Trial Examination

9th August 2011

General Instructions:

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A page of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Begin a new booklet for each question

Total Marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Question 1 (12 marks) Start a SEPARATE writing booklet

a) Find $\int \frac{1}{\sqrt{4-x^{2}}} d x$
b) Sketch the region of the plane defined by $y \geq|3 x-2|$
c) State the domain and range of $y=\sin ^{-1}\left(x^{2}\right)$
d) Using the substitution $u=2 x^{5}-1$. Find $\int x^{4}\left(2 x^{5}-1\right)^{3} d x$
e) The point $\mathrm{P}(3,6)$ divides the line segment joining $\mathrm{A}(1,2)$ and $\mathrm{B}(x, y)$ internally in the ratio 2:1. Find the coordinates of B.
f) The acute angle between the lines $y=2 x-3$ and $y=m x+1$ is 30°. Find the two possible values of m.

Question 2 (12 marks) Start a SEPARATE writing booklet

a) Find $\frac{d}{d x}\left(3 \sin ^{-1} 4 x\right)$.
b) A particle moves on the x-axis with velocity v. The particle is initially at rest at $x=2$. Its acceleration is given by $\ddot{x}=x+2$. Using the fact that $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$, find the speed of the particle at $x=4$.
c) (i) Differentiate $e^{2 x}(\sin x+2 \cos x)$
(ii) Hence or otherwise, find $\int e^{2 x} \cos x d x$
d) A curve has parametric equation $x=2 t, y=2 t^{2}$. Find the Cartesian equation for this curve
e) Evaluate $\quad \sum_{n=6}^{8}(3 n-1)$
f) Evaluate the limit of $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$
a) (i) Show that $e^{x}=\sin x+3$ has a root between $x=1$ and $x=2$.
(ii) Starting with $x=1.5$, use one application of Newton's method to find a better approximation for this root. Write your answer correct to three significant figures.
b) A particle moves in a straight line and its position at time t is given by

$$
x=3 \cos \left(2 t+\frac{\pi}{4}\right)
$$

(i) Show that the particle is undergoing simple harmonic motion.
(ii) Find the amplitude of the motion.
(iii) When does the particle first reach its maximum speed after time $t=0$?
c) (i) Starting from the identity $\sin (\theta+2 \theta)=\sin \theta \cos 2 \theta+\cos \theta \sin 2 \theta$, and using the double angle formulae, prove the identity

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{2}
\end{equation*}
$$

(ii) Hence find the general solution for the equation

$$
\begin{equation*}
\sin 3 \theta=\sin \theta \tag{3}
\end{equation*}
$$

Question 4 (12 marks) Start a SEPARATE writing booklet

a) The polynomial $P(x)=2 x^{3}-5 x^{2}+k x+40$ has roots α, β, γ.
(i) Find the value of $\alpha+\beta+\gamma$.
(ii) Find the value of $\alpha \beta \gamma$.
(iii) It is known that two of the roots are equal in magnitude but opposite in sign.

Find the third root and hence find the value of k.
b) Solve $\frac{5 x}{x-2} \leq 3$
c) A grain silo dispenses grain at a constant rate of $7 m^{3}$ per minute. As the grain falls it forms a cone shape such that the height of the cone is twice its radius.
(i) Show that $\frac{d V}{d h}=\frac{\pi}{4} h^{2}$
(ii) Find the rate at which the height is changing when its height is $2 m$.
a) $\int_{0}^{\frac{\pi}{4}} \sin ^{2}(4 x) d x$
b) (i) Sketch the curve $y=3 \cos ^{-1}\left(\frac{x}{2}\right)$ for $-2 \leq x \leq 2$.
(ii) On the same set of axes, sketch $y=2 x^{2}-2$.
(iii) State how many roots the equation $3 \cos ^{-1}\left(\frac{x}{2}\right)-2 x^{2}+2=0$ has in the domain $-2 \leq x \leq 2$.
c) Consider the function $f(x)=4 \tan ^{-1} x$.
(i) State the range of the function $y=f(x)$.
(ii) Sketch the graph of $y=f(x)$.
(iii) Find the equation of the tangent to the curve $y=f(x)$ at $x=\sqrt{3}$.
a) Wilhemy's Law states that the rate of transformation of a substance in a chemical reaction is related to its concentration according to;

