

Shore School

Exam Number

Set:

Section I
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.

1 Which of the following polynomials has a factor of $(x+3)$?
(A) $\quad P(x)=(x+3)^{3}-7$
(B) $P(x)=x^{3}-4 x^{2}+9$
(C) $P(x)=x^{3}+5 x^{2}+6 x+3$
(D) $P(x)=x^{3}+5 x^{2}+4 x-6$

2 Which of the following has an inverse which is a function?
(A) $(y-3)^{2}=16(x-2)$
(B) $x^{2}+y^{2}=5$
(C) $y=x(x-2)(x-4)$
(D) $y=\log _{e} x^{2}$

3 What is $\lim _{x \rightarrow 0} \frac{\sin \frac{2 x}{3}}{4 x}$?
(A) $\frac{1}{6}$
(B) $\frac{1}{2}$
(C) $\frac{8}{3}$
(D) 6

4 A particle is moving in simple harmonic motion according to the formula

$$
x=-3 \sin 4 t+5
$$

where x is its distance from O in metres and t is measured in seconds.
Which of the following is the maximum speed of the particle?
(A) $-12 \mathrm{~m} / \mathrm{s}$
(B) $-7 \mathrm{~m} / \mathrm{s}$
(C) $12 \mathrm{~m} / \mathrm{s}$
(D) $17 \mathrm{~m} / \mathrm{s}$

5 Which expression below shows the number of possible arrangements of the letters in the word PERSEVERANCE?
(A) $\frac{12!}{6!}$
(B) $\frac{12!}{4!2!}$
(C) $\frac{12!}{4 \times 2}$
(D) $12!$

6 If n and k are integers with $n>k>1$, which of the following statements about binomial coefficients is FALSE?
(A) ${ }^{n} C_{k}={ }^{n} C_{n-k}$
(B) ${ }^{n} C_{n}=1$
(C) ${ }^{n} C_{k}={ }^{n-1} C_{k-1}+{ }^{n-1} C_{k}$
(D) ${ }^{n} C_{k}=\frac{n!}{(n-k)!}$

7 In the diagram below A, B and C are points on the circumference of circle centre O, while tangent $X C$ meets the circle at C. As shown, $\angle A C B=60^{\circ}$ and $\angle O A C=40^{\circ}$.

What is the size of $\angle B C X$?
(A) 30°
(B) 50°
(C) 70°
(D) 120°

8 A security lock has six buttons labelled A, B, C, D, E, and F.
The lock was initially on a setting where repetition was allowed for the 3 letter code and the order in which the buttons were pushed was important.
However, it was changed to a setting where the order in which buttons were pushed was not important and repetition was also not allowed.
Which of the following expressions gives the reduction in the number of possible 3 letter codes?
(A) $6^{3}-{ }^{6} P_{3}$
(B) ${ }^{6} P_{3}-{ }^{6} C_{3}$
(C) $6^{3}-{ }^{6} C_{3}$
(D) $6^{3}-3$!

9 The line $y=2 x-1$ intersects with the cubic $y=x^{3}$ at the point $(1,1)$.
Which of the following is closest to the acute angle between them at this point?
(A) 8°
(B) 18°
(C) 72°
(D) 82°

10 Two balls of the same type are thrown horizontally off a 100 metre high cliff. Ball A is thrown at $20 \mathrm{~m} / \mathrm{s}$, while Ball B is thrown at $10 \mathrm{~m} / \mathrm{s}$.

Ignoring wind-resistance, which of the following is FALSE?
(A) Ball A and Ball B have the same vertical velocity on impact.
(B) Ball A is moving at a velocity double that of Ball B when they strike the ground.
(C) Ball A and Ball B are in the air for the same amount of time.
(D) Ball A hits the ground twice as far from the base of the cliff as Ball B.

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Consider the polynomial $P(x)=5 x^{3}-9 x^{2}+3 x-11$, with roots α, β and γ.

Determine the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(b) The point P divides the interval $E F$ externally in the ratio $5: 2$,
where $E=(7,3)$ and $F=(1,6)$.
Determine the coordinates of the point P.
(c) Differentiate $\frac{x}{5} \sin ^{-1} 5 x$ with respect to x

Leave your answer in simplified form.
(d) Solve the inequality $\frac{|x+35|}{x}>6$.
(e) Find $\int \cos ^{2} 3 x d x$.
(f) Using the substitution $u=e^{x}$, find $\int_{0}^{\ln \left(\frac{\sqrt{3}}{2}\right)} \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Use the binomial theorem to find the constant term in the expansion of $\left(2 x-\frac{1}{4 x^{2}}\right)^{9}$.
(b) A steak is removed from a freezer and left on the kitchen bench to thaw. The temperature in the kitchen is a constant $20^{\circ} \mathrm{C}$. At time t minutes after being taken out of the freezer, the steak's temperature T increases according to the rule $\frac{d T}{d t}=-k(T-20)$.
(i) Verify that $T=20-A e^{-k t}$ satisfies this equation, where A is a constant.
(ii) The steak which was initially at $-10^{\circ} \mathrm{C}$ when taken out of the freezer, takes 30 minutes to reach $0^{\circ} \mathrm{C}$.

How much longer will it take for the steak to reach $10^{\circ} \mathrm{C}$? Give your answer correct to the nearest minute.
(c) Consider the function $f(x)=\frac{3 x}{x+2}$.

Find its inverse function $f^{-1}(x)$ and state the domain over which $f^{-1}(x)$ is defined.
(d) A particