Year 12
 Mathematics Extension 1
 Trial Examination 2008

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - 84

- Attempt Questions 1 - 7
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total Marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks)
a) Find the size of the acute angle between the two lines $y=2 x-3$ and
$y=4-x$. Leave your answer correct to the nearest degree.
(b) Find a primitive of $\int \frac{5}{\sqrt{4-x^{2}}} d x$.
(c) A family of two parents and four children is being arranged in a line for a family photograph.

Calculate the number of possible arrangements if the two parents are placed at opposite ends of the line.
(d) Solve for $x: \frac{x}{8-x} \leq 1$.
(e) Consider the polynomial given by $P(x)=x^{3}-12 x+16$.
(i) Show that $(x-2)$ is a factor of $P(x)$.
(ii) Solve $P(x)=0$.
(a) Sketch the graph of $y=2 \cos ^{-1} x$, clearly indicating the domain and range of the function.
(b) How many different arrangements are there of the letters in the word NARRABRI?
(c) Solve $\sin 2 x-\sin x=0$ for $0 \leq x \leq 2 \pi$.
(d) Evaluate $\int_{0}^{1} x\left(x^{2}+1\right)^{5} d x$ using the substitution $u=x^{2}+1$.
(e)

Not to Scale

The diagram above shows the graph of $y=3 \cos ^{2} 2 x$ for $0 \leq x \leq \frac{\pi}{2}$. Find the value of the shaded area bounded by the curve $y=3 \cos ^{2} 2 x$,
the x-axis and the lines $x=0$ and $x=\frac{\pi}{2}$.
a) A project team consisting of 2 engineers and 3 draftspersons is to be formed for a particular project. There are 6 engineers and 9 draftspersons available for selection. How many different project teams can be formed?
(b) Use the expansion of $\cos (A+B)$ to show that

$$
\cos 105^{\circ}=\frac{\sqrt{2}-\sqrt{6}}{4}
$$

(c) A term of the expansion of $(2+m x)^{12}$ is $24057 x^{5}$. Find the value of m.
(d) Use the principle of mathematical induction to prove that

$$
4+16+64+\ldots+4^{n}=\frac{4^{n+1}-4}{3}
$$

for all integers $n \geq 1$.

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$ such that $P Q$ is a focal chord with equation $y=\left(\frac{p+q}{2}\right) x-a p q$. The focus, F, has coordinates $(0, a)$ and O is the origin.
(i) Show that $p q=-1$.
(ii) The tangents to the parabola at P and Q have equations $y=p x-a p^{2}$
and $y=q x-a q^{2}$ respectively. The tangents intersect at the point T. Show that T lies on the directrix $y=-a$.
(a) A particle is moving such that its displacement x metres from a fixed point O at any time t seconds is given by

$$
x=2 \cos 3 t-\sqrt{12} \sin 3 t .
$$

(i) Prove that the motion is simple harmonic by showing that $\ddot{x}=-9 x$.
(ii) Find exact values for R and α such that

$$
2 \cos 3 t-\sqrt{12} \sin 3 t \equiv R \cos (3 t+\alpha)
$$

where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$.
(iii) Hence, find the first time when the particle is at the centre of motion.
(b)

Not to
Scale

A rectangle $N P Q M$ is inscribed in a circle of radius 20 centimetres with centre at O such that $N Q$ and $M P$ are diameters. The angle, θ radians, between these two diameters is increasing at the rate of 0.1 radians per second.
(i) Show that the area of the rectangle, A square centimetres, is given by

$$
A=800 \sin \theta
$$

(ii) Calculate the rate at which the area A is changing when the angle between the diameters is $\frac{\pi}{6}$ radians.
(c) By applying the binomial theorem to $(1+x)^{2 n}$ and differentiating, show that

In the diagram, O is the centre of the smaller circle $C_{1} . P$ is a point on the circle C_{1} and the centre of the larger circle $C_{2} . X Y$ is a common tangent to both the circles at the point T. The diameter $P T$ of circle C_{1} is produced to meet circle C_{2} at the point A. The points B and H lie on the circle C_{2}. $B T$ meets circle C_{1} at the point E and $A H$ at the point F. Let $\angle B T X=\theta$.