$$
\frac{d E}{d t}=k(E-c)
$$

where E is the amount of substance transformed, and c is the initial concentration of the substance.
(i) By integration show that $E=A e^{k t}+c$ is a solution to the given rate of change, where A is a constant.
(ii) Initially none of the substance is transformed. If the initial concentration is 8.3 and the amount transformed after 3 minutes is 2.9 . Find how much of the substance will be transformed after 5 minutes, to 2 significant figures.
b) Consider the curve , $f(x)=3+\frac{1}{2 x-5} \quad, x \neq \frac{5}{2}$

The region enclosed by the curve of $f(x)$, the x-axis, and the lines $x=3$ and $x=a$, is revolved through 360° about the x-axis. Let V be the volume of the solid formed.

Given that $V=\pi\left(\frac{28}{3}+3 \ln 3\right)$, find the value of a.
c) A cylinder has height H and radius R. Point X is at one end of the cylinder, on the bottom and on the circumference. Point Y is directly opposite, halfway up the cylinder. Length $X Y=D$.
(i) Show that the volume of the cylinder is given by

$$
\begin{equation*}
V=\frac{\pi H}{16}\left(4 D^{2}-H^{2}\right) \tag{2}
\end{equation*}
$$

(ii) Find the maximum volume of the cylinder in terms of D if D is fixed.

Question 7 (12 marks) Start a SEPARATE writing booklet

a) Use mathematical induction to prove that

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+2}{2 n+2} \text { for all } n \geq 1 .
$$

b) A tennis ball is hit with a velocity of $10 \mathrm{~m} / \mathrm{s}$. Initially it is at O. P lies on an inclined plane. The inclined plane $O P$ makes an angle of $\frac{\pi}{4}$ to the horizon.

The tennis ball is projected at an angle of θ to the horizontal and $\frac{\pi}{4}<\theta<\frac{\pi}{2}$.
The tennis ball has position at any time t given by

$$
x=10 t \cos \theta \text { and } y=-5 t^{2}+10 t \sin \theta \quad \text { (Do not derive these equations) }
$$

(i) If $O P=R$ meters and the tennis ball lands at P. Show that

$$
\begin{equation*}
x=y=\frac{R}{\sqrt{2}} \tag{1}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
R=20 \sqrt{2}\left(\cos \theta \sin \theta-\cos ^{2} \theta\right) \tag{3}
\end{equation*}
$$

(iii) Find the maximum value of R.

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}+C, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x+C, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C, a \neq 0 \\
& =\frac{1}{a} \sin a x+C, a \neq 0 \\
\int \cos a x d x & =-\frac{1}{a} \cos a x+C, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan a x+C, a \neq 0 \\
\int \sec 2 x d x & =\frac{1}{a} \sec a x+C, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin \frac{1}{a} \frac{x}{a}+C, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C \\
&
\end{array}
$$

NOTE: $\ln x \equiv \log _{e} x, \quad x>0$

Scots Yr 12 Ext 1 Trial HSC 2011
solutions
ANSWER BOOKLET
Name: \qquad
Teacher: \qquad
Question No. (1)
a) $\int \frac{1}{\sqrt{4-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{2}\right)+c$
b) $y \geq|3 x-2|$,
test $(0,0)$

$$
0 \geqslant|0-2|
$$

$0 \geq 2$ Not true

c) Note:

$$
\begin{aligned}
& \text { Note: } \begin{array}{l}
y=\sin ^{-1}(x) \\
y=\sin ^{-1}\left(x^{2}\right)
\end{array}
\end{aligned}
$$

$$
\therefore y=\sin ^{-1}\left(x^{2}\right)
$$

domain: $-1 \leq x \leq 1$
Range : $0 \leq y \leq \frac{\pi}{2}$
\qquad
\qquad

Question No. (1)

