

Examination Number:

Set:

Shore

Year 12 HSC Assessment Task 5 - Trial HSC 16th August 2013

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this question paper
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11–14 in a new writing booklet
- Show all necessary working in Questions 11–14
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks – 70

Section I Pages 3–6

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 7–12

- 60 marks
- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1-10.

- 1 The point *P* divides the interval OQ, where *O* is the origin and *Q* is the point (3, 7), externally in the ratio 5 : 4. What are the coordinates of *P*?
 - (A) (-15, -35)
 - (B) (-12, -28)
 - (C) (12, 28)
 - (D) (15, 35)
- 2 What is the exact value of $\int_0^{\pi} \cos^2 x \, dx$?
 - (A) 0
 - (B) $\frac{\pi}{4}$
 - (C) $\frac{\pi}{2}$
 - (D) π
- 3 The function $f(x) = x^2 17$ has a zero near x_0 . Using Newton's Method, which expression gives a better approximation for the zero of the function?
 - (A) $x_0 \frac{x_0^2 17}{2x_0}$
 - (B) $x_0 \frac{2x_0}{x_0^2 17}$

(C)
$$\frac{x_0^2 - 17}{2x_0} - x_0$$

(D) $\frac{2x_0}{x_0^2 - 17} - x_0$

- 4 The equation $2x^3 + 5x^2 1 = 0$ has roots $-\frac{1}{2}, \sqrt{2} 1$ and α . What is the value of α ?
 - (A) $-\sqrt{2} 1$
 - (B) $-\sqrt{2} + 1$
 - (C) $\sqrt{2} 1$
 - (D) $\sqrt{2} + 1$
- 5 What is the constant term in the expansion of $\left(2x^3 \frac{1}{x}\right)^{12}$?
 - (A) –1760
 - (B) –220
 - (C) 220
 - (D) 1760
- 6 Which of the following is not a solution of $2\cos^2 x 3\cos x + 1 = 0$?
 - (A) 0
 - (B) $\frac{\pi}{6}$
 - (C) $\frac{\pi}{3}$
 - 5
 - (D) 2*π*

- 7 The line y = 2 x and the curve $y = x^3 + 4$ intersect at the point (-1, 3). Which of the following is the size in radians of the acute angle between these curves at the point (-1, 3)?
 - (A) $\tan^{-1}\frac{2}{5}$
 - (B) $\tan^{-1}\frac{1}{2}$
 - (C) $\tan^{-1} 1$
 - (D) $\tan^{-1} 2$
- 8 Two secants from an external point cut off intervals on a circle as shown below.

What is the value of *x*?

(D) 5

9 A particle is moving in simple harmonic motion according to the equation $\ddot{x} = -9x + 3$. Which of the following gives the centre of motion, x_0 , and period, *T*?

(A)
$$x_0 = 3, T = \frac{2\pi}{9}$$

(B) $x_0 = 3, T = \frac{2\pi}{3}$
(C) $x_0 = \frac{1}{3}, T = \frac{2\pi}{9}$
(D) $x_0 = \frac{1}{3}, T = \frac{2\pi}{3}$

10 The graph below shows a function in the form $y = a \cos^{-1}(bx)$.

What are the values of *a* and *b*?

(A)
$$a = 4, b = \frac{1}{2}$$

(B)
$$a = \frac{1}{4}, b = -\frac{1}{2}$$

(C)
$$a = 4, b = -\frac{1}{2}$$

(D)
$$a = \frac{1}{4}, b = \frac{1}{2}$$

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour 45 minutes for this section

Start each of Questions 11–14 in a new writing booklet.

Que	stion 11 (15 marks) Use a SEPARATE writing booklet	Marks
(a)	Solve $\frac{x+1}{x-1} > 2$.	3
(b)	Evaluate $\int_{-3}^{3} \frac{1}{\sqrt{9-x^2}} dx.$	2
(c)	Find $\frac{d}{dx} (\cos^{-1} e^x)$.	2
(d)	Use the substitution $u = x^2 + 2$ to find $\int_0^1 x(x^2 + 2)^5 dx$.	3

(e) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y = 2 \sec \frac{x}{3}$, the *x*-axis and the lines x = 0 and $x = \pi$ is rotated about the *x*-axis.