Show that $A H$ bisects $\angle T A B$

$$
n \times 4^{n}={ }^{2 n} C_{1}+2^{2 n} C_{2}+\ldots+k^{2 n} C_{k}+\ldots+2 n^{2 n} C_{2 n} .
$$

(a) A particle moves so that its acceleration at any time t seconds is given by $\ddot{x}=-8 e^{-4 x}$. Initially the particle is at the origin, O, with velocity $2 \mathrm{~m} / \mathrm{s}$.
(i) Show that the velocity of the particle at any time t is given by $\dot{x}=2 e^{-2 x}$.
(ii) Hence, show that the displacement of the particle at any time t is given $\mathbf{3}$ by $x=\frac{1}{2} \ln (4 t+1)$.
(b) A rectangular TV screen is set up in a level field for spectators to watch a movie. The screen is mounted 4 metres off the ground and is 9 metres high and 16 metres wide

Tom sits directly in front of the centre of the screen at the point A which is x metres from the point B directly below the screen as shown in the diagrams below. The angle $D A C$ through which he views the bottom of the screen C and the top of the screen D is θ radians as shown

3D view

Side view

Let angle $C A B$ be α radians.
(i) By considering the expansion of $\tan (\theta+\alpha)$, show that

$$
\theta=\tan ^{-1}\left(\frac{9 x}{52+x^{2}}\right)
$$

(ii) Hence, or otherwise, find the value of x (correct to 2 decimal places) for
(a) A six-sided die is weighted so that the probability of rolling a "six" is twice that of any other number. Find the probability of rolling at least nine "sixes" in 10 rolls of this die. [You do not need to simplify your answer.]
(b) The wall of a fort on level ground is 3 metres thick and 20 metres high. A projectile is fired from a point O outside the fort, h metres from the base of the wall of the fort, towards the fort as shown in the diagram below.

It is assumed that the path of the projectile traces out a parabola of the form $y=b x-a x^{2}$ where a and b are constants.
(i) Show that $b=\frac{20(2 h+3)}{h(h+3)}$ and $a=\frac{20}{h(h+3)}$. $\left[\right.$ i.e. Show that $\left.y=\frac{20(2 h+3) x}{h(h+3)}-\frac{20 x^{2}}{h(h+3)}.\right]$
(ii) Let the angle of projection of the projectile be θ degrees and the initial velocity be $V \mathrm{~m} / \mathrm{s}$ and the constant of gravity be $g=10$
Hence the equations of motion are $x=V t \cos \theta$ and $y=V t \sin \theta-5 t^{2}$. Show that the equation of the path of flight of the projectile is given by

$$
y=x \tan \theta-\frac{5 x^{2}}{V^{2} \cos ^{2} \theta}
$$

(iii) Hence, show that $V^{2} \cos ^{2} \theta=\frac{h(h+3)}{4}$.
(iv) If the projectile is fired at an angle of 45°, find the values of h and V correct to 2 decimal places.

End of Paper

YEAR 12 EXT 1 MATHS - Trial Exam 2008
(aa)

$$
\begin{aligned}
& m_{1}=2, m_{2}=-1 \\
& \tan \theta=\left|\frac{2--1}{1+2 \times-1}\right| \\
& \tan \theta=\left|\frac{3}{-1}\right| \\
& \theta=\tan ^{-1} 3 \\
& \text { Angle }=71^{\circ} 33^{\prime} 54.18^{\prime \prime} \\
& \div 72^{\circ} \text { (nearest } \\
&= \\
& \text { degree) }
\end{aligned}
$$

b)

$$
\begin{aligned}
\int \frac{5}{4-x^{2}} d x & =5 \int \frac{1}{\sqrt{4-x^{2}}} d x \\
& =5 \sin ^{-1}\left(\frac{x}{2}\right)+c
\end{aligned}
$$

c)

$$
\begin{aligned}
& 27 \sqrt{2} \times 13 \times 2] \times 1] \times 1] \\
& p c c c
\end{aligned}
$$