$$
\begin{aligned}
& \int x^{4}\left(2 x^{5}-1\right)^{3} d x \\
& \frac{1}{10} \int 10 x^{4}\left(2 x^{5}-1\right)^{3} d x \\
& \frac{1}{10} \int u^{3} d u \\
& \frac{1}{10}\left[\frac{u^{4}}{4}+c\right] \\
& \frac{u^{4}}{40}+c \\
& \frac{\left(2 x^{5}-1\right)^{4}}{40}+c
\end{aligned}
$$

$$
\begin{aligned}
u & =2 x^{5}-1 \\
\frac{d u}{d x} & =10 x^{4} \\
d u & =10 x^{4} d x
\end{aligned}
$$

/correct substitution
/integral

3

$$
\begin{aligned}
& \quad \text { solution } \quad \text { Note: }+C \text { not } \\
& \text { put down } \\
& \text { loss of mark. }
\end{aligned}
$$

Name: \qquad
Teacher: \qquad
Question No. (1)

f) $y=2 x-3, y=m x+1$

$$
\begin{aligned}
& \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& \tan 30=\left|\frac{2-m}{1+2 m}\right|
\end{aligned}
$$

$\sqrt{\text { formula with values }}$

$$
\therefore
$$

$$
-\frac{1}{\sqrt{3}}=\frac{2-m}{1+2 m}
$$

or

$$
\frac{1}{\sqrt{3}}=\frac{2-m}{1+2 m}
$$

$$
m=\frac{2 \sqrt{3}-1}{2+\sqrt{3}}
$$

$$
m=5 \sqrt{3}-8
$$

Solution
\qquad
Teacher: \qquad
Question No. (2)

$$
\frac{d}{d x}\left(3 \sin ^{-1}(4 x)\right)
$$

let

$$
\begin{aligned}
y= & 3 \sin ^{-1}(4 x) \text { find } \frac{d y}{d x} \\
& \text { lt } u=4 x \quad \frac{d u}{d x}=4 \\
y= & 3 \sin ^{-1}(u) \\
\frac{d y}{d u}= & \frac{3}{\sqrt{1-u^{2}}} \\
\frac{d y}{d u}= & \frac{12}{\sqrt{1-16 x^{2}}}
\end{aligned}
$$

Name: \qquad
Teacher: \qquad
Question No. (2)
b) $t=0, x=2, v=0$

$$
\begin{aligned}
\ddot{x} & =x+2 \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =x+2 \\
\frac{1}{2} v^{2} & =\frac{x^{2}}{2}+2 x+c, / \text { using substitution }
\end{aligned}
$$

when $x=2, v=0$

$$
\begin{aligned}
& 0=\frac{4}{2}+4+C \\
& 0=6+C \\
&-6=C \\
& \therefore \\
& \frac{1}{2} v^{2}=\frac{x^{2}}{2}+2 x-6 \\
& \therefore \text { at } x=4 \\
& \frac{1}{2} v^{2}=\frac{16}{2}+8-6 \\
& \frac{1}{2} v^{2}=10 \\
& v= \pm \sqrt{20}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sartemption to } \\
& \text { solve for } V .
\end{aligned}
$$

$\therefore \quad V= \pm \sqrt{20}$ /solution.
speed is $\sqrt{20}$ when $x=4$.
\qquad
Teacher: \qquad

Question No. (2)
c) i)

$$
\left.\begin{array}{rl}
& e^{2 x}(\sin x+2 \cos x) \\
u \times v \\
\frac{d}{d x}= & 2 e^{2 x}(\sin x+2 \cos x)+e^{2 x}(\cos x-2 \sin x) \\
\text { attempts } \\
\text { product }
\end{array}\right)
$$

$$
u=e^{2 x} \quad u^{\prime}=2 e^{2 x}
$$

$$
v=\sin x \text { स्大as } x \quad v^{\prime}=\cos x-2 \sin x
$$

ii).

