Year 12

Mathematics Extension 1

Trial HSC Examination 2011

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Note: Any time you have remaining should be spent revising your answers.

Total marks - 84

- Attempt Questions $1-7$
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total Marks - 84
Attempt Questions 1 - 7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Question 1 (12 marks)
(a) The interval $A B$, where $A(1,-2)$ and $B(6,7)$, is divided externally in the ratio $2: 3$ by the point $P(x, y)$. Find the values of x and y
(b) Find the domain and range of the function $f(x)=2 \sin ^{-1} 3 x$
(c) Solve $x-1 \leq \frac{2}{x}$.
(d) Differentiate $\sin ^{-1}(\cos x)$. Write your answer in simplest form
(e) Use the substitution $u=1+x$ to find $\int \frac{x}{\sqrt{1+x}} d x$.
a) The acceleration of a particle is given by $\ddot{x}=4(x+1) \mathrm{ms}^{-2}$. Initially, the particle is at the origin and velocity is $2 \mathrm{~ms}^{-1}$.
(i) Show that the velocity, v, at any position, x, is given by $v=2 x+2$.
(ii) Hence show that $x=e^{2 t}-1$.
(b)
(i) Express $\cos \theta-\sqrt{3} \sin \theta$ in the form $R \cos (\theta+\alpha)$ where $R>0$ and

$$
0 \leq \alpha \leq \frac{\pi}{2}
$$

(ii) Hence, or otherwise, solve $\cos \theta-\sqrt{3} \sin \theta=1$ for $0 \leq \theta \leq 2 \pi$.
(c)

NOT TO SCALE

Two circles intersect at P and $Q . R P T$ is a straight line where R is a point on the first circle and T is a point on the second circle. The tangent at R and the tangent at T meet at S.

Copy the diagram into your booklet.
Prove that $Q R S T$ is a cyclic quadrilateral.
(a)
(i) Show that the equation $e^{-x}=\sin 2 x$ has a root lying between 1 and 2 .
(ii) By taking 1.5 as a first approximation, use Newton's method once, to obtain a better approximation to this root. (Give your answer correct to 2 decimal places).
(b) Let T be the temperature in a room at time t and let A be the temperature of its surroundings. Newton's Law of Cooling states that the rate of change of temperature T is proportional to $(T-A)$ i.e. $\frac{d T}{d t}=k(T-A)$.
(i) Verify that $T=A+B e^{k t}$ is a solution to $\frac{d T}{d t}=k(T-A)$.
(ii) If the temperature of a substance in a room of constant temperature $6^{\circ} \mathrm{C}$ is noted to be $29^{\circ} \mathrm{C}$ and in 40 minutes to be $14^{\circ} \mathrm{C}$, find the value of B and k.
(iii) Find how long it takes for the temperature of the substance to reach $9^{\circ} \mathrm{C}$. Give your answer to the nearest minute.
(c) The polynomial $P(x)=2 x^{3}+k x^{2}+3 x-4$ has roots α, β and γ.
(i) Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(ii) If one root is the reciprocal of the other, find the third root and hence find the value of k.
(a) Evaluate $\int_{0}^{3} \frac{d x}{9+x^{2}}$.
(b) Find the term independent of x in the expansion $\left(x^{2}+\frac{2}{x}\right)^{9}$.
(c) The region bounded by the curve $y=3 \sin 2 x$, the x-axis and the line $x=\frac{\pi}{4}$ is rotated about the x-axis to form a solid of revolution.

Find the volume of the solid formed.
(d)

A hollow cone with vertical angle 60° is held with its axis vertical and vertex downwards.

