Year 12
 HSC Assessment Task 5 - Trial HSC $16^{\text {th }}$ August 2013

Mathematics Extension 1

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this question paper
- Answer Questions 1-10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11-14 in a new writing booklet
- Show all necessary working in Questions 11-14
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Total marks - 70

Section I Pages 3-6
10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 7-12
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.

1 The point P divides the interval $O Q$, where O is the origin and Q is the point (3, 7), externally in the ratio $5: 4$. What are the coordinates of P ?
(A) $(-15,-35)$
(B) $(-12,-28)$
(C) $(12,28)$
(D) $(15,35)$

2 What is the exact value of $\int_{0}^{\pi} \cos ^{2} x d x$?
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) π

3 The function $f(x)=x^{2}-17$ has a zero near x_{0}. Using Newton's Method, which expression gives a better approximation for the zero of the function?
(A) $x_{0}-\frac{x_{0}{ }^{2}-17}{2 x_{0}}$
(B) $\quad x_{0}-\frac{2 x_{0}}{x_{0}{ }^{2}-17}$
(C) $\frac{x_{0}{ }^{2}-17}{2 x_{0}}-x_{0}$
(D) $\frac{2 x_{0}}{x_{0}^{2}-17}-x_{0}$

4 The equation $2 x^{3}+5 x^{2}-1=0$ has roots $-\frac{1}{2}, \sqrt{2}-1$ and α. What is the value of α ?
(A) $-\sqrt{2}-1$
(B) $-\sqrt{2}+1$
(C) $\sqrt{2}-1$
(D) $\sqrt{2}+1$

5 What is the constant term in the expansion of $\left(2 x^{3}-\frac{1}{x}\right)^{12}$?
(A) -1760
(B) -220
(C) 220
(D) 1760

6 Which of the following is not a solution of $2 \cos ^{2} x-3 \cos x+1=0$?
(A) 0
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{3}$
(D) 2π

7 The line $y=2-x$ and the curve $y=x^{3}+4$ intersect at the point $(-1,3)$. Which of the following is the size in radians of the acute angle between these curves at the point $(-1,3)$?
(A) $\tan ^{-1} \frac{2}{5}$
(B) $\tan ^{-1} \frac{1}{2}$
(C) $\tan ^{-1} 1$
(D) $\tan ^{-1} 2$

8 Two secants from an external point cut off intervals on a circle as shown below.

What is the value of x ?
(A) $\frac{1+\sqrt{14}}{2}$
(B) 4
(C) $\frac{-3+\sqrt{73}}{4}$
(D) 5

9 A particle is moving in simple harmonic motion according to the equation $\ddot{x}=-9 x+3$. Which of the following gives the centre of motion, x_{0}, and period, T ?
(A) $x_{0}=3, T=\frac{2 \pi}{9}$
(B) $x_{0}=3, T=\frac{2 \pi}{3}$
(C) $x_{0}=\frac{1}{3}, T=\frac{2 \pi}{9}$
(D) $\quad x_{0}=\frac{1}{3}, T=\frac{2 \pi}{3}$

10 The graph below shows a function in the form $y=a \cos ^{-1}(b x)$.

What are the values of a and b ?
(A) $\quad a=4, b=\frac{1}{2}$
(B) $a=\frac{1}{4}, b=-\frac{1}{2}$
(C) $a=4, b=-\frac{1}{2}$
(D) $\quad a=\frac{1}{4}, b=\frac{1}{2}$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section
Start each of Questions 11-14 in a new writing booklet.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Solve $\frac{x+1}{x-1}>2$.
(b) Evaluate $\int_{-3}^{3} \frac{1}{\sqrt{9-x^{2}}} d x$.
(c) Find $\frac{d}{d x}\left(\cos ^{-1} e^{x}\right)$.
(d) Use the substitution $u=x^{2}+2$ to find $\int_{0}^{1} x\left(x^{2}+2\right)^{5} d x$.
(e) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y=2 \sec \frac{x}{3}$, the x-axis and the lines $x=0$ and $x=\pi$ is rotated about the x-axis.
(f) Evaluate $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2} 2 x}$.
(a) A roast chicken, which is initially at a temperature of $220^{\circ} \mathrm{C}$, is removed from an oven and left to cool on a bench at a constant temperature of $20^{\circ} \mathrm{C}$. The cooling rate of the chicken is proportional to the difference between the temperature of the bench and the temperature, T, of the chicken. That is, T satisfies the equation

$$
\frac{d T}{d t}=-k(T-20)
$$

where t is the number of minutes after the chicken has been placed on the bench.
(i) Show that $T=20+A e^{-k t}$ satisfies this equation.
(ii) The temperature of the chicken is $60^{\circ} \mathrm{C}$ after 1 hour. Find the temperature of the chicken, to the nearest degree, after 2 hours.
(b) In the diagram below, the points A, B, C and D are concyclic. The point O is the centre of the circle, $A D$ is a diameter of the circle and the arc lengths $B C$ and $C D$ are equal. Show that $A B \| O C$

Question 12 continued

(c) Consider the function $f(x)=\sqrt{x}-1$.
(i) State the domain and range of $y=f(x)$.
(ii) Find an expression for $f^{-1}(x)$.
(d) The diagram shows the parabola $x^{2}=4 y$. The points $P\left(2 p, p^{2}\right)$ and $Q\left(-4 p, 4 p^{2}\right)$ lie on the parabola. The tangents at P and Q intersect at T.

(i) Show that the equation of the tangent at P is given by

$$
y=p x-p^{2} .
$$

(ii) Write down the equation of the tangent at Q, and find the coordinates of the point T in terms of p.
(iii) Find the Cartesian equation of the locus of T.
(a) A particle moves in a straight line. Its displacement, x metres, after t seconds is given by

$$
x=\cos (5 t)-\sin (5 t)
$$

(i) Show that the particle is moving in simple harmonic motion
by showing that $\ddot{x}=-n^{2} x$.
(ii) Express the displacement in the form $x=R \sin (5 t-\alpha)$,
where $0<\alpha<\frac{\pi}{2}$.
(b) A particle moves in a straight line along the x-axis so that its acceleration is given by $\ddot{x}=\frac{1}{4+x^{2}}$ where x is the displacement from the origin.

Initially the particle is at rest at the origin.
(i) Find v^{2} as a function of x.
(ii) Explain why v is always positive for $t>0$. $\mathbf{1}$
(iii) Find the velocity as $x \rightarrow \infty$.
(c) Find the greatest coefficient in the expansion of $(2 x+1)^{18}$.
(d) The binomial theorem states that

$$
(1+x)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} x^{k}
$$

By differentiating both sides of this identity twice with respect to x, show that

$$
2^{n-2}-1=\sum_{k=2}^{n-1}{ }^{n} C_{k} \frac{k(k-1)}{n(n-1)}, \quad n \geq 3
$$

(a) Use mathematical induction to prove that

$$
\sum_{j=2}^{n} \ln \left(\frac{j-1}{j+1}\right)=\ln \left(\frac{2}{n(n+1)}\right), \quad n \geq 2
$$

(b) A frustum is a pyramid with its top cut off. Water is being poured into a container in the shape of an inverted right square frustum, as shown below, at a rate of $10 \mathrm{~L} / \mathrm{s}$.

Container
Cross-section

The vertical cross-section of the container has the dimensions (in centimetres) shown above.
(i) Find the value of x.
(ii) Let the depth of water in the container be h centimetres. Show that the volume, V, in cm^{3} of water in the container is given by

$$
V=\frac{4}{3}\left(h^{3}+60 h^{2}+1200 h\right) .
$$

(iii) How quickly is the depth increasing when the container has been filled to 3

Question 14 continued

(c) A ball launcher placed at the origin is aimed at a target, T, X metres away horizontally and Y metres above its launch point, as shown in the diagram below. The initial velocity of the ball is $V \mathrm{~m} / \mathrm{s}$.
$T(X, Y)$

Assume that at time t seconds after the launcher is activated the location of the ball is given by

$$
\begin{aligned}
& x=V t \cos \theta \\
& y=V t \sin \theta-5 t^{2} .
\end{aligned}
$$

(i) Show that the equation of the path of the ball is given by

$$
y=x\left(\frac{Y}{X}\right)-\frac{5 x^{2}}{V^{2}}\left(1+\frac{Y^{2}}{X^{2}}\right)
$$

(ii) Find an expression for V in terms of X and Y that will cause the ball to land directly below the target.
(iii) The initial velocity of the launcher is 20 metres per second. 2 Describe the locus of the target, T, that will allow the ball to land directly below the target
(1)

2013 maths Extension 1 Solutions - Trial PAC
Section I

1. D
2. C
3. A
4. A
5. A
6. B
7. D

$$
=\frac{1}{2}\left[\frac{\sin 2 x}{2}+x\right]
$$

8. B
9. D
10. C

$$
\text { 1. } \begin{aligned}
P & =\left(\frac{4(0)+-5(3)}{4-5}, \frac{4(0)+-5(7)}{4+-5}\right) \\
& =(15,35) .
\end{aligned}
$$

2. $\int_{0}^{\pi} \cos ^{2} x d x=\int_{0}^{\pi} \frac{1}{2}(\cos 2 x+1) d x$

$$
=\frac{1}{2}\left(\left(\frac{\sin 2 \pi}{2}+\pi\right)-(\sin 0-0)\right)
$$

$$
=0+\frac{\pi}{2}
$$

$$
=\frac{\pi}{2}
$$

3. $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

$$
=x_{0}-\frac{x_{0}^{2}-17}{2 x_{0}}
$$

4.

$$
\text { 4. } \begin{aligned}
& \alpha+\sqrt{2}-1-\frac{1}{2}=\frac{-5}{2} \\
& \alpha+\sqrt{2}-1=-2 \\
& \alpha \\
&=-\sqrt{2}-1 \\
& \text { 5. }\left(2 x^{3}-\frac{1}{x}\right)^{12}=\sum_{k=0}^{12}{ }^{12} c_{k}\left(2 x^{3}\right)^{12-k}\left(-x^{-1}\right)^{k} \\
&=\sum_{k=0}^{12}{ }^{12} c_{k} 2^{12-k} x^{36-3 k}(-1)^{k} x^{-k}
\end{aligned}
$$

Constant term when $36-4 k=0$ $k=9$.
(3)

2013 Math Extension 1 Solutions. Trial PaC.
8.

$$
\begin{gathered}
x(2 x+2)=(x+1)(x+4) \\
2 x(x+1)=(x+1)(x+4) \\
(x+1)(2 x-(x+4))=0 \\
(x+1)(x-4)=0 . \\
\therefore x=4,-1 .
\end{gathered}
$$

But $x>0$

$$
\therefore x=4 \text {. }
$$

9.

$$
\begin{aligned}
\ddot{x} & =-9 x+3 \\
& =-9\left(x-\frac{1}{3}\right) \\
\therefore x_{0} & =\frac{1}{3}, T=\frac{2 \pi}{3} .
\end{aligned}
$$

io. $a=4, b=-\frac{1}{2}$.
(2)

2013 Maths Extension 1 Solutions - Trial PAC.
5. cont.

$$
\text { constant term }={ }^{12} \mathrm{c}_{9} 2^{3}(-1)^{9}
$$

$$
=-1760 .
$$

6.

$$
\begin{gathered}
2 \cos ^{2} x-3 \cos x+1=0 . \\
2 u^{2}-3 u+1=0 \\
(2 u-1)(u-1)=0 \\
\therefore u=1 \text { or } u=\frac{1}{2} . \\
\cos x=1 \text { or } \cos x=\frac{1}{2} \\
\therefore x=0,2 \pi \quad \text { or } x=\frac{\pi}{3}, \frac{5 \pi}{3} .
\end{gathered}
$$

$\therefore \frac{\pi}{6}$ is not a solution
7. From $y=2-x, \quad m_{1}=-1$

$$
\begin{aligned}
& \text { From } \\
& \begin{array}{l}
y=x^{3}+4^{\prime} \\
y^{\prime}=3 x^{2}
\end{array} \\
& \begin{aligned}
y^{\prime} & =3 x^{2} \\
& =3(1)^{2}
\end{aligned} \\
& y=3(-1)^{2} \quad \text { when } x=-1 \text {. } \\
& \begin{array}{c}
\therefore m_{2}=3 . \\
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{2} m_{2}}\right|
\end{array} \\
& \left.\begin{aligned}
& \tan \theta=\left\lvert\, \frac{m_{2}}{}=3 .\right. \\
&=\left\lvert\, \frac{-1-3}{1+m_{1} m_{2}}\right. \\
& 1-3
\end{aligned} \right\rvert\, \\
& =2 \\
& \therefore \theta=\tan ^{-1}(2) \text {. }
\end{aligned}
$$

let $x=\cos x$.

Section II
Q11
a) Solve $\frac{x+1}{x-1}=2 \quad, x \neq 1$

$$
\begin{aligned}
x+1 & =2 x-2 \\
x & =3
\end{aligned}
$$

$\therefore x=1, x=3$ are critical points.

\therefore solution is $1<x<3$.
b)

$$
\begin{aligned}
\int_{-3}^{3} \frac{1}{\sqrt{9-x^{2}}} d x & =\left[\sin ^{-1}\left(\frac{x}{3}\right)\right]_{-3}^{3} \\
& =\frac{\pi}{2}-\left(-\frac{\pi}{2}\right) \\
& =\pi
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
\frac{d}{d x}\left(\cos ^{-1} e^{x}\right) & =\frac{-1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x} \\
& =\frac{-e^{x}}{\sqrt{1-e^{2 x}}}
\end{aligned}
$$

d)

$$
\begin{array}{rlr}
\int_{0}^{1} x\left(x^{2}+2\right)^{5} d x & =\int_{2}^{3} \frac{u^{5}}{2} d u & \begin{aligned}
& \text { let } u=x^{2}+2 \\
& \frac{d u}{d x}=2 x \\
&=\left[\frac{u^{6}}{12}\right]_{2}^{3}
\end{aligned} \\
& =\frac{3^{6}}{12}-\frac{2^{6}}{12} & \text { When } x=\frac{d u}{2} \\
& =\frac{665}{12} & \text { When } x=1, u=2
\end{array}
$$

(5)

2013 Maths Extension 1 Solutions - Trial PRC
Q, 11 cont.
e)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi} 4 \sec ^{2}\left(\frac{x}{3}\right) d x \\
& =4 \pi\left[3 \tan \left(\frac{x}{3}\right)\right]_{0}^{\pi} \\
& =12 \pi\left(\tan \frac{\pi}{3}-\tan 0\right) \\
& =12 \pi \sqrt{3} \text { units }^{3}
\end{aligned}
$$

f)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2} 2 x} & =\lim _{x \rightarrow 0}\left(\frac{2 x}{\sin 2 x}\right)^{2} \times \frac{1}{4} \\
& =|x| \times \frac{1}{4} \\
& =\frac{1}{4} .
\end{aligned}
$$

Q12
a) (i)

$$
\begin{aligned}
\text { (i) } T & =20+A e^{-k t} \quad \Rightarrow T-20=A e^{-k t} \\
\frac{d T}{d t} & =-k A e^{-k t} \\
& =-k(T-20)
\end{aligned}
$$

(ii) When $t=60, T=60^{\circ}$
when $t=0, T=220^{\circ}$.
So $220=20+A e^{-0}$
$\therefore A=200$
So $T=20+200 e^{-k t}$
And $60=20+200 e^{-60 k}$

$$
\frac{40}{200}=e^{-60 k}
$$

$$
-\ln 5=-60 k
$$

$$
k=\frac{\ln 5}{60}
$$

(7)

2013 Maths Extension 1 Solutions - Trial PAC
Q12 cont.
d) (i)

$$
\begin{aligned}
y & =\frac{x^{2}}{4} \\
\frac{d y}{d x} & =\frac{2 x}{4} \\
& =\frac{x}{2}
\end{aligned}
$$

Tangent at P :

$$
\begin{aligned}
y-p^{2} & =\frac{2 p}{2}(x-2 p) \\
y & =p x-2 p^{2}+p^{2} \\
y & =p x-p^{2}
\end{aligned}
$$

(ii) Tangent at Q :

$$
\begin{aligned}
y-(2 p)^{2} & =-2 p(x+4 p) \\
y-4 p^{2} & =-2 p x-8 p^{2} \\
y & =-2 p x-4 p^{2}
\end{aligned}
$$

Af T: $p x-p^{2}=-2 p x-4 p^{2}$

$$
\begin{aligned}
3 p x+3 p^{2} & =0 \\
3 p(x+p) & =0 . \\
\therefore x & =-p, \quad y=-2 p^{2} .
\end{aligned}
$$

So $T=\left(-p,-2 p^{2}\right)$.
(iii)

$$
\begin{aligned}
& p=-x \\
& y=-2(-x)^{2} \\
& y=-2 x^{2} \quad \text { is the locus of } T .
\end{aligned}
$$

(6)

2013 Maths Extension 1 Solutions - Trial PAC.
Q12 cont.
a) (ii) cont.

When $t=120$

$$
\begin{aligned}
& \begin{aligned}
T & =120 \\
= & 20+200 e^{-120 \times \frac{\ln 5}{60}} \\
& =20+200 e^{-2 \ln 5} \\
& =28^{\circ} \mathrm{C} .
\end{aligned} .
\end{aligned}
$$

b) Let $\angle C O D=x^{\circ}$
$\begin{aligned} & \text { Let } \angle C O D=x^{\circ} \\ & \therefore \angle B O C=x^{\circ} \quad \text { (equal arcs }(B C, C D) \text { subtend } \\ & \text { equal angles at the centre) }\end{aligned}$
So $\angle B O D=2 x^{\circ}$
($\angle B O C+\angle C O D$)

$$
\therefore \angle B A D=x^{\circ}
$$

(angl eat circumference) angle at centre on
same arc

$$
\therefore \angle A B O=x^{\circ}
$$ ales of isosceles $\triangle A B O, A O=B O$, equal

So $\angle A B O=\angle C O B$
$\therefore A B \| O C$ (equal alternate angles).
c) $f(x)=\sqrt{x}-1$.
(i) domain: $\quad x \geqslant 0$ range: $\quad y \geqslant-1$.
(ii) $y=\sqrt{x}-1$
has inverse

$$
\begin{aligned}
& x=\sqrt{y}-1 \\
& x+1=\sqrt{y} \\
& y=(x+1)^{2}, \\
& \therefore f^{-1}(x)=(x+1)^{2}, x \geqslant-1 . \\
& \therefore-1 .
\end{aligned}
$$

Q13
a)
(i)

$$
\begin{aligned}
x & =\cos 5 t-\sin 5 t \\
\dot{x} & =-5 \sin 5 t-5 \cos 5 t \\
\ddot{x} & =-25 \cos 5 t+25 \sin 5 t \\
& =-25(\cos 5 t-\sin 5 t) \\
& =-5^{2} x
\end{aligned}
$$

which is in the form $\ddot{x}=-n^{2} x$, where $n=5$.
(ii)

$$
\begin{aligned}
& \text { Let } \begin{aligned}
\cos 5 t-\sin 5 t= & R \sin (5 t-\alpha) \\
= & R \sin 5 t \cos \alpha \\
& -R \cos 5 t \sin \alpha \\
\therefore & -R \sin \alpha=1 \\
& R \cos \alpha=-1
\end{aligned}
\end{aligned}
$$

So $-\tan \alpha=-1$

$$
\tan \alpha=1
$$

$$
\alpha=\frac{\pi}{4} . \quad\left(0 \leq \alpha \leq \frac{\pi}{2}\right) .
$$

Sub. $\alpha=\frac{\pi}{4}$ into $R \cos \alpha=-1$

$$
\begin{aligned}
\therefore R & =\frac{-1}{\cos \frac{\pi}{4}} \\
& =\frac{-1}{\cdot \frac{-1}{\sqrt{2}}}=-\sqrt{2} . \\
\therefore x=-\sqrt{2} & \sin \left(5 t-\frac{\pi}{4}\right)
\end{aligned}
$$

b) $\ddot{x}=\frac{1}{4+x^{2}}$
(i)

$$
\begin{aligned}
\frac{d\left(\frac{1}{2} v^{2}\right)}{d x} & =\frac{1}{4+x^{2}} \\
\frac{1}{2} v^{2} & =\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C \\
v^{2} & =\tan ^{-1}\left(\frac{x}{2}\right)+k .
\end{aligned}
$$

(9)

2013 Maths Extension 1 Solutions - Trial PAC
Q13 (cont.)
b) (i) cont.

When $x=0, v=0$.
So $0=\tan ^{-1}(0)+k$.

$$
\begin{gathered}
\therefore k=0 . \\
\therefore v^{2}=\tan ^{-1}\left(\frac{x}{2}\right)
\end{gathered}
$$

(ii) $\ddot{x}=\frac{1}{4+x^{2}}$
>0 for all x as $x^{2} \geqslant 0$ for all x.
If the particle begins at rest at the onigin and its acceleration is always positive, it will always be mourning in the direction of the posit wive x-axis.
i.e. $v>0$.
(iii) $\lim _{x \rightarrow \infty} v=\lim _{x \rightarrow \infty} \sqrt{\tan ^{-1}\left(\frac{x}{x}\right)}$

$$
=\sqrt{\frac{\pi}{2}} .
$$

$$
\text { c) } \begin{aligned}
(2 x+1)^{18} & =\sum_{k=0}^{18}{ }^{18} c_{k}(2 x)^{17-k} 1^{k} \\
& =\sum_{k=0}^{18}{ }^{18} c_{k} 2^{18-k} x^{18-k}
\end{aligned}
$$

(11)

2013 Maths Extension 1 Solutions - Trial PAC.
014
a) Prove true for $n=2$.

$$
\begin{aligned}
& \text { HS }=\sum_{j=2}^{2} \ln \left(\frac{j-1}{j+1}\right)=\ln \left(\frac{1}{3}\right) \\
& \text { RUS }=\ln \left(\frac{2}{2 \times 3}\right)=\ln \left(\frac{1}{3}\right) \\
& \text { HS }=\text { RUS . } \quad \therefore \text { true for } n=2 .
\end{aligned}
$$

* Assume true for $n=k$.

$$
\text { ie. } \sum_{j=2}^{k} \ln \left(\frac{j-1}{j+1}\right)=\ln \left(\frac{2}{k(k+1)}\right)
$$

Prose true for $n=k=1$.
... need to show $\sum_{j=2}^{k+1} \ln \left(\frac{j-1}{s+1}\right)=\ln \left(\frac{2}{(k+1)(k+2)}\right)$

$$
\begin{aligned}
L H S & =\sum_{j=2}^{k=1} \ln \left(\frac{j-1}{j+1}\right) \\
& =\sum_{j=2}^{k} \ln \left(\frac{j-1}{j+1}\right)+\ln \left(\frac{k}{k+2}\right) \\
& =\ln \left(\frac{2}{k(k+1)}\right)+\ln \left(\frac{k}{k+2}\right) \quad \text { by the } \\
& =\ln \left(\frac{2 k}{k(k+1)(k+2)}\right) \\
& =\ln \left(\frac{2}{(k+1)(k+2)}\right) \\
& =\text { hypoth }
\end{aligned}
$$

\therefore true for $n=k+1$.
$\therefore b_{y}$ the principle of mathematical induction, true for all $n \geqslant 2$.

Q13 (cont)
c) cont.

We want $\frac{{ }^{18} C_{k+1} 2^{18-k-1}}{{ }^{18} c_{k} 2^{18-k}}>1$

$$
\begin{aligned}
\frac{18!}{(18-k-1)!(k+1)!} \times \frac{(18-k!!k!}{18!} & \times \frac{1}{2}>1 \\
\frac{18-k}{2(k+1)} & >1 \\
18-k & >2 k+2 \\
16 & >3 k \\
k & <\frac{16}{3}
\end{aligned}
$$

So ${ }^{18} 2^{i k}=5$ is the greatest such integer.
So ${ }^{18} C_{b} 2^{12}=76038144$ is the greatsot coebrizient.
d) $(1+x)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} x^{k}$

Differentiating: $\quad n(1+x)^{n-1}=\sum_{k=0}^{n}{ }^{n} C_{k} k x^{k-1}$
Differentiating again: $n(n-1)(1+x)^{n-2}=\sum_{k=0}^{n}{ }^{n} C_{k} k(k-1) x^{k-2}$
Let $x=1: \quad n(n-1) 2^{n-2}=\sum_{k=0}^{n}{ }^{n} c_{k} k(k-1)$
So $2^{n-2}=0+0+\sum_{k=2}^{n-1} C_{k} \frac{k(k-1)}{n(n-1)}+1$.

$$
\begin{array}{ccc}
& \prod_{0 x-1}^{n(n-1)} & \uparrow_{1 \times 0}^{n(n-1)} \\
\therefore 2^{n-2}-1= & \sum_{k=2}^{n-1}{ }^{n} C_{k} \frac{k(k-1)}{n(n-1)} .
\end{array}
$$

(12)

2013 Maths Extension 1 Solutions - Trial PAC. Q14 cont.
b) (i) Using similar triangles.

$$
\begin{aligned}
\frac{x}{20} & =\frac{x+80}{100} \\
100 x & =20 x+1600 \\
80 x & =1600 \\
x & =20 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =\frac{1}{3} A_{\text {top }} h_{\text {be }}-\frac{1}{3} A_{\text {bottom }} h_{\text {bottom }} \\
& =\frac{1}{3}(2(h+20))^{2}(h+20)-\frac{1}{3}(2 \times 20)^{2}(20) \\
& =\frac{4}{3}(h+20)^{3}-\frac{4}{3}(20)^{3} \\
& =\frac{4}{3}\left(h^{3}+60 d^{2}+1200 d+8000\right)-\frac{4}{3}(8000) \\
& =\frac{4}{3}\left(h^{3}+60 h^{2}+1200 h\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d V}{d h} & =\frac{4}{3}\left(3 h^{2}+120 h+1200\right) \\
\frac{d h}{d t} & =\frac{d V}{d t} \times \frac{d h}{d V} \\
& =10000 \mathrm{~cm}^{3} / \mathrm{s} \times \frac{3}{4}\left(\frac{1}{3 \times 40^{2}+120 \times 40+1200}\right) \\
& =10000 \times \frac{3}{4 \times 10800} \\
& =0.69 \mathrm{~cm}^{3} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

(13)

2013 Maths Extension 1 Solutions - Trial PAC.
Q.14
c) (i)

$$
\text { i) } \begin{aligned}
x & =V t \cos \theta \\
t & =\frac{x}{V \cos \theta} \\
\therefore y & =V\left(\frac{x}{v \cos \theta}\right) \sin \theta-5\left(\frac{x^{2}}{v^{2} \cos ^{2} \theta}\right) \\
& =x \tan \theta-\frac{5 x^{2}}{v^{2}}\left(\frac{1}{\cos ^{2} \theta}\right) \\
& =x\left(\frac{y}{x}\right)-\frac{5 x^{2}}{v^{2}}\left(\frac{1}{x}\left(\frac{x}{x^{2}+y^{2}}\right)^{2}\right) \\
& =x\left(\frac{y}{x}\right)-\frac{5 x^{2}}{v^{2}}\left(\frac{x^{2}+y^{2}}{x^{2}}\right) \\
y & =x\left(\frac{y}{x}\right)-\frac{5 x^{2}}{v^{2}}\left(1+\frac{y^{2}}{x^{2}}\right)
\end{aligned}
$$

(ii) Directly below target $\Rightarrow x=X, y=0$.

$$
\begin{aligned}
0 & =x\left(\frac{y}{x}\right)-\frac{5 x^{2}}{V^{2}}\left(1+\frac{y^{2}}{x^{2}}\right) \\
0 & =Y-\frac{5}{V^{2}}\left(x^{2}+y^{2}\right) \\
\frac{5}{V^{2}}\left(x^{2}+y^{2}\right) & =Y \\
V^{2} & =\frac{5}{Y}\left(x^{2}+y^{2}\right) \\
V & =\sqrt{\frac{5}{4}\left(x^{2}+y^{2}\right)} \quad, \text { as } V>0 .
\end{aligned}
$$

(14)

2013 Maths Extension 1 Solutions - Trial PAC.
0.14
c) (ai)

$$
\begin{aligned}
20 & =\sqrt{\frac{5}{Y}\left(x^{2}+y^{2}\right)} \\
400 & =\frac{5}{Y}\left(x^{2}+y^{2}\right) \\
400 y & =5\left(x^{2}+y^{2}\right) \\
80 y & =x^{2}+y^{2}
\end{aligned}
$$

$$
x^{2}+y^{2}-80 y=0
$$

$$
x^{2}+y^{2}-80 y+1600=1600
$$

$$
x^{2}+(4-40)^{2}=40^{2}
$$

\therefore the loans of T is a arcle centred at $(0,40)$, radius 40 .