$$
\begin{aligned}
& \int e^{2 x} \cos x d x \\
& \frac{1}{5} \int 5 e^{2 x} \cos x d x \\
& \frac{1}{5}\left[e^{2 x}(\sin x+2 \cos x)\right]+c \\
& \frac{1}{5} e^{2 x}(\sin x+2 \cos x)+c
\end{aligned}
$$

Name: \qquad
Teacher: \qquad

Question No. (2)
d) $x=2 t, y=2 t^{2}$

$$
\begin{aligned}
& \frac{x}{2}=t \\
& \therefore \\
& y=2\left(\frac{x}{2}\right)^{2} \\
&=\frac{2 x^{2}}{4} \\
& y=\frac{x^{2}}{2}
\end{aligned}
$$

e)

$$
\begin{aligned}
\sum_{n=6}^{8}(3 n-1) & =[3 \times 6-1]+[3 \times 7-1]+[3 \times 8-1] \\
& =18+20+23 \\
& =60
\end{aligned}
$$

4

Name: \qquad
Teacher: \qquad
Question No. (2)
f)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \\
& \lim _{x \rightarrow 0} \frac{2 \sin 2 x}{2 x} \\
& \lim _{x \rightarrow 0} 2 \times \frac{\sin 2 x}{2 x} \\
& 2 x \rightarrow 0
\end{aligned}
$$

\qquad
Teacher: \qquad
Question No. (3)
a) i) $e^{x}-\sin x-3=$?
at $x=1$

$$
e^{1}-\sin (1)-3=-1 \cdot 12
$$

of $x=2$

$$
e^{2}-\sin (2)-3=3.48
$$

\because change of sign there exists a root Letween $x=1 \& x=2$.
ii)

Newtons' $\quad x=a-\frac{f(a)}{f^{\prime}(a)}$

$$
\begin{array}{ll}
f(x)=e^{x}-\sin x-3 & f(1.5)
\end{array}
$$

$$
f^{\prime}(x)=e^{x}-\cos x
$$

at $a=1.5$

$$
\begin{aligned}
& x=1.5-\frac{0.484}{4.41095} \\
& x=1.5-0.1098 \\
& x=1.39
\end{aligned}
$$

\qquad
\qquad

Question No. (3)
bi)

$$
\begin{aligned}
& x=3 \cos \left(2 t+\frac{\pi}{4}\right) \\
& \dot{x}=-6 \sin \left(2 t+\frac{\pi}{4}\right) \\
& \ddot{x}=-12 \cos \left(2 t+\frac{\pi}{4}\right) \\
& \ddot{x}=-4 \times 3 \cos \left(2 t+\frac{\pi}{4}\right) \\
& \ddot{x}=-4 x
\end{aligned}
$$

\because this is in the form

$$
\ddot{x}=-n^{2} x
$$

\therefore particle is undergoing SHM.
bii) amplitude is 3 .
b iii)

$$
\begin{aligned}
\dot{x} & =-6 \sin \left(2 t+\frac{\pi}{4}\right) \\
-6 & =-6 \sin \left(2 t+\frac{\pi}{4}\right) \\
+1 & =\sin \left(2 t+\frac{\pi}{4}\right)
\end{aligned}
$$

$$
2 t+\frac{\pi}{4}=\frac{\pi}{2}
$$

\therefore at time $\frac{\pi}{8}$ particle

$$
t=\frac{\pi}{8}
$$ first reaches its max speed.

\qquad
\qquad

Question No. 3
$6 i)$

$$
\begin{aligned}
\sin 3 \theta & =\sin \theta \cos 2 \theta+\cos \theta \sin 2 \theta \\
& =\sin \theta\left[1-2 \sin ^{2} \theta\right]+\cos \theta[2 \sin \theta \cos \theta] \\
& =\sin \theta-2 \sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta \\
& =\sin \theta-2 \sin ^{3} \theta+2 \sin \theta\left(1-\sin ^{2} \theta\right) \\
& =\sin \theta-2 \sin ^{3} \theta+2 \sin \theta-2 \sin ^{2} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \sin 3 \theta=\sin \theta \\
& 3 \sin \theta-4 \sin ^{3} \theta=\sin \theta \\
& 2 \sin \theta=4 \sin ^{3} \theta, \sin \theta=0 \\
& \frac{2}{4}=\sin ^{2} \theta \\
& \pm \frac{1}{\sqrt{2}}=\sin \theta \\
& \therefore \\
& \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, \\
& \text { General } \leq \text { dutions } \quad \theta=\left(\frac{\pi}{4} \pm n \pi\right) \quad \text { or }\left(\frac{3 \pi}{4} \pm n \pi\right) \quad \text { (n=0,1,2,.., }
\end{aligned}
$$

Name: \qquad
Teacher: \qquad
Question No. (4) $P(x)=a x^{3}+b x^{2}+c x+d$

$$
\begin{aligned}
& \alpha+\beta+\gamma=\frac{-b}{a} \\
& \alpha \beta+\gamma \alpha+\beta \gamma=\frac{c}{a} \\
& \alpha \beta \gamma=\frac{-d}{a}
\end{aligned}
$$

a) ;)

$$
\alpha+\beta+\gamma=\frac{5}{2}
$$

ii)

$$
\alpha \beta \gamma=\frac{-40}{2}=-20
$$

iii) let $\alpha=-\beta$

$$
\begin{align*}
\therefore-\alpha^{2} \gamma & =-20 \tag{1}\\
\gamma & =\frac{5}{2} \tag{2}\\
\therefore-\alpha^{2}\left(\frac{5}{2}\right) & =-20 \\
5 \alpha^{2} & =40 \\
\alpha^{2} & =8 \\
\alpha & = \pm \sqrt{8}
\end{align*}
$$

$$
\begin{aligned}
&-\alpha^{2}\left(\frac{5}{2}\right)=-20 \\
& 5 \alpha^{2}=40 \\
& \alpha^{2}=8 \\
& \alpha= \pm \sqrt{8} \\
& \therefore \\
& \alpha=\sqrt{8} \quad, \beta=-\sqrt{8}, \gamma=\frac{5}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \beta+\gamma \alpha+\beta \gamma=\frac{k}{2} \\
&-8+\sqrt{8}\left(\frac{5}{2}\right)-\sqrt{8}\left(\frac{5}{2}\right)=\frac{k}{2} \\
&-8=\frac{k}{2} \\
&-16=k
\end{aligned}
$$

Name: \qquad
Teacher: \qquad

Question No.

b)

$$
\begin{gathered}
\frac{5 x}{x-2} \leq 3 \\
5 x(x-2) \leqslant 3(x-2)^{2} \\
5 x^{2}-10 x \leqslant 3\left(x^{2}-4 x+4\right) \\
5 x^{2}-10 x \leq 3 x^{2}-12 x+12 \\
2 x^{2}+2 x-12 \leqslant 0 \\
2\left(x^{2}+x-6\right) \leq 0 \\
2(x+3)(x-2) \leq 0 \\
\therefore \\
-3 \leqslant x<2
\end{gathered}
$$

$$
x \neq 2
$$

Name: \qquad
Teacher: \qquad

Question No. \&
6) :

$$
2 r=h
$$

$$
r=\frac{h}{2}
$$

$$
\begin{gathered}
V=\frac{1}{3} \pi r^{2} L \\
V=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h \\
V=\frac{\pi}{12} h^{3} \\
\frac{d V}{d h}=\frac{3 \pi}{12} h^{2}=\frac{\pi}{4} h^{2}
\end{gathered}
$$

ii)

$$
\frac{d h}{d t}=\frac{d V}{d t} \times \frac{d h}{d V}
$$

$$
=7 \times \frac{4}{\pi h^{2}}
$$

$$
\frac{d h}{d t}=\frac{28}{\pi h^{2}}
$$

when $h=2$

$$
\begin{aligned}
\frac{d h}{d t} & =\frac{28}{\pi \times 4} \\
& =\frac{7}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Name: } \\
& \text { Teacher: } \\
& \text { Question No. } 5 \\
& \text { a) } \\
& \int_{0}^{\pi / 4} \sin ^{2}(4 x) d x \\
& \int_{0}^{\pi / 4} \frac{1}{2}-\frac{1}{2} \cos (8 x) d x \\
& =\left[\frac{x}{2}-\frac{1}{16} \sin (8 x)\right]_{0}^{\frac{\pi}{4}} \\
& =\left[\frac{\pi}{8}-\frac{1}{16} \sin (2 \pi)\right]-[0-0] \\
& =\left[\frac{\pi}{8}-0\right]-0 \\
& =\frac{\pi}{8} \\
& \cos 2 A=1-2 \sin ^{2} A \\
& \sin ^{2} A=\frac{1}{2}-\frac{1}{2} \cos ^{2} A
\end{aligned}
$$

\qquad
\qquad
\qquad
Teacher: \qquad

Question No. 5
b)

$$
\begin{aligned}
& y=3 \cos ^{-1}\left(\frac{x}{2}\right) \\
& \frac{y}{3}=\cos ^{-1}\left(\frac{x}{2}\right) \\
& x=2 \cos \left(\frac{1}{3} y\right)
\end{aligned}
$$

ii) $\quad y=2 x^{2}-2$
at

x	-2	-1	0	1	2
y	6	0	-2	0	6

iii) on domain

$$
-2 \leq x \leq 2
$$

only 1 solution

Name: \qquad
Teacher: \qquad

Question No.
C) i)

$$
\begin{aligned}
& \text { range of } y=f(x) \\
& -4 \times \frac{\pi}{2} \leq y \leq 4 \times \frac{\pi}{2} \\
& -2 \pi<y<2 \pi
\end{aligned}
$$

iii)

$$
\begin{aligned}
y & =4 \tan ^{-1}(x) \\
\frac{d y}{d x} & =\frac{4}{1+x^{2}}
\end{aligned}
$$

at $x=\sqrt{3}$

$$
\frac{d u}{d x}=\frac{4}{4}=1
$$

$$
\begin{aligned}
a t \quad x & =\sqrt{3} \\
y & =4 \tan ^{-1}(\sqrt{3}) \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

Tangent

$$
y-\frac{4 \pi}{3}=1(x-\sqrt{3})
$$

$$
3 x-3 y-3 \sqrt{3}+4 \pi=0
$$

Name: \qquad
Teacher: \qquad
Question No. 6
a) 1

$$
\frac{d E}{d t}=k(E-c)
$$

$$
\frac{d t}{d E}=\frac{1}{k} \times \frac{1}{(E-c)}
$$

$$
t=\frac{1}{k} \int \frac{1}{E-c} d E
$$

$$
t=\frac{1}{k} \ln (E-C)+D
$$

$$
k(-D=\ln (E-c)
$$

$$
e^{k t-1}=E-c
$$

$$
\frac{e^{k t}}{e^{D}}=E-c \quad\left(6 t \quad \frac{1}{e^{D}}=A\right)
$$

$$
A e^{k t}=E-C
$$

$$
E=A e^{k t}+C
$$

\qquad
Teacher: \qquad
Question No. 6
a) ii)

$$
\begin{gathered}
E=A e^{k t}+C \\
\text { at } t=0 \quad E=0 \quad c=8.3 \\
0=A e^{0}+8 \cdot 3 \\
A=-8.3 \\
E=-8.3 e^{k t}+8.3 \\
\text { at } t=3 \quad E=2.9 \quad c=8.3 \\
2.9=-8 \cdot 3 e^{3 k}+8.3 \\
\frac{-5.4}{-8.3}=e^{3 k} \\
\frac{54}{83}=e^{3 k} \\
k=\frac{1}{3} \ln \left(\frac{54}{83}\right) \\
\therefore \\
E=-8.3 e^{k t}+8.3 \\
\text { at } t=5 \\
E=-8.3 e^{5 k}+8.3 \\
=4.245 \\
=4.2(25 i j
\end{gathered}
$$

\qquad
Teacher: \qquad
Question No. 6
b)

$$
\begin{aligned}
& V=\pi \int_{3}^{9}\left(3+\frac{1}{2 x-5}\right)^{2} d x \\
& =\pi \int_{3}^{a} 9+\frac{6}{2 x-5}+(2 x-5)^{-2} d x \\
& =\pi\left[9 x+3 \ln (2 x-5)+-\frac{1}{2}(2 x-5)^{-1}\right]_{3}^{a} \\
& =\pi\left[9 x+3 \ln (2 x-5)-\frac{1}{4 x-10}\right]_{3}^{a} \\
& =\pi\left[\left(9 a+3 \ln (2 a-5)-\frac{1}{4 a-10}\right)-\left(27+0-\frac{1}{2}\right)\right] \\
& =\pi\left[9 a-27+\frac{1}{2}-\frac{1}{4 a-10}+3 \ln (2 a-5)\right] \\
& \begin{aligned}
\therefore \quad 2 a-5 & =3 \\
a & =4
\end{aligned}
\end{aligned}
$$

Name: \qquad
Teacher: \qquad

Question No.
b)

$$
\begin{gathered}
\therefore \text { if } a=4 \\
9 \times 4-27+\frac{1}{2}-\frac{1}{46-10}= \\
9 \frac{1}{2}-\frac{1}{6}= \\
\frac{28}{3}=
\end{gathered}
$$

Name: \qquad
Teacher: \qquad
i)

$$
\begin{aligned}
& V=\pi r^{2} H \\
& V=\pi\left(\frac{D^{2}}{4}-\frac{-H^{2}}{16}\right) H \\
& V=\frac{\pi H}{16}\left(4 D^{2}-H^{2}\right)
\end{aligned}
$$

ii)

$$
V=-\frac{\pi}{16} H^{3}+\frac{\pi D^{2}}{4} H
$$

$$
\frac{d V}{d H}=-\frac{3 \pi}{16} H^{2}+\frac{\pi D^{2}}{4}
$$

at $\frac{d V}{d H}=0$ is max or min

$$
H= \pm \sqrt{\frac{4 D^{2}}{3}}
$$

c vic is of form

$$
y=-a x^{3}+b x
$$

\therefore take tue solution

$$
\begin{aligned}
& 0=-\frac{3 \pi}{16} H^{2}+\frac{\pi D^{2}}{4} \\
& H^{2}=\frac{4 D^{2}}{2}
\end{aligned}
$$

only tue solution

$$
H=\frac{2 D}{\sqrt{3}}
$$

\qquad
\qquad
Question No. 7
a) Test for $n=1$

$$
\begin{aligned}
\left(1-\frac{1}{2^{2}}\right) & =\frac{1+2}{2+2} \\
\frac{3}{4} & =\frac{3}{4}
\end{aligned}
$$

\therefore True for $n=1$
We assume it is true for $n=k \quad(k \in \mathbb{N})$ ie.

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{k+2}{2 k+2}
$$

Now prove it is true for $n=k+1$

$$
\underbrace{\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)}\left(1-\frac{1}{(k+2)^{2}}\right)=\frac{k+3}{2 k+4}
$$

from assumption

$$
\frac{k+2}{2 k+2}
$$

\qquad
\qquad
Question No. 7
a) continued

$$
\left(\frac{k+2}{2 k+2}\right)\left(1-\frac{1}{(k+2)^{2}}\right)=\frac{k+3}{2 k+4}
$$

$$
\int_{\text {copes }} \frac{k+2}{2 k+2}-\frac{k+2}{(2 k+2)(k+2)^{2}}
$$

progress

$$
\begin{aligned}
& \frac{(k+2)(k+2)^{2}-(k+2)}{(2 k+2)(k+2)^{2}} \\
& \frac{[k+2]\left[(k+2)^{2}-1\right]}{2(k+2)^{2}(k+1)} \\
& \frac{(k+2)^{2}-1}{2(k+2)(k+1)} \\
& \frac{k^{2}+4 k+4-1}{(2 k+4)(k+1)} \\
& \frac{(k+1)(k+3)}{(k+1)(2 k+4)}
\end{aligned}
$$

$$
\frac{k+3}{2 k+4}=n+15
$$

\therefore true for $n=k+1$
\therefore Because it is true for $n=1$ it is true for $n=2$ and by mathematical induction is true for $s=3,4$ etc \checkmark solution.
\qquad
Teacher: \qquad

Question No. 7
bi)

iscosoles

$$
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

$$
\frac{1}{\sqrt{2}}=\frac{y}{n}
$$

$$
\frac{R}{\sqrt{2}}=y
$$

$$
\therefore
$$

$$
x=y=\frac{R}{\sqrt{2}}
$$

ii)

$$
\begin{aligned}
& 10 t \cos \theta=-5 t^{2}+10 t \sin \theta \\
& \therefore \\
& 5 t^{2}-10 t \sin \theta+10 t \cos \theta=0 \text { setup } \\
& 5 t(t-2 \sin \theta+2 \cos \theta)=0 \\
& \therefore t=0 \\
& t-2 \sin \theta+2 \cos \theta=0
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \therefore \sin \theta-2 \cos \theta \\
& \begin{array}{l}
\text { solve } \\
\\
\\
\\
\\
\\
x=10 t \cos \theta
\end{array}
\end{aligned}
$$

when $t=2 \sin \theta-2 \cos \theta$

$$
x=10(2 \sin \theta-2 \cos \theta) \cos \theta
$$

but

$$
\begin{aligned}
& x=\frac{k}{\sqrt{2}} \\
& \begin{array}{l}
\text { subsfifute } \\
\text { in for } x
\end{array} \\
& \frac{R}{\sqrt{2}}=20\left(\sin \theta \cos \theta-\cos ^{2} \theta\right) \\
& R=20 \sqrt{2}\left(\cos \theta \sin \theta-\cos ^{2} \theta\right)
\end{aligned}
$$

As required
\qquad
Teacher: \qquad

Question No. 7
ii)

$$
R=20 \sqrt{2}\left(\cos \theta \sin \theta-\cos ^{2} \theta\right)
$$

$$
\begin{aligned}
& R=20 \sqrt{2}(\underbrace{\cos \theta \sin \theta}_{\substack{\text { Product } \\
\text { Rule }}}-\underbrace{\cos ^{2} \theta}_{\substack{\text { Product } \\
R J l e}}) \\
& \left.\begin{array}{l}
\frac{d R}{d \theta}= \\
\frac{d R}{d \theta}=0 \text { for Max. } \\
0=20 \sqrt{2}(\cos 2 \theta+\sin 2 \theta) / \sqrt{d n} \frac{d \theta}{d \theta} \\
\therefore \\
\cos 2 \theta+\sin 2 \theta
\end{array}\right)=0 \\
& \sin 2 \theta \\
& \tan 2 \theta
\end{aligned}
$$

and or 4 th
betomust be in
$s A$
$T 1 C$
domes $\frac{\pi}{4}<\theta \leq \frac{\pi}{2}$
\therefore and $\pi<2 \theta<\pi$

$\therefore \quad \cos 2 \theta=\frac{-1}{\sqrt{2}} \quad \sqrt{s i} 1 \operatorname{tit}^{n}$

$$
\sin 2 \theta=\frac{1}{\sqrt{2}}
$$

Note:

$$
\begin{aligned}
& \cos \theta \sin \theta=\frac{1}{2} \sin 2 \theta=\frac{1}{2 \sqrt{2}} \\
& \cos ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta=\frac{1}{2}-\frac{1}{2 \sqrt{2}} \\
& R=20 \sqrt{2}\left(\frac{1}{2 \sqrt{2}}-\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)\right) \\
& =20 \sqrt{2}\left(\frac{1}{2 \sqrt{2}}-\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right) \\
& =20 \sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right) \\
& =20-10 \sqrt{2}
\end{aligned}
$$

Maximum value of value.
n is $(20-10 \sqrt{2})$