Sand is being poured into the cone at a uniform rate of 15 cubic metres per second.
(i) Show that when the sand level has reached a height of h metres, the
volume of the sand in the cone, in cubic metres, is given by $V=\frac{1}{9} \pi h^{3}$.
(ii) Find the rate at which the sand level is rising when its depth is 4 metres. 2
(Express your answer in terms of π).
(a) Consider the function $f(x)=e^{x+2}$
(i) Find the inverse function $f^{-1}(x)$.
(ii) Sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ clearly indicating any intercepts with the axes.
(b)

A pebble is projected from the top of a vertical cliff with velocity $20 \mathrm{~ms}^{-1}$ at an angle of elevation of 30°. The cliff is 40 metres high and overlooks a lake.

Assume that, t seconds after release of the pebble, the horizontal displacement from O is given by $x=10 \sqrt{3} t$. (DO NOT prove this).
(i) Assuming the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$, show that the pebble's vertical displacement is given by $y=-5 t^{2}+10 t+40$.
(ii) Calculate the time which elapses before the pebble hits the lake and the distance of the point of impact from the foot of the cliff.
(iii) Find the angle and the speed at which the pebble hits the lake.
(a) Use the process of mathematical induction to prove that $2^{3 n}-1$ is divisible by 7 for all integers $n \geq 1$.
(b)

In the diagram above a focal chord $P Q$ intersects the parabola $x^{2}=4 a y$ at points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$. The tangents to the parabola at point P and point Q intersect at T.
(i) Show that the equation of the chord $P Q$ is given by $y=\left(\frac{p+q}{2}\right) x-a p q$.
(ii) Show that $p q=-1$
(iii) Show that the acute angle between the focal chord $Q P$ and the tangent $T P$ to the parabola at P is given by $\tan ^{-1}|q|$.
(c) Consider the expansion of $\left(\frac{1}{3}+2 x\right)^{18}$.
(i) Show that the $(k+1)$ th term is given by $T_{k+1}={ }^{18} C_{k} \frac{2^{k}}{3^{18-k}} x^{k}$.
(ii) Hence, or otherwise, find the greatest coefficient of the expansion

The diagram below illustrates the movement of a piston head in a combustion engine. As the disc rotates, the shaft ($B P$) moves the piston head up and down. The radius of the rotating disc is 4 cm and the vertical displacement of the piston at any time t seconds is given by the equation $y=4 \cos 10 t$.

(i) Find $\frac{d y}{d t}$ and $\frac{d^{2} y}{d t^{2}}$ and hence show that the piston moves in simple harmonic motion.
(ii) State the period of the motion in exact form
(iii) Find the exact velocity of the piston when $y=3 \mathrm{~cm}$ at the first time it 2 reaches this point.
(iv) Show that $O B=4 \cos \theta+\sqrt{B P^{2}-16 \sin ^{2} \theta}$
(v) If the disc is rotating at a rate of 10 radians/second, and

$$
\begin{aligned}
& \frac{d(O B)}{d t}=\frac{d(O B)}{d \theta} \times \frac{d \theta}{d t} \text { show that } \\
& \frac{d(O B)}{d t}=-40 \sin \theta\left[1+\frac{\cos \theta}{\sqrt{\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta}}\right]
\end{aligned}
$$

(vi) Calculate $\frac{d(O B)}{d t}$, the rate at which the distance $O B$ is changing over time, when $\theta=\pi$.

201: EXTEIISION 1 TRIAL HST
Question 1:

$$
\begin{equation*}
\therefore \quad P(-9,-20) \tag{2}
\end{equation*}
$$

b) $f(x)=2 \sin ^{-1} 3 x$

Domain: $-1 \leqslant 3 x \leqslant 1$

$$
-\frac{1}{3} \leq x \leq \frac{1}{3}
$$

Range: $\quad-\frac{\pi}{2} \leqslant \frac{y}{2} \leqslant \frac{\pi}{2}$

$$
\begin{equation*}
-\pi \leqslant y \leqslant \pi \tag{2}
\end{equation*}
$$

c) critical points.

1. $x \neq 0$
2. Solve $x-1=\frac{2}{x}$

$$
\begin{gathered}
x^{2}-x=2^{x} \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
\therefore x=-1 \text { or } 2
\end{gathered}
$$

3. Test,

$$
x=-2 \vee \quad \therefore \quad x \leqslant-1 \text { or } 0<x \leqslant 2
$$

$$
x=-\frac{1}{2} \quad x
$$

$$
\begin{aligned}
& x=1 \quad v \\
& x=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \\
& \text {) }(1,-2)(6,7) \\
& -2: 3 \\
& x=\frac{m x_{2}+n x_{1}}{m+n} \quad y=\frac{m y_{2}+n y_{1}}{m+n} \\
& =\frac{-2 \times 6+3 \times 1}{1}=\frac{-2 \times 7+3 \times-2}{1} \\
& =-9 \quad=-20
\end{aligned}
$$

d)

$$
\begin{align*}
y & =\sin ^{-1}(\cos x) \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-\cos ^{2} x}} \times-\sin x \\
& =\frac{-\sin x}{\sqrt{\sin ^{2} x}} \\
& =\frac{-\sin x}{\sin x} \\
& =-1 \tag{2}
\end{align*}
$$

e)

$$
\begin{aligned}
u & =1+x \quad \Rightarrow \quad x=u-1 \\
\frac{d u}{d x} & =1 \\
d u & =d x
\end{aligned}
$$

$$
\begin{align*}
\int \frac{x}{\sqrt{1+x}} d x & =\int \frac{u-1}{\sqrt{u}} d u \\
& =\int \frac{u-1}{u^{1 / 2}} d u \\
& =\int\left(u^{\frac{1}{2}}-u^{-\frac{1}{2}}\right) d u \\
& =\frac{2 u^{\frac{3}{2}}}{3}-2 u^{\frac{1}{2}}+c \\
& =\frac{2}{3} \sqrt{(1+x)^{3}}-2 \sqrt{1+x+c} \tag{3}
\end{align*}
$$

Question 2:
a)

$$
\ddot{x}=4(x+1)
$$

$$
\int \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=4 \int(x+1) d x
$$

$$
\frac{1}{2} v^{2}=4\left[\frac{x^{2}}{2}+x\right]+c
$$

$x-0 \quad v=2$

$$
a v=2
$$

$$
\begin{align*}
2= & 4(0+0)+c \\
& 2=c \\
\frac{1}{2} v^{2}= & 4\left(\frac{x^{2}}{2}+x\right)+2 \\
v^{2}= & 8\left(\frac{x^{2}}{2}+x\right)+4 \\
= & 4 x^{2}+8 x+4 \\
= & 4\left(x^{2}+2 x+1\right) \\
= & 4(x+1)^{2} \\
v= & \pm 2(x+1) \quad v>0 \\
\therefore v= & 2(x+1) \quad m / s \tag{2}
\end{align*}
$$

$$
\text { (ii) } \begin{aligned}
v & =2 x+2 \\
\frac{d x}{d t} & =2 x+2 \\
\frac{d t}{d x} & =\frac{1}{2(x+1)} \\
t & =\frac{1}{2} \int \frac{1}{x+1} d x \\
t & =\frac{1}{2} \ln (x+1)+c \\
t=0 \quad x & =0 \\
0 & =\frac{1}{2} \ln 1+c \\
& 0=c \\
t & =\frac{1}{2} \ln (x+1) \\
2 t & =\ln (x+1)
\end{aligned}
$$

$$
\begin{aligned}
&=0, x \\
&=0 \\
& y=2
\end{aligned}
$$

$[2]$

$$
x+1=e^{2 t}
$$

$$
x=e^{2+} \cdot 1 \quad \text { which is }
$$

required

```
(b) \(\cos \theta-\sqrt{3} \sin \theta=R \cos (\theta+\alpha)\)
\[
R \cos \theta \cos \alpha-R \sin \theta \sin \alpha=R \cos (\theta+\alpha)
\]
```

$$
\begin{array}{rlr}
\therefore R \cos \alpha=1 & R \sin \alpha=\sqrt{3} \\
\cos \alpha=\frac{1}{R} & \sin \alpha=\frac{\sqrt{3}}{R}
\end{array}
$$

$$
\begin{aligned}
& R / \sqrt{3} \quad \therefore R^{2}=3+1 \\
& R=2
\end{aligned}
$$

$$
\tan \alpha=\sqrt{3}
$$

$$
\alpha=\frac{\pi}{3}
$$

$$
\therefore \cos \theta-\sqrt{3} \sin \theta=2 \cos \left(\theta+\frac{\pi}{3}\right)[2 .
$$

(iii)

$$
2 \cos \left(\theta+\frac{\pi}{3}\right)=1
$$

$$
\cos \left(\theta+\frac{\pi}{3}\right)=\frac{1}{2}
$$

for

$$
\begin{aligned}
& {\left[\frac{\pi}{3} \leqslant \theta+\frac{\pi}{3} \leqslant \frac{7 \pi}{3}\right.} \\
& \therefore \theta+\frac{\pi}{3}=\frac{\pi}{3}, \frac{7 \pi}{3} \text { or } \theta+\frac{\pi}{3}=\frac{5 \pi}{3} \\
& \theta=0,2 \pi, \text { or } \frac{4 \pi}{3} \\
& \text { ie } \theta=0, \frac{4 \pi}{3} \text { or } 2 \pi[2]
\end{aligned}
$$

$-3-$
(c)

Now $\angle R Q T=\alpha+\beta$ (by addition)
In $\triangle S R T, \angle R S T=180-(\alpha+\beta)$ (Angle sum of $\triangle R T S$)

$$
\begin{aligned}
\angle R Q T+\angle R S T & =(\alpha+\beta)+180-(\alpha+\beta) \\
& =180^{\circ}
\end{aligned}
$$

$\therefore \angle R Q T$ and $\angle R S T$ are supplementary $\angle S$. Hence RQTS is a cyclic quadrilateral. [4]

Question 3:
2)
(i) let

$$
\begin{aligned}
& f(x)=e^{-x}-\sin 2 x \\
& f(1)=e^{-1}-\sin 2=-0.54 \ldots \\
& f(2)=e^{-2}-\sin 4=0.89 \ldots
\end{aligned}
$$

$$
=1.5-\frac{0.082}{1.7568}
$$

$$
=1.4533 \ldots
$$

since $f(1)<0$ and $f(2)>0$ then

$$
\begin{equation*}
=1-45 \quad(2 d p) \tag{2}
\end{equation*}
$$ there is a root between f and 2 .

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =-e^{-x}-2 \cos 2 x \\
f^{\prime}(1.5) & =-e^{-1.5}-2 \cos 3 \\
& =1-7568 \\
f(1.5) & =e^{-1.5}-\sin 3 \\
& =0.082
\end{aligned}
$$

$$
\text { c) } \begin{align*}
&=\pi \int_{0}^{\pi / 4}\left(9 \sin ^{2} 2 x\right) d i \\
&=9 \pi \int_{0}^{\pi / 4} \sin ^{2} 2 x d x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
&=1-2 \sin ^{2} x \\
& 2 \sin ^{2} x=1-\cos 2 x \\
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \\
& \sin ^{2} 2 x=\frac{1}{2}(1-\cos 4 x) \\
& V=\frac{9 \pi}{2} \int_{0}^{\pi / 4}(1-\cos 4 x) d x \\
&\left.=\frac{9 \pi}{2}\left[x-\frac{1}{4} \sin 4 x\right]\right]_{0}^{\pi / 4} \tag{3}\\
&=\frac{9 \pi}{2}\left[\left(\frac{\pi}{4}-\frac{1}{4} \sin \pi\right)\right. \\
&\left.-\left(0-\frac{1}{4} \sin 0\right)\right] \\
&=\frac{9 \pi}{2}\left[\frac{\pi}{4}-0\right] \\
&=\frac{9 \pi^{2}}{8} \text { units } \\
&
\end{align*}
$$