$$
p \subset c \subset \subset p
$$

$$
\text { Arrangements }=2!\times 4!
$$

$$
=48
$$

d) $\frac{x}{8-x} \leqslant 1$
critical points

1) $x=8$
2) $\frac{x}{8-x}=1$

$$
\begin{aligned}
& x=8-x \\
& 2 x=8 \\
& x=4
\end{aligned}
$$

$\therefore x \leqslant 4$ or ${ }^{8}>8$
(1)e)i)

$$
\begin{aligned}
P(2) & =2^{3}-12 \times 2+16 \\
& =0
\end{aligned}
$$

$\therefore(x-2)$ is a factor.
ii)

$$
\begin{aligned}
P(x) & =(x-2)\left(x^{2}+2 x-8\right) \\
& =(x-2)(x+4)(x-2) \\
\text { let } P(x) & =0 \\
O & =(x-2)^{2}(x+4) \\
\therefore x & =2 \text { or } x=-4 .
\end{aligned}
$$

Question 2

b). arrangements $=\frac{8!}{3!2!}$

$$
=3360
$$

c) $\sin 2 x-\sin x=0$

$$
\begin{aligned}
& 2 \sin x \cos x-\sin x=0 \\
& \sin x(2 \cos x-1)=0 \\
& \sin x=0 \text { or } \cos x=\frac{1}{2} \\
& x=0, \pi, 2 \pi \text { or } \frac{\pi}{3}, 2 \pi-\frac{\pi}{3}
\end{aligned} \quad x=0, \pi, 2 \pi, \frac{\pi}{3} \text { or } \frac{5 \pi}{3}
$$

(2) d

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
\int_{0}^{1} x\left(x^{2}+1\right)^{5} d x \\
u=x^{2}+1 \\
\frac{d u}{d x}=2 x \\
\frac{d u}{}=2 x d x \\
\frac{\text { Limits }}{x=0} \quad x=1 \\
u=1 \quad u=2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{1}{2} \int_{0}^{1} 2 x\left(x^{2}+1\right)^{5} d x & =\frac{1}{2} \int_{1}^{2} u^{5} d u \\
& =\frac{1}{2}\left[\frac{u^{6}}{6}\right]_{1}^{2} \\
& =\frac{1}{2}\left(\frac{2^{6}}{6}-\frac{1^{6}}{6}\right) \\
& =5 \frac{1}{4}
\end{aligned}
$$

e). Curve is symmetrical about $x=\frac{\pi}{4}$.

$$
\begin{aligned}
\therefore \text { Area } & =2 \int_{0}^{\frac{\pi}{4}} 3 \cos ^{2} 2 x d x \\
& =6 \int_{0}^{\frac{\pi}{4}} \cos ^{2} 2 x d x
\end{aligned}
$$

Consider

$$
\begin{aligned}
\cos 2 A & =2 \cos ^{2} A-1 \\
\therefore \cos ^{2} A & =\frac{\cos 2 A+1}{2} \\
\therefore \cos ^{2} 2 x & =\frac{\cos 4 x+1}{2}
\end{aligned}
$$

De) contd....

$$
\begin{aligned}
\text { Area } & =6 \int_{0}^{\frac{\pi}{4}} \frac{\cos 4 x+1}{2} d x \\
& =3 \int_{0}^{\frac{\pi}{4}}(\cos 4 x+1) d x \\
& =3\left[\frac{1}{4} \sin 4 x+x\right]_{0}^{\frac{\pi}{4}} \\
& =3\left(\left(\frac{1}{4} \sin \frac{4 \pi}{4}+\frac{\pi}{4}\right)-\left(\frac{1}{4} \sin 0+0\right)\right) \\
& =\frac{3 \pi}{4} \text { units }^{2}
\end{aligned}
$$

QUESTION 3
a).

$$
\begin{aligned}
\text { teams } & ={ }^{6} C_{2} \times{ }^{9} C_{3} \\
& =1260
\end{aligned}
$$

$$
\text { b). } \begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\therefore \cos 105^{\circ} & =\cos \left(60^{\circ}+45^{\circ}\right) \\
& =\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ} \\
& =\frac{1}{2} \times \frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{1-\sqrt{3}}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \text { C) }(2+m x)^{12} \\
& 24057 x^{5}={ }^{12} C_{5} 2^{A}(m x)^{\text {包 }} \\
& =792 \times 2^{7} m^{5} x^{5} \\
& \therefore 24057=101376 \mathrm{~m}^{5} \\
& m^{5}=\frac{243}{1024} \\
& \therefore m=\frac{3}{4}
\end{aligned}
$$

d(7) Prove true for $n=1$

$$
\begin{aligned}
\text { LHS } & =4^{\prime} \\
& =4 \\
\text { RMS } & =\frac{4^{1+1}-4}{3} \\
& =\frac{12}{3} \\
& =4 \\
& =\text { CHS } \\
\therefore \text { true } & \text { for } n=1
\end{aligned}
$$

(*) Assume true for $n=k$
ie. $4+16+64+\ldots+4^{k}=\frac{4^{k+1}-4}{3}$
Prove true for $n=k+1$
ie. prove $4+16+64+\ldots+4^{k}+4^{k+1}=\frac{4^{k+2}-4}{3}$

$$
\begin{aligned}
L H S & =\underbrace{4+16+64+\ldots+4^{k}+4^{k+1}} \\
& \frac{4^{k+1}-4}{3}+4^{k+1} \text { by assumption } \\
& =\frac{4^{k+1}-4+3.4^{k+1}}{3} \\
& =\frac{4.4^{k+1}-4}{3}
\end{aligned}
$$

(3) d) contd...

$$
\begin{aligned}
L H S & =\frac{4^{k+2}-4}{3} \\
& =\text { RHS }
\end{aligned}
$$

Hence, if it is true for $n=k$,
then it is true for $n=k+1$.
Since it is true for $n=1$,
then it is true for $n=1+1=2$, and also for $n=2+1=3$, and so on for all integers $n \geqslant 1$.
(3)
e) i) Since $F(0, a)$ lies on focal chord, subst. $(0, a)$ into eqn of chord.

$$
\begin{aligned}
& a=\left(\frac{p+q}{2}\right) \times 0-a p q \\
& \frac{a}{-a}=\frac{-a p q}{-a}
\end{aligned}
$$

$$
p q=-1
$$

ii) Solve tangents simultaneously

$$
\begin{aligned}
p x-a p^{2} & =q x-a q^{2} \\
p x-q x & =a p^{2}-a q^{2} \\
(p-q) x & =a(p-q)(p+q) \\
x & =a(p+q)
\end{aligned}
$$

sub into $y=p x-a p^{2}$

$$
\begin{aligned}
y & =p(a(p+q))-a p^{2} \\
& =a p^{2}+a p q-a p^{2} \\
& =a p q
\end{aligned}
$$

but $p q=-1(\operatorname{part}(i))$
$\therefore y=-a$ which means T lies on directrix.

QUESTION 4
a) i)

$$
\text { a)i) } \begin{aligned}
x & =2 \cos 3 t-\sqrt{12} \sin 3 t \\
\dot{x} & =-6 \sin 3 t-3 \sqrt{12} \cos 3 t \\
\ddot{x} & =-18 \cos 3 t+9 \sqrt{12} \sin 3 t \\
& =-9(2 \cos 3 t-\sqrt{12} \sin 3 t) \\
\therefore \ddot{x} & =-9 x \text { as } x=2 \cos 3 t-\sqrt{12} \sin 3 t)
\end{aligned}
$$

ii)

$$
\text { let } \begin{aligned}
2 \cos 3 t-\sqrt{12} \sin 3 t & \equiv R \cos (3 t+\alpha) \\
& =R \cos 3 t \cos \alpha-R \sin 3 t \sin \alpha
\end{aligned}
$$

equating coefficients

$$
\begin{aligned}
& \text { By pythag. } \\
& R^{2}=\sqrt{12}^{2}+2^{2} \\
& \tan \alpha=\frac{\sqrt{12}}{2} \\
& \therefore R=4 \text {. } \\
& \alpha=\frac{\pi}{3} \\
& \therefore 2 \cos 3 t-\sqrt{12} \sin 3 t \equiv 4 \cos \left(3 t+\frac{\pi}{3}\right)
\end{aligned}
$$

iii) At centre of motion when $x=0$

$$
\begin{aligned}
& 4 \cos \left(3 t+\frac{\pi}{3}\right)=0 \\
& \cos \left(3 t+\frac{\pi}{3}\right)=0 \\
& \therefore 3 t+\frac{\pi}{3}=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots \\
& 3 t \quad=\frac{\pi}{6}, \frac{7 \pi}{6}, \ldots \quad \therefore \quad \text { Fist at centre } \\
& t=\frac{\pi}{18}, \ldots . \quad \frac{\pi}{18} \text { seconds } .
\end{aligned}
$$

$4(b)$

$$
\text { i). Area of } \begin{aligned}
\triangle P O Q & =\frac{1}{2} \times 20 \times 20 \sin \theta \\
& =200 \sin \theta \\
\text { Area of } \triangle N O P & =\frac{1}{2} \times 20 \times 20 \sin (180-\theta) \\
& =\frac{1}{2} \times 20 \times 20 \sin \theta \quad(\sin \theta=\sin (180-\theta) \\
& =200 \sin \theta
\end{aligned}
$$

$$
\therefore \text { Area Rectangle }=2 \times \text { Area } \triangle P O Q+2 \times \text { Area } \triangle N O P
$$

$$
=2 \times 200 \sin \theta+2 \times 200 \sin \theta
$$

$$
\therefore A=800 \sin \theta .
$$

ii) $\frac{d \theta}{d t}=0.1$ (gwen)
need $\frac{d A}{d t}=\frac{d A}{d \theta} \times \frac{d \theta}{d t}$

$$
\begin{aligned}
\frac{d A}{d t} & =800 \cos \theta \times 0.1 \\
& =80 \cos \theta
\end{aligned}
$$

When $\theta=\frac{\pi}{6}$

$$
\begin{aligned}
\frac{d A}{d t} & =80 \cos \frac{\pi}{6} \\
& =\frac{80 \sqrt{3}}{2}
\end{aligned}
$$

\therefore Area increasing at $40 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{secon}$ d
(4)c) $(1+x)^{2 n}={ }^{2 n} c_{0}+{ }^{2 n} c_{1} x+{ }^{2 n} c_{2} x^{2}+{ }^{2 n} C_{3} x^{3}+\ldots+C_{k}^{2 n} x^{k}+\ldots+{ }_{2 n} c_{2 n} x^{2 n}$

Differentiate both sides w.r.t. x.

$$
2 n(1+x)^{2 n-1}=0+{ }^{2 n} c_{1}+2^{2 n} c_{2} x+3^{2 n} c_{3} x^{2}+\ldots+k^{2 n} c_{k} x^{k-1} \ldots+2 n^{2 n} c_{2 n}^{2 n-1}
$$

subs $x=1$

$$
\begin{aligned}
& 2 n(1+1)^{2 n-1}={ }^{2 n} C_{1}+2^{2 n} C_{2}(1)+3^{2 n} C_{3}(1)^{2}+\ldots+k^{2 n} C_{k}(1)^{k-1}+\ldots+2 n^{2 n} C_{2 n}(1)^{2 n-1} \\
& 2 n \times 2^{2 n-1}={ }^{2 n} C_{1}+2^{2 n} C_{2}+3^{2 n} C_{3}+\ldots+k^{2 n} C_{k}+\ldots+2 n^{2 n} C_{2 n} \\
& n \times 2^{\prime} \times 2^{2 n-1}={ }^{2 n} C_{1}+2^{2 n} C_{2}+3^{2 n} C_{3}+\ldots \quad \ldots+2 n^{2 n} C_{2 n} \\
& n \times 2^{2 n}=\cdots . \\
& n \times 4^{n} \quad={ }^{2 n} C_{1}+2^{2 n} C_{2}+3^{2 n} C_{3}+\ldots \quad \ldots+2 n^{2 n} C_{2 n}
\end{aligned}
$$

QUESTION 5
see over...

Question 5
a)

$\angle T A B=\angle B T X \quad \begin{gathered}\text { in circle } C_{2} \text {, } \\ \text { angle between tangent and chord }\end{gathered}$

$$
=\theta
$$ drawn to point of contact is equal to angle in alternate segment)

Likeioise in circle C_{1},

$$
\begin{aligned}
\angle T P H & =\angle B T X \\
& =\theta
\end{aligned}
$$

Now,
$\angle T P H=2 \times \angle T A H$ (angle at centre of circle C_{2} is
$\therefore \angle T A H=\frac{\theta}{2} \quad \begin{aligned} & \text { equal to twice angle at } \\ & \text { circumference stander }\end{aligned}$ circumference standing on same arc)

$$
\therefore \angle T A H=\frac{1}{2} \times \angle T A B
$$

$\therefore A H$ bisects $\angle T A B$.
(5) b)

i) Domain of $y=f^{-1}(x)$ is $1 \leqslant x<2$.
ii) P lis on point of intersection of $y=x$ and $y=f(x)$ solving simultaneously,

$$
\begin{gathered}
x=2-e^{-x} \\
\therefore x+e^{-x}-2=0
\end{gathered}
$$

iii) $\operatorname{let} g(x)=x+e^{-x}-2$

$$
\therefore g^{\prime}(x)=1-e^{-x}
$$

Better approx of x-cord of P

$$
\begin{aligned}
x_{1} & =1.8-\frac{1.8+e^{-1.8}-2}{1-e^{-1.8}} \\
& =1.84157 \ldots \\
& \vdots 1.8416 \quad(4 \mathrm{~d} p)
\end{aligned}
$$

(5) b) contd...
v)

$$
\begin{aligned}
\text { Area } & =2 \times \int_{0}^{1.8416}\left(2-e^{-x}-\dot{x}\right) d x \\
& =2\left[2 x+e^{-x}-\frac{x^{2}}{2}\right]_{0}^{1.8416} \\
& =2\left[\left(2 \times 1.8416+e^{-1.8416}-\frac{1.8416^{2}}{2}\right)-\left(0+e^{0}-0\right)\right] \\
& =2[2.146 \ldots-1] \\
& =2.29203 \ldots . \\
& \vdots 2.2920 \text { units }^{2}(4 d p)
\end{aligned}
$$

Question 6
a) i)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =\ddot{x} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-8 e^{-4 x} \\
\frac{1}{2} v^{2} & =\int-8 e^{-4 x} d x \\
\frac{1}{2} v^{2} & =2 e^{-4 x}+C
\end{aligned}
$$

when $x=0, v=2$

$$
\begin{aligned}
\frac{1}{2} \times 2^{2} & =2 e^{0}+c \\
2 & =2+c
\end{aligned}
$$

$$
0=c
$$

(6) a) i) cont'd...

$$
\begin{aligned}
\therefore \quad \frac{1}{2} v^{2} & =2 e^{-4 x} \\
v^{2} & =4 e^{-4 x} \\
v & = \pm \sqrt{4 e^{-4 x}}
\end{aligned}
$$

But when $x=0, v>0$

$$
\begin{aligned}
\therefore V & =\sqrt{4 e^{-4 x}} \\
& =2\left(e^{-4 x}\right)^{\frac{1}{2}} \\
\therefore V & =2 e^{-2 x}
\end{aligned}
$$

(6) a) $i i)$

$$
\begin{aligned}
\frac{d x}{d t} & =2 e^{-2 x} \\
\frac{d x}{d t} & =\frac{2}{e^{2 x}} \\
\frac{d t}{d x} & =\frac{e^{2 x}}{2} \\
t & =\int \frac{e^{2 x}}{2} d x \\
t & =\frac{1}{2} \times \frac{1}{2} e^{2 x}+c_{1}
\end{aligned}
$$

when $t=0, x=0$

$$
\begin{aligned}
& \therefore 0=\frac{1}{4} e^{0}+c_{1} \\
& \therefore c_{1}=-\frac{1}{4}
\end{aligned}
$$

Hence $t=\frac{1}{4} e^{2 x}-\frac{1}{4}$

$$
\begin{aligned}
4 t & =e^{2 x}-1 \\
4 t+1 & =e^{2 x}
\end{aligned}
$$

(6) a) ii) cont'd...

$$
\begin{gathered}
\log _{e}(4 t+1)=2 x \\
\therefore \quad x=\frac{1}{2} \ln (4 t+1)
\end{gathered}
$$

(6) b) i)

$\ln \triangle C A B, \tan \alpha=\frac{4}{x}$
$\ln \triangle B A D, \tan (\theta+\alpha)=\frac{13}{x}$
Consider $\tan (\theta+\alpha)=\frac{\tan \theta+\tan \alpha}{1-\tan \theta \tan \alpha}$

$$
\begin{aligned}
\therefore \quad \frac{13}{x} & =\frac{\tan \theta+\frac{4}{x}}{1-\frac{4 \tan \theta}{x}} \times \frac{x}{x} \\
\frac{13}{x} & =\frac{x \tan \theta+4}{x-4 \tan \theta}
\end{aligned}
$$

$$
13(x-4 \tan \theta)=x(x \tan \theta+4)
$$

$$
13 x-52 \tan \theta=x^{2} \tan \theta+4 x
$$

$$
9 x=x^{2} \tan \theta+52 \tan \theta
$$

$$
9 x=\tan \theta\left(x^{2}+52\right)
$$

$$
\frac{9 x}{x^{2}+52}=\tan \theta
$$

$$
\therefore \theta=\tan ^{-1}\left(\frac{9 x}{x^{2}+52}\right)
$$

(6) b) ii)

$$
\frac{d \theta}{d x}=\frac{1}{1+\left(\frac{9 x}{x^{2}+52}\right)^{2}} \times \frac{\left(x^{2}+52\right) \cdot 9-9 x(2 x)}{\left(x^{2}+52\right)^{2}}
$$

Maximin value of θ when $\frac{d \theta}{d x}=0$

$$
\begin{array}{rl}
0 & =\frac{9\left(x^{2}+52\right)-18 x^{2}}{\left(1+\left(\frac{9 x}{x^{2}+52}\right)^{2}\right)\left(x^{2}+52\right)^{2}} \\
0 & =9 x^{2}+468-18 x^{2} \\
0 & =468-9 x^{2} \\
& =9\left(52-x^{2}\right) \\
\therefore x^{2}=52 \\
x & x= \pm \sqrt{52}
\end{array}
$$

But x is a length and must be positive.
test $x=\sqrt{52}$

x	7	$\sqrt{52}$	8
$\frac{d \theta}{d x}$	$0.101 \ldots$	0	-0.004

\therefore Maximum viewing angle when $x=\sqrt{52}$

$$
\text { ie. } \begin{array}{r}
x \div 7.21 \\
(2 d p)
\end{array}
$$

QUESTION 7
(7)
a)

$$
P\left(\begin{array}{ll}
\text { axes least } 9
\end{array}\right)={ }^{10} C_{10}\left(\frac{2}{7}\right)^{10}+C_{9}^{10} C_{9}\left(\frac{2}{7}\right)^{9}\left(\frac{5}{7}\right)^{1}
$$

Alternative interpretation:

$$
\left.\begin{array}{l}
P\binom{\text { one rod. }}{\text { one }}=\frac{2}{3} \\
P(\text { at least } \\
9 \text { sixes }
\end{array}\right)={ }^{10} C_{10}\left(\frac{2}{3}\right)^{10}+{ }^{10} C_{a}\left(\frac{2}{3}\right)^{9}\left(\frac{1}{3}\right)^{1} .
$$

(7)

parabola: $y=b x-a x^{2}$
subst point ($h, 20$)

$$
\begin{align*}
20 & =b h-a h^{2} \\
\therefore \quad b & =\frac{20+a h^{2}}{h} \tag{1}
\end{align*}
$$

subst point $(h+3,20)$

$$
\begin{align*}
& 20=b(h+3)-a(h+3)^{2} \\
& 20=b h+3 b-a h^{2}-6 a h-9 a \tag{2}
\end{align*}
$$

subst eqn (1) into eqr (2)

$$
\begin{aligned}
& 20=h\left(\frac{20+a h^{2}}{h}\right)+3\left(\frac{20+a h^{2}}{h}\right)-a h^{2}-6 a h-9 a \\
& 20=20+a h^{2}+\frac{60}{h}+3 a h-a h^{2}-6 a h-9 a \\
& 0=\frac{60}{h}-3 a h-9 a \\
& 3 a h+9 a=\frac{60}{h} \\
& a(3 h+9)=\frac{60}{h}
\end{aligned}
$$

(7) b) i) $\operatorname{cont}^{1} d \ldots$

$$
\begin{aligned}
& a=\frac{60}{h(3 h+9)} \\
& a=\frac{60}{3 h(h+3)} \\
& a=\frac{20}{h(h+3)}
\end{aligned}
$$

subset into eqn (1)

$$
\begin{aligned}
b & =\frac{20+\left(\frac{20}{h(h+3)}\right) h^{2}}{h} \\
h b & =20+\frac{20 h}{h+3} \\
h b & =\frac{20(h+3)+20 h}{h+3} \\
b & =\frac{20 h+60+20 h}{h(h+3)} \\
b & =\frac{40 h+60}{h(h+3)} \\
& =\frac{20(2 h+3)}{h(h+3)}
\end{aligned}
$$

(7) b) ii)

$$
\begin{aligned}
& \text { i) } x=V t \cos \theta \\
& \therefore t=\frac{x}{V \cos \theta}
\end{aligned}
$$

sulbst into $y=V t \sin \theta-5 t^{2}$

$$
\begin{aligned}
& y=V \cdot \frac{x}{V \cos \theta} \cdot \sin \theta-5\left(\frac{x}{V \cos \theta}\right)^{2} \\
& y=x \tan \theta-\frac{5 x^{2}}{V^{2} \cos ^{2} \theta}
\end{aligned}
$$

b) iii) Equating coefficients of x^{2} in parts (ε) \& (ii)

$$
\begin{aligned}
& \frac{20}{n(h+3)}=\frac{5}{V^{2} \cos ^{2} \theta} \\
& 20 V^{2} \cos ^{2} \theta=5 h(h+3) \\
& V^{2} \cos ^{2} \theta=\frac{h(h+3)}{4}
\end{aligned}
$$

iv) If $\theta=45^{\circ}$
then $V^{2} \cos ^{2} 45^{\circ}=\frac{h(h+3)}{4}$

$$
\begin{align*}
v^{2}\left(\frac{1}{2}\right) & =\frac{h(h+3)}{4} \\
v^{2} & =\frac{h(h+3)}{2}
\end{align*}
$$

(7) b) iv) cont'd...

Equating coefs of x in parts (ii) \& (i)

$$
\begin{gathered}
\tan \theta=\frac{20(2 h+3)}{h(h+3)} \\
\text { But } \theta=45^{\circ} \\
\tan 45^{\circ}=\frac{20(2 h+3)}{h(h+3)} \\
1=\frac{20(2 h+3)}{h(h+3)} \\
h^{2}+3 h=40 h+60 \\
h^{2}-37 h-60=0 \\
h=\frac{37 \pm \sqrt{37^{2}-4 \times 1 \times-60}}{2} \\
=\frac{37 \pm \sqrt{1609}}{2}
\end{gathered}
$$

But h is a length and must be positive.

$$
\begin{aligned}
\therefore h & =\frac{37+\sqrt{1609}}{2} \\
& =38.556 \ldots
\end{aligned}
$$

Subst this into eqn (A)

$$
\begin{aligned}
V^{2} & =\frac{38.556 \ldots(38.556 \ldots+3)}{2} \\
V^{2} & =801 \cdot 123 \ldots \\
\therefore V & = \pm \sqrt{801.123 \ldots} \\
\therefore V & =28.304 \ldots \quad \text { (as velocity }>0 \text { initially) }
\end{aligned}
$$