(f) Evaluate
$$\lim_{x \to 0} \frac{x^2}{\sin^2 2x}$$
. 2

Marks

1

3

3

(a) A roast chicken, which is initially at a temperature of 220°C, is removed from an oven and left to cool on a bench at a constant temperature of 20°C. The cooling rate of the chicken is proportional to the difference between the temperature of the bench and the temperature, T, of the chicken. That is, T satisfies the equation

$$\frac{dT}{dt} = -k(T-20)\,,$$

where t is the number of minutes after the chicken has been placed on the bench.

(i) Show that
$$T = 20 + Ae^{-kt}$$
 satisfies this equation.

- (ii) The temperature of the chicken is 60°C after 1 hour. Find the temperature of the chicken, to the nearest degree, after 2 hours.
- (b) In the diagram below, the points *A*, *B*, *C* and *D* are concyclic. The point *O* is the centre of the circle, *AD* is a diameter of the circle and the arc lengths *BC* and *CD* are equal. Show that $AB \parallel OC$.

Question 12 continues on the following page

Question 12 continued

- (c) Consider the function $f(x) = \sqrt{x} 1$.
 - (i) State the domain and range of y = f(x). 1

2

2

1

- (ii) Find an expression for $f^{-1}(x)$.
- (d) The diagram shows the parabola $x^2 = 4y$. The points $P(2p, p^2)$ and $Q(-4p, 4p^2)$ lie on the parabola. The tangents at *P* and *Q* intersect at *T*.

(i) Show that the equation of the tangent at *P* is given by

$$y = px - p^2.$$

- (ii) Write down the equation of the tangent at Q, and find the coordinates **2** of the point *T* in terms of *p*.
- (iii) Find the Cartesian equation of the locus of *T*.

Question 13 (15 marks) Use a SEPARATE writing booklet

Marks

2

2

2

3

4

(a) A particle moves in a straight line. Its displacement, *x* metres, after *t* seconds is given by

$$x = \cos(5t) - \sin(5t).$$

- (i) Show that the particle is moving in simple harmonic motion by showing that $\ddot{x} = -n^2 x$.
- (ii) Express the displacement in the form $x = R \sin(5t \alpha)$, where $0 < \alpha < \frac{\pi}{2}$.
- (b) A particle moves in a straight line along the *x*-axis so that its acceleration is given by $\ddot{x} = \frac{1}{4 + x^2}$ where *x* is the displacement from the origin.

Initially the particle is at rest at the origin.

- (i) Find v^2 as a function of x.
- (ii) Explain why v is always positive for t > 0. 1
- (iii) Find the velocity as $x \to \infty$. 1
- (c) Find the greatest coefficient in the expansion of $(2x + 1)^{18}$.
- (d) The binomial theorem states that

$$(1+x)^{n} = \sum_{k=0}^{n} {}^{n}C_{k}x^{k} .$$

By differentiating both sides of this identity twice with respect to x, show that

$$2^{n-2} - 1 = \sum_{k=2}^{n-1} {}^{n}C_{k} \frac{k(k-1)}{n(n-1)}, \qquad n \ge 3$$

- 10 -

(a) Use mathematical induction to prove that

$$\sum_{j=2}^{n} \ln\left(\frac{j-1}{j+1}\right) = \ln\left(\frac{2}{n(n+1)}\right), \qquad n \ge 2$$

(b) A frustum is a pyramid with its top cut off. Water is being poured into a container in the shape of an inverted right square frustum, as shown below, at a rate of 10 L/s.

Cross-section

The vertical cross-section of the container has the dimensions (in centimetres) shown above.

- (i) Find the value of x. 1
- (ii) Let the depth of water in the container be h centimetres. Show that the volume, V, in cm³ of water in the container is given by

$$V = \frac{4}{3}(h^3 + 60h^2 + 1200h).$$

(iii) How quickly is the depth increasing when the container has been filled to half its height? 3

Question 14 continues on the following page

3

Question 14 continued

(c) A ball launcher placed at the origin is aimed at a target, T, X metres away horizontally and Y metres above its launch point, as shown in the diagram below. The initial velocity of the ball is V m/s.

Assume that at time t seconds after the launcher is activated the location of the ball is given by

$$x = Vt\cos\theta$$
$$y = Vt\sin\theta - 5t^2$$

(i) Show that the equation of the path of the ball is given by

$$y = x \left(\frac{Y}{X}\right) - \frac{5x^2}{V^2} \left(1 + \frac{Y^2}{X^2}\right) \,.$$

2

2

2

- (ii) Find an expression for V in terms of X and Y that will cause the ball to land directly below the target.
- (iii) The initial velocity of the launcher is 20 metres per second.Describe the locus of the target, *T*, that will allow the ball to land directly below the target.

END OF PAPER

$$\begin{array}{c} D\\ 2013 \text{ Maths Extension 1 Solutions - Trial Ac} \\
\hline Section I \\
1. D \\
2. C \\
3. A \\
4. A \\
5. A \\
5. A \\
5. A \\
7. D \\
6. B \\
7. D \\
6. B \\
7. D \\
7. D$$

2
2013 Miths Extension 1 Solutions - Trial PAC
5. cont.
constant term =
$${}^{12}Cq 2^{3}(-1)^{9}$$

= -1760.
6. $2\cos^{2}x - 3\cos x + 1 = 0$. let $u = \cos x$.
 $2u^{2} - 3u + 1 = 0$. let $u = \cos x$.
 $2u^{2} - 3u + 1 = 0$.
 $(2u - 1)(u - 1) = 0$.
 $u = 1$ or $u = \frac{1}{2}$.
 $\cos x = 1$ or $\cos x = \frac{1}{2}$
 $\therefore u = 1$ or $u = \frac{1}{2}$.
 $\cos x = 1$ or $x = \frac{1}{3}, \frac{5\pi}{3}$.
 $\therefore \frac{\pi}{6}$ is not a solution
7. From $y = 2 - x$, $M_{1} = -1$
From $y = 2x^{2}$
 $y = 3x^{2}$
 $y = 3x^{2}$
 $= 3(-1)^{2}$ when $x = -1$.
 $\therefore M_{2} = 3$.
 $\tan \theta = \frac{|M_{1} - M_{2}|}{|\pi m_{1}M_{2}|}$
 $= |\frac{-1 - 3}{1 - 3}|$
 $= 2$
 $\therefore \theta = \tan^{-1}(2)$.

(3)
2013 Mathe Extension 1 Solutions - Trial PAC
8.
$$x(2x+2) = (x+1)(x+4)$$

 $2x(x+1) = (x+1)(x+4)$
 $(x+1)(2x - (x+4)) = 0$
 $(x+1)(x-4) = 0$
 $(x+1)(x-4$

 2013 Maths Extension I Solutions - Trial PAC
Section II
$a) Solve \frac{x+1}{x-1} = 2$, $x \neq 1$
x + 1 = 2x - 2 $x = 3$
. x=1, x=3 are critical points. (X / X >
.! solution is 1<2<3.
b) $\int_{-3}^{3} \frac{1}{\sqrt{9-x^2}} dx = \left[\sin^{-1}\left(\frac{x}{3}\right)\right]_{-3}^{3}$
$= \frac{\pi}{2} - \left(\frac{-\pi}{2}\right)$ $= \pi.$
c) $\frac{d}{dx} \left(\cos^{-1} e^{x} \right) = \frac{-1}{\sqrt{1 - \left(e^{x} \right)^2}} \cdot e^{x}$
$= \frac{-e^{\chi}}{\sqrt{1-e^{2\chi}}}.$
d) $\int_{0}^{1} x (z^{2} + 2)^{5} dx = \int_{2}^{3} \frac{u^{5}}{2} du$ let $u = z^{2} + 2$ $\frac{du}{dx} = 2x$
$= \left(\frac{u_{-1}}{12} \right)_{2} \qquad \qquad$
$= \frac{665}{12}$

(2013 Malhs Extension 1 Solutions - Trial PAC.
Q12 cont.
a) (iii) cont. When $f = 120$ $T = 20 + 200 e^{-120 \times \frac{\ln 5}{60}}$ $= 20 + 200 e^{-2\ln 5}$ $= 28^{\circ}C$.
b) Let LCOD = 2° (equal arcs (BC, CD) subtend) .' LBOC = 2° (equal angles at the centre)
So $\angle BOD = 2x^{\circ}$ ($\angle BOC + \angle COD$) .'. $\angle BAD = x^{\circ}$ (angle at curcumference helt angle at centre on).
LABO = 20 (base angles of sosceles) DABO, AO=BO; equal
So LABO = L COB .' AB DC (equal alternate angles).
c) $f(x) = \sqrt{x} - 1$. (i) domain: $x \ge 0$ range: $y \ge -1$.
(ii) $y = \sqrt{z} - 1$ has inverse $z = \sqrt{y} - 1$ $z + 1 = \sqrt{y}$ $11 = (z + 1)^2$, $z \ge -1$.
$f'(x) = (x+1)^2$, $x \ge -1$.

2013 Maths Extension 1 Solutions - Tricl	PAC
O12 cont.	
$d(t) = \frac{x^2}{4},$ $\frac{dy}{dx} = \frac{2x}{4},$ $= \frac{x}{2}.$	
Tangent at P: $y-p^2 = \frac{2p}{2}(x-2p)$ $y = px - 2p^2 + p^2$ $y = px - p^2$	
(ii) Tangent at $a: y - (2p)^2 = -2p(x + 4p)$	
$y - 4p^2 = -2px - 8p^2$ $y = -2px - 4p^2$	
At T: $px - p^2 = -2pz - 4p^2$ $3px + 3p^2 = 0$ 3p(z + p) = 0. $x = -p$, $y = -2p^2$.	
$\sum_{\rho} \left(= \left(-\rho, -d\rho^{2} \right) \right)$	
(iii) $p = -x$ $y = -2(-x)^2$ $y = -2x^2$ is the locus of T	

0	(8) 2013 Maths Extension I Solutions - Trial PAC
<u>_</u>	$\begin{array}{l} 213\\ x) & x = \cos 5t - \sin 5t\\ (i) & \dot{x} = -5\sin 5t - 5\cos 5t\\ & \dot{z} = -25\cos 5t + 25\sin 5t\\ & = -25(\cos 5t - \sin 5t)\\ & = -5^2x \end{array}$
	(ii) Let (iii) Let $\cos 5t - \sin 5t = R \sin (5t - \alpha)$ $= R \sin 5t \cos \alpha$ $- \ast R \cos 5t \sin \alpha$
	$\frac{1}{R\sin\alpha} = 1$ $R\cos\alpha = -1$ So $-\tan\alpha = -1$ $\tan\alpha = 1$
	Sub. $x = \frac{\pi}{4}$ ($0 \le 4 \le \frac{\pi}{2}$). $R = \frac{1}{ccr} \frac{\pi}{4}$
	$= -\sqrt{2}$ $\therefore x = \sqrt{2} \sin \left(st - \frac{\pi}{4} \right)$
	b) $\frac{d(\frac{1}{2}v^2)}{dx} = \frac{1}{4+x^2}$ $\frac{1}{2}v^2 = \frac{1}{2}\tan^{-1}(\frac{x}{2}) + C$ $v^2 = \tan^{-1}(\frac{x}{2}) + K.$

Dis Mathe Extension 1 Silvhors - Trial PH
(13 (cont))
b) (i) cont.
Uhen
$$x=0, v=0$$
.
So $0 = \tan^{-1}(0) + K$.
 $\therefore K = 0$.
 $\therefore V^2 = \tan^{-1}(\frac{\pi}{2})$
(ii) $\vec{x} = \frac{1}{4\pi z^2}$
 > 0 for all z as $z^2 \ge 0$ brall z .
If the particle begins at rest
at the origin and its acceleration
is always positive, it will dways
be moving in the direction of the
positive $x = axis$.
 $i.e. V \ge 0$.
(iii) $z_{200}^{10} v = z_{200}^{10} \sqrt{\tan^{-1}(\frac{\pi}{2})}$
 $= \sqrt{\frac{\pi}{2}}$.
c) $(2z+1)^{15} = \sum_{k=0}^{18} {}^{15}C_k (2z)^{15-k} 1^k$
 $= \sum_{k=0}^{18} {}^{15}C_k 2^{15-k}$

$$\begin{array}{c} (D) \\ 2013 \ \text{Malles Extension 1 Solutions - Trial} \\ \hline \\ 2013 \ \text{Malles Extension 1 Solutions - Trial} \\ \hline \\ (D) \\ 2013 \ \text{Malles Extension 1 Solutions - Trial} \\ \hline \\ (D) \\ ($$

(1) 2013 Maths Extension 1 Solutions - Trial PAC.
<u>814</u>
a) Prove true for $n=2$. LHS = $\sum_{J=2}^{2} \ln \left(\frac{J-1}{J+1} \right) = \ln \left(\frac{J}{J} \right)$
$RHS = \ln\left(\frac{2}{2r3}\right) = \ln\left(\frac{3}{3}\right)$ $LHS = RHS. i \text{ free for } n=2.$
By Assume true for $n = k$. 1.e. $\sum_{j=2}^{k} \ln \left(\frac{j-1}{j+1} \right) = \ln \left(\frac{2}{ k(k+1) } \right)$
Prove true for $n = k \times 1$. i.e. need to show $\sum_{j=2}^{k \times 1} \ln \left(\frac{j-1}{j \times 1} \right) = \ln \left(\frac{2}{(k+D)(k+2)} \right)$
$LHS = \sum_{J=2}^{k-1} \ln \left(\frac{J-1}{J+1}\right)$ $= \sum_{k=1}^{k} \ln \left(\frac{J-1}{J+1}\right) + \ln \left(\frac{k}{k+2}\right)$
$= \ln \left(\frac{2}{k(k+1)}\right) + \ln \left(\frac{k}{k+2}\right) \qquad \text{by the inductive hypothesis.}$
$= \ln \left(\frac{2}{(k+1)(k+2)} \right)$ $= 2 \ln \left(\frac{2}{(k+1)(k+2)} \right)$
i true for n=ktl.
." by the principle of mathematical induction, true for all n>2.

2013 Maths Extension 1 Solutions - Trial PAL.
Q14 cont.
b) (i) Using similar triangles. $\frac{x}{20} = \frac{x+80}{100}$
100x = 20x + 1600 30x = 1600 x = 20.
(ii) V = 3 Atop hope - 3 Autom houtom
$= \frac{1}{3} \left(2 \left(h + 20 \right) \right)^2 \left(h + 20 \right) - \frac{1}{3} \left(2 \times 20 \right)^2 \left(20 \right)$
$= \frac{4}{3} (h + 2D)^3 * - \frac{4}{3} (20)^3$
$= \frac{4}{3} \left(h^{3} + 60d^{2} + 1200d + 8000 \right) - \frac{4}{3} \left(\frac{8000}{3} \right)$
$=\frac{4}{3}(h^{3}+60h^{2}+1200h)$
(iii) $dV = \frac{4}{3}(3h^2 + 120h + 1200)$
$dh = dV \times dh$
$= 10000 \text{ cm}^{3}/5 \times \frac{3}{4} \left(\frac{1}{3 \times 40^{2} + 120 \times 40 + 1200} \right)$
$= 10000 \times \frac{3}{4 \times 10800}$
= 0.694 cm/s.

814	<u>A14</u>
$c(y) = \frac{1}{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	c) (iii) $20 = \sqrt{\frac{5}{7}(x^2+Y^2)}$ $400 = \frac{5}{7}(x^2+Y^2)$ $400Y = 5(x^2+Y^2)$ $80Y = x^2+Y^2$ $x^2+Y^2-80Y = 0$ $x^2+(y-80)^2+1600 = 1600$ $x^2 + ((y-40))^2 = 40^2$.! the bass of T is a circle centred at (0,40), radius 40.