Question 5:

$$
\text { (i) } \begin{aligned}
y & =e^{x+2} \\
x & =e^{y+2} \\
\ln x & =y+2 \\
\ln x-2 & =y
\end{aligned}
$$

d)

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(\frac{h}{\sqrt{3}}\right)^{2} h \\
& =\frac{1}{3} \pi \frac{h^{2}}{3} h \\
& =\frac{1}{9} \pi h^{3}
\end{aligned}
$$

b) $\quad \begin{aligned} & y=-10 \\ & y=-10 t+c,\end{aligned}$

$$
\begin{aligned}
& v=\frac{1}{9} \pi h^{3} \\
& \frac{d v}{d h}=\frac{1 \pi h^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \frac{d h}{d t} & =\frac{d h}{d r} \times \frac{d r}{d t} \\
& =\frac{3}{\pi h^{2}} \times 15 \\
& =\frac{45}{\pi h^{2}}
\end{aligned}
$$

When $h=4 \quad \frac{d h}{d t}=\frac{45}{16 \pi} \quad \mathrm{~m} / \mathrm{s}^{\prime}$
$[2]$

$$
\begin{array}{ll}
\text { a) } f(x)=e^{x+2}\left[\begin{array}{l}
D: \text { all real } x \\
R: y>0
\end{array}\right. \\
\text { (i) } y=e^{x+2}
\end{array} \quad \begin{array}{ll}
x+2
\end{array} \quad \begin{aligned}
& \text { When } t=4=10 \sqrt{3} \times 4 \\
& x=40 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& x=10 \sqrt{3} t \\
& \dot{x}=10 \sqrt{3}
\end{aligned}
$$

At $t=4 \quad \begin{aligned} & \dot{y}=-40+10 \\ & \dot{y}=-30\end{aligned}$

$$
\begin{aligned}
\dot{v}^{2} & =\dot{x}^{2}+\dot{y}^{2} \\
& =(10 \sqrt{3})^{2}+(-30)^{2} \\
v & =\sqrt{1200} \\
\text { speed } & =20 \sqrt{3} \mathrm{~m} / \mathrm{s} \\
\tan \theta & =\left|\frac{y}{x}\right|= \\
& =\left|\frac{-30}{10 \sqrt{3}}\right|
\end{aligned}
$$

$$
\tan \theta=\frac{3}{\sqrt{3}}
$$

$$
\begin{equation*}
\theta=60^{\circ} \tag{3}
\end{equation*}
$$

Question $6:$
Step 1: Prove true for $n=1$
$2^{3}-1=7$ which is divisible by 7 .
(ii) Hits the lake when $y=0$

$$
\begin{gathered}
5 t^{2}-10 t-40=0 \\
t^{2}-2 t-8=0 \\
(t-4)(t+2)=0 \\
t=4 \text { or }-2 \quad \text { but } t>0 \\
\therefore t=4 \mathrm{~s}
\end{gathered}
$$

step 2: Assume true for $n=k$ ie $2^{3 k}-1=7 M$ where M is an

$$
\begin{equation*}
2^{3^{k}}=7 M+1 . \tag{1}
\end{equation*}
$$ integer

Now, prove tu ne for $n=k+1$

$$
\begin{aligned}
2^{3(k+1)}-1 & =2^{3 k+3}-1 \\
& =2^{3 k} \cdot 2^{3}-1 \\
& =(7 M+1) 8-1 \\
& =56 M+8-1 \\
& =56 M+7 \\
& =7(8 M+1)
\end{aligned}
$$

which is divisible by 7 .
Step 3: since true for $n=1$, then true for $n=1+1=2, n=3$ and so on for all integers $n \geqslant 1$.
[3]
(b) $\quad P\left(2 a p, a p^{2}\right) \quad Q\left(2 a q, a y_{j}^{2}\right)$
(i)

$$
\begin{aligned}
m_{p} & =\frac{a q^{2}-a p^{2}}{2 a q-2 a p} \\
& =\frac{\alpha(q-p)(q+p)}{2 a(q-p)} \\
& =\frac{p+q}{2}
\end{aligned}
$$

\therefore Ign $P Q$:

$$
\begin{aligned}
& y-a p^{2}=\left(\frac{p+q}{2}\right)(x-2 a p) \\
& y-a p^{2}=\left(\frac{p+q}{2}\right) x-a p^{2}-a p q \\
& y=(p+q) x-a p q
\end{aligned}
$$

(ii) Since a focal chord, passes thro $(0, a)$

$$
\begin{align*}
a & =0-a p q \\
\frac{a}{-a} & =p q \\
p q & =-1 \tag{1}
\end{align*}
$$

(iii) $m_{1}=\frac{p+q}{2} \quad m_{2}=p$

$$
\left.\begin{aligned}
\tan \theta & =\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\frac{p+q}{2}-p}{1+\left(\frac{p+q}{2}\right) p}\right| \\
& =\left|\frac{p+q-2 p}{2}\right| \\
& \left\lvert\, \frac{2+p^{2}+p q}{2}\right.
\end{aligned} \right\rvert\,
$$

(c) $\left(\frac{1}{3}+2 x\right)^{18}$
(i)

$$
\begin{align*}
T_{k+1} & ={ }^{n} C_{k} a^{n-k} b^{k} \\
& ={ }^{18} C_{k}\left(\frac{1}{3}\right)^{18-k}(2 x)^{k} \\
& ={ }^{18} C_{k} \frac{1}{3^{18-k}} 2^{k} \cdot x^{k} \\
& ={ }^{18} C_{k} \frac{2^{k}}{3^{18-k}} x^{k} \tag{1}
\end{align*}
$$

(ii)

$$
\begin{aligned}
\frac{T_{k+1}}{T_{1}} & =\frac{{ }^{18} C_{k} \frac{2^{k}}{3^{18-k}}}{{ }^{18} C}{ }_{k-1} \frac{2^{k-1}}{3^{18-k+1}} \quad 18-k+1 \\
& =\frac{18!}{k!(18-k)!} \times \frac{(k-1)!(18-k+1)!}{18!} \times 2^{k-k+1} \times 3^{18-k+1-18+k} \\
& =\frac{19-k}{k} \cdot 2 \cdot 3 \\
& =\frac{114-6 k}{k}
\end{aligned}
$$

Greatest coeff when $\frac{T_{k+1}}{T_{k}} \geqslant 1$

$$
\begin{aligned}
& 114-6 k \geqslant k \\
& 114 \geqslant 7 k \\
& 16 \frac{2}{7} \geqslant k
\end{aligned}
$$

i. For $k=1,2,3, \ldots 16 \quad T_{k+1}>T_{k}$ and for $k=17,18, \ldots . T_{k+1}<T_{k}$
\therefore Greatest conf when $K=16$
Greatest ${ }^{18} C_{16} \frac{2^{16}}{3^{2}}=1114112$.
[2]
i)

$$
\begin{aligned}
& y=4 \cos \cot \\
& \frac{d y}{d t}=-4 c \sin t \\
& \frac{d^{2} y}{d t^{2}}=-400 \cos \operatorname{lot}
\end{aligned}
$$

but $y=4 \cos 10 t$

$$
\begin{aligned}
\therefore d_{u}^{2} & =-100(4 \cos 10 t) \\
d t^{2} & =-100 y . \quad(n=10)
\end{aligned}
$$

\therefore since piston is moving in form $\ddot{g}=-n y$ then moung in SHM
(ii)

$$
\begin{aligned}
T & =\frac{2 \pi}{n} \\
& =\frac{2 \pi}{10} \\
& =\frac{\pi}{5}
\end{aligned}
$$

[1]
(iii)

$$
\begin{array}{rl}
y=3 & 3=4 \cos 10 t \\
\frac{3}{4}=\cos 10 t \\
\cos ^{-13} / 4 & =10 t \\
\frac{1}{10} \cos ^{-13} / 4 & =t \\
\dot{y}= & -40 \sin 10\left(\frac{1}{10} \cos ^{-1} 3 / 4\right) \\
= & -40 \sin \left(\cos ^{-13} / 4\right) \\
= & -40 \times \frac{\sqrt{7}}{4} \\
= & -10 \sqrt{7} \mathrm{sm} / \mathrm{s} \quad[2]
\end{array}
$$

(iv)

$$
O B=O A+A B
$$

$\ln \triangle O A P, \cos \theta=\frac{O A}{4}$
$\sin A=\frac{A P}{4}$

$$
\begin{equation*}
O A=4 \cos \theta \tag{1}
\end{equation*}
$$

$$
A P=4 \sin \theta
$$

In $\triangle A B P$, by pythagoras) theorem

$$
\begin{gather*}
B P^{2}=A P^{2}+A B^{2} \\
B P^{2}=(4 \sin \theta)^{2}+A B^{2} \\
B P^{2}-16 \sin ^{2} \theta=A B^{2} \tag{3}\\
\therefore A B=\sqrt{B P^{2}-16 \sin ^{2} \theta} \quad A B>0 \tag{2}
\end{gather*}
$$

(v) $\left(\frac{d \theta}{d t}=10\right) \quad \therefore O B=4 \cos \theta+\sqrt{B P^{2}-16 \sin ^{2} \theta}$.

$$
\begin{aligned}
& \begin{aligned}
& \frac{d B}{\frac{d}{d \theta}(O B)}==-4 \cos \theta+\left(B P^{2}-16 \sin ^{2} \theta\right)^{\frac{1}{2}} \\
&=-4 \sin \theta-\frac{1}{2}\left(B P^{2}-16 \sin ^{2} \theta\right)^{-\frac{1}{2}} \times-32 \sin \theta \cos \theta \\
& \sqrt{B P^{2}-16 \sin \theta} \\
&=-4 \sin \theta-\frac{16 \sin \theta \cos \theta}{\sqrt{16\left(\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta\right.}} \\
&=-4 \sin \theta-\frac{16 \sin \theta \cos \theta}{4 \sqrt{\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta}} \\
&=-4 \sin \theta-\frac{4 \sin \theta \cos \theta}{\sqrt{\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta}} \\
&=-4 \sin \theta\left[1+\frac{\cos \theta}{\sqrt{\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta}}\right]
\end{aligned}
\end{aligned}
$$

Now given $\left.\frac{d(O B)}{d t}=\frac{d(O B)}{d \theta}\right) \times \frac{d \theta}{d t}$

$$
=-4 \sin \theta\left[1+\frac{\cos \theta}{\sqrt{(8 P / 4)^{2}-\sin ^{2} \theta}}\right] \times 10
$$

$$
=-40 \sin \theta\left[1+\frac{\cos \theta}{\left.\sqrt{\left(\frac{B P}{4}\right)^{2}-\sin ^{2} \theta}\right] \quad \text { which is required. }}\right.
$$

(vi) when $E=90^{\circ}$

$$
\begin{aligned}
& \frac{d(O B)}{d t}=-40 \sin 90^{\circ}\left[i+\frac{\cos 90^{\circ}}{\sqrt{\left(\frac{3 \rho}{4}\right)^{2}-\sin ^{2}\left(90^{\circ}\right)}}\right] \\
& \sin 90^{\circ}=1 \quad \cos 90^{\circ}=0
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{d(O B)}{d t} & =-40(1+0) \\
& =-40 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

