}{3x}$

= 8

(d)

,

.

•

$$= \frac{1}{16} \times \frac{1}{16} \tan^{-1}(4x) + c$$

$$= \frac{1}{4} \tan^{-1}(4x) + c$$

$$= \frac{1}{4} \tan^{-1}(4x) + c$$

$$(x^{2}+i)(x^{3}+3x)^{-3} dx$$

$$u = x^{3}+3x$$

$$\frac{du}{dx} = 3x^{2}+3$$

$$\frac{du}{dx} = \frac{du}{dx^{2}+i}$$

$$dx = \frac{du}{3(x^{2}+i)}$$

$$\int \frac{1}{(x^{2}+i)} \frac{u^{-2}}{x^{2}} + c$$

$$\frac{1}{5(-2)} + c$$

$$\frac{1}{5(-2)} + c$$

$$\frac{1}{5(-2)} + c$$

$$\frac{-1}{6(x^{3}+3x)} + c$$

$$\frac{2(x-3) < 4(x-3)^{2}}{2(x-3) - i} + c$$

$$\frac{2(x-3) < 4(x-3)^{2}}{2(x-3) - i} > o$$

$$\frac{2(x-3) (2x-7) > o}{2(x-3) (2x-7) > o}$$

$$x < 3 \text{ or } x > \frac{7}{2}$$

$$\frac{1}{(-i0)^{-i4}} \frac{1(i0) - 2(-2)}{i-2}$$

$$= -i0 = -i4$$

$$\frac{1}{6x^{3}} + \frac{3ix^{2}x}{3x}$$

$$= \frac{9}{3}$$

.

9.2
(9.2)
(9)
$$x^n - y^n$$
 is divisible by $x - y$
(9) for $n = 1$ $x - y$ is divisible by $x - y$
: True for $n = 1$
(9) Assume that it is true for $n = k$
19. $x^{k} - y^{k}$ is divisible by $x - 4y$ (hypothics)) — (1)
consolar $x^{k+1} - y^{k+1} = x^{k} \cdot x - y^{k} \cdot y$
 $= x^{k} \cdot x - x^{k} \cdot y + x^{k} \cdot y - y^{k} \cdot y$
 $= x^{k} (x - y) + y(x^{k} - y^{k})$
The first torum is diviseble by $(x - y)$
The 2nd torum is diviseble by $(x - y)$
The 2nd torum is diviseble by $(x - y)$ due to
 $x + 1 - y^{k+1}$ is divisible by $x - y$
(9) Hence by the principle of mathematical induction
 $it in true for all positive integral values of n .$

.

Q.3.
(a)
$$f'(x) = \cos x - \log e^{x}$$

Assume $x_{0} = 1.5$.
 $f'(x) = -\sin x - \frac{1}{x}$
 $x_{1} = x_{0} - \frac{f(1.5)}{f(1.5)}$
 $= 1.5 - \frac{(-0.3347)}{-1.6642}$
 $= 1.29888$
 $= 1.29888$
 $= 1.2999$
 $f'(x) = \cos x - \log e^{x} - 3ee^{x} - 1 = \frac{1}{2} \log e^{x} - 3ee^{x} - 1 = \frac{1}{2} \log e^{x} - \frac{3ee^{x} - 1}{2} = \frac{1}{2} \log e^{x} - \frac{1}{2}$

.

$$(b)(i) = 5e^{5\pi} \sin x - e^{5\pi} \cos x.$$

$$= e^{5\pi} (5 \sin x - 6 \sin x)$$

$$\frac{dy}{dx} = (5 \sin x - 6 \sin x) 5 x e^{5\pi} + e^{5\pi} (56 \sin x + \sin x)$$

$$= e^{5\pi} [25 \sin x - 5 \cos x + 56 \sin x - 1]$$

$$= e^{5\pi} [26 \sin x]$$
(ii) From part (i)
$$\int e^{5\pi} 26 \sin x dp = 5e^{5\pi} \sin x - e^{5\pi} \cos x + c$$

$$\int e^{5\pi} \sin x dp = \frac{e^{5\pi} (5 \sin x - 6 \sin x) + c}{26}$$

IN triangle MNP $\angle MPN = 90^{\circ}$; sum of angles in a $= 90^{\circ}$ triangle is 180 $(\chi + 90 - \chi + \cdot \angle MPN = 180$). $\angle MPN = 90^{\circ}$

Hence proved.

.

(cl)
$$\sin\left(2\cos^{-1}\left(\frac{3}{5}\right)\right)$$

 $5u_{1}^{2} 20 = 2\sin^{2}0\cos^{2}0$
 $= 2\times\frac{4}{5}\times\frac{3}{5}$
 $= \frac{24}{25}$

$$S.4.$$
(e) $x = t - \frac{t}{t}, y = t^{\frac{1}{r}} + t + \frac{t}{t^{\frac{1}{r}}} + 1 + 2$

$$y = (t - \frac{t}{t})^{\frac{1}{r}} + \frac{t}{t^{\frac{1}{r}}} + 1 + 2$$

$$y = (t - \frac{t}{t})^{\frac{1}{r}} + 3$$

$$y = x^{\frac{1}{r}} + 3$$
(b) (i) $3 \sin x - 4 \cos x = R \sin (x - d)$

$$= R \sin x \cos d - R \cos x \sin d$$

$$\Rightarrow R \cos x = 4 \cos x - R \cos x \sin d$$

$$\Rightarrow R \cos x = 3 - 0$$

$$-R \tan d = -2$$

$$R^{\frac{1}{r}} = 3^{\frac{1}{r}} + 4^{\frac{1}{r}}$$

$$R = t 5$$

$$x^{\frac{1}{r}} = t \sin^{-1}(\frac{t}{3}) = 0.93^{\frac{1}{r}} \left[r \sin^{\frac{1}{r}} s^{\frac{1}{r}} \right]$$

$$\frac{1}{r} 3 \sin x - 4 \cos x = 5 \sin (x - t \sin^{-1}(4x))$$
(ii) $-5 \sin (x - t \sin^{-1}(4x)) = \frac{2}{r} 5$

$$\sin (x - t \sin^{-1}(4x)) = -\frac{1}{r} 4$$

$$\sin (x - t \sin^{-1}(4x)) = -\frac{1}{r} 4$$
(j) $x = n\pi + t \sin^{-1}(4x)$

$$x - t \sin^{-1}(4x) = n\pi + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $x = n\pi + t \tan^{-1}(4x) + (-1)^{\frac{1}{r}} (-\sin^{-1}(4x))$
(j) $\frac{1}{2} \pi x^{\frac{1}{r}} R = \frac{1}{3} \pi x^{\frac{3}{r}}$

$$= \frac{1}{3} \pi (\frac{1}{\sqrt{2}})^{\frac{3}{r}}$$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{2^{\frac{1}{r}}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{2^{\frac{1}{r}}}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}} = \frac{1}{3} \pi x^{\frac{1}{r}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{2^{\frac{1}{r}}}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}}} = \frac{1}{4} \pi x^{\frac{1}{r}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{2^{\frac{1}{r}}}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}}} = \frac{1}{4} \pi x^{\frac{1}{r}}$
(j) $\frac{1}{2} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}}} = \frac{1}{4} \frac{\pi x^{\frac{1}{r}}}{\frac{\pi x^{\frac{1}{r}}}{x^{\frac{1}{r}}}}$

= 0.892 cm/min

.

$$\begin{aligned} \mathbf{F}(\mathbf{C}) & Method 1 \\ 2x^{3} - 7x^{2} + 7x - 2 = 0 \\ Let & \mathbf{C}, \mathbf{B}, \mathbf{S}' \quad \text{free two bs.} \\ \vdots \quad \frac{A}{\alpha} = \frac{\mathbf{S}'}{\mathbf{B}} = \mathbf{T} \quad \begin{bmatrix} \mathbf{G}, \mathbf{P} \end{bmatrix} \\ \mathbf{B}^{2} = \mathbf{C} \mathbf{S}' = \mathbf{O}' \\ \mathbf{A}^{2} \mathbf{S}' = \mathbf{C} \mathbf{S}' = \mathbf{O}' \\ \mathbf{A}^{2} \mathbf{S}' = \mathbf{C} \mathbf{S}' + \mathbf{B} \mathbf{S}' = \frac{7}{2} - \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{B} \mathbf{S}' = \frac{7}{2} - \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{B} \mathbf{S}' = \frac{7}{2} - \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{B} \mathbf{S}' = \frac{7}{2} - \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{C} \mathbf{S}' = \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{C} \mathbf{S}' = \mathbf{C}' \\ \mathbf{C}_{\mathbf{B}} + \mathbf{C} \mathbf{S}' + \mathbf{C} \mathbf{S}' = \mathbf{C}' \\ \mathbf{C}_{\mathbf{C}} + \mathbf{C} \mathbf{S}' + \mathbf{C}' \\ \mathbf{C}_{\mathbf{C}} + \mathbf{C} \mathbf{S}' = \mathbf{C}' \\ \mathbf{C}_{\mathbf{C}} = \mathbf{C}' \\ \mathbf{C}_{\mathbf{C}' \\ \mathbf{C}' \\ \mathbf{C}' \\ \mathbf{C}' \\ \mathbf{C}' \\ \mathbf{C}' \\ \mathbf{C}' \\ \mathbf$$

Ø

Method 2.
Let the roots be

$$\frac{d_{T}}{q}, d, Td.$$

$$\frac{d_{R}}{q} + d + Td = \frac{T}{2} - 0$$

$$\frac{d_{R}}{q} + d + Td = \frac{T}{2} - 0$$

$$\frac{d_{R}}{q} + d + Td + td = \frac{T}{2} - 2$$

$$\frac{d_{R}}{q} \times d \times Td = 1. - 3 \cdot d = 1$$

$$\frac{d_{R}}{q} = 1$$
Sub $d = 1$ in 0.

$$\frac{1}{q} + 1 + tT = \frac{T}{2}$$

$$\frac{d_{R}}{q} \times T = 2 \cdot d = 0$$

$$(2r - 1)(T - 2) = 0$$

$$r = \frac{1}{2} \quad err = 2.$$
Solve $T = \frac{1}{2} \quad err = 2$

$$\frac{1}{2} \quad err = 2$$

$$\frac{1}{2} \quad err = 2 \cdot d = 1, \quad roots \quad are \quad \frac{1}{2}, 1, 2$$

$$\frac{1}{2} \quad r = 2 \quad the roots \quad are \quad \frac{1}{2}, 1, 2$$

$$\frac{5(d)}{2sin x} = 2n\pi \pm (\frac{T}{2} - 2\cos x) \quad general.$$

$$2sin x = 2n\pi \pm t \quad (\frac{T}{2} - 2\cos x) \quad general.$$

$$2sin x = 2n\pi \pm t \quad \frac{T}{2} = 2(\cos x)$$

$$2sin x = 2n\pi \pm t \quad \frac{T}{2} = 2(\cos x)$$

$$2sin x = 2n\pi \pm t \quad \frac{T}{2} = 2(\cos x)$$

t:

$$cos(2sinx) = sin(2cosx)$$

$$cos(2sinx) = cos(T_{12} - 2cosx)$$

$$2sin x = 2n\pi \pm (\overline{A} - 2cosx) general.$$

$$2sin x = 2n\pi \pm \overline{A} = 2cosx$$

$$2sin x = 2n\pi \pm \overline{A} = 2cosx$$

$$2sin x \pm 2cos x = 2n\pi \pm \overline{A} = \frac{1}{4}$$

$$sin x \pm cos x = n\pi \pm \overline{A} = \frac{1}{4}$$

$$\sqrt{2} sin(\pi \pm \overline{A}) = n\pi \pm \overline{A} = \frac{1}{4}$$

$$sin(\pi \pm \overline{A}) = \frac{1}{\sqrt{2}}(n\pi \pm \overline{A})$$

9

Continued on next page :-

$$at^{2} + 2a - \frac{\pi}{t} = tx + 2a + \frac{a}{t^{2}}$$

$$at^{4} + 2at^{2} - \pi t = xt^{3} + 2at^{2} + \frac{a}{t^{2}}$$

$$\pi t^{3} + \pi t = at^{4} - a$$

$$\pi (t^{3} + t) = a (t^{4} - 1).$$

$$\Re = a \underbrace{(t^{2} + 1)(t^{2} - 1)(t^{2} + 1)}_{t(t^{2} + 1)}$$

$$= a \underbrace{(t^{2} - 1)}_{t}$$

$$\Re = a \underbrace{(t^{2} - 1)}_{t}$$

substituting this in Q

$$y = t'a(t'-t) + 2a + \frac{a}{t^2}$$

$$= at^2 - a + 2a + \frac{a}{t^2}$$

$$y = at^2 + a + \frac{a}{t^2}$$

(a), b.
(b) (c)
$$T = 20^{\circ} + 75 e^{-kt}$$

 $\frac{dT}{dt} = 75 e^{-kt} - k$
 $= -k 75 e^{-kt}$
 $= -k (T - 20)$
(ti) $T = 20^{\circ} + 75 e^{-kt}$
 $75^{\circ} = 20^{\circ} + 75 e^{-10k}$
 $\frac{55}{75} = e^{-10k}$
 $\frac{55}{75} = e^{-10k}$
 $\frac{51}{15} = -10k$
 $k = -\frac{1}{10} ln(\frac{11}{15})$
 $= 0.03$

$$(iii) \quad 60^{\circ} = 20^{\circ} + 75 e^{-kE}$$

$$\frac{40}{75} = e^{-kE}$$

$$ln(\frac{40}{75}) = -kE$$

$$t = -\frac{1}{k} ln(\frac{40}{75})$$

$$= \frac{ln(\frac{40}{75})}{l_0 ln(\frac{40}{75})}$$

$$= 20.26 \quad minuleo$$

Lawrie should arrive on a before

10:40:17 a.m.

$$Q. \neq$$
(a)
(i) $x = Vt \cos \theta$
 $y = -\frac{1}{2}gt^2 + Vt \sin \theta$
 $y = 0$ when the projectile
hetwins to grannel at Z
 \Rightarrow $Vt \sin \theta = \frac{1}{2}gt^2$
 $t(V\sin \theta - \frac{1}{2}gt) = 0$
 $\therefore t = 0$
 $\partial R = V \sin \theta - \frac{1}{2}gt^2 = 0$
 $\therefore t = \frac{2V \sin \theta}{g}$
And $Z = x = V \left(\frac{2V \sin \theta}{g}\right) \cos \theta$
 $= \frac{V^2}{g} \frac{2 \sin \theta}{g}$
 $= \frac{V^2 2 \sin \theta \cos \theta}{g}$
 $= \frac{V^2 2 \sin \theta \cos \theta}{g}$

(ii) When
$$y = m$$

$$h = -\frac{1}{2g}t^{2} + VtSui\theta$$

$$2h = -gt^{2} + 2VtSui\theta$$

$$gt^{2} - 2VtSui\theta + 2h = 0 \quad [Quadratic in t].$$

$$t = \frac{2VSui\theta}{2g} - \frac{1}{2g}$$

$$to p Quadratic to $\frac{1}{2g}$

$$to p Quas through the clouds turine t must have$$

$$two distinct values.$$

$$\therefore 4V^{2}Sui^{2}\theta - 4g2h > 0$$

$$V^{2}Sui^{2}\theta - 2gh > 0$$

$$V^{2}Sui^{2}\theta - 2gh > 0$$

$$V^{2}Sui^{2}\theta - 2gh.$$

$$h < \frac{V^{2}Sui^{2}\theta}{2g}$$$$

$$\begin{array}{l} (ii) \quad & \text{From equation } (i) \\ t = \frac{2 \sqrt{5in} p \pm \sqrt{4 \sqrt{2} \sin^2 p} - 4 g^2 h}{2g} \\ t = \frac{\sqrt{5in} p \pm \sqrt{\sqrt{2} \sin^2 p} - 4 g^2 h}{g} \\ t = \frac{\sqrt{5in} \phi \pm \sqrt{\sqrt{2} \sin^2 p} - 2 g h}{g} \\ t = \frac{320 \times \sqrt{3} f_2}{2} \pm \sqrt{320 \times 3} f_2 - 2 \times 10 \times 3000 \end{array}$$

•

.

$$= \frac{277.73 \pm 129.6}{10}$$

$$t_1 = 14.8$$
 $t_2 = 40.67$

10

(1) $\mathcal{R}_{1} = 320 \times 14.8 \times 65.60$

x2 = 320 × 40-67 × Cos 60.

x2-x1 = 320 x Cos 60 (40.67 -14.8)

= 4,139.2 m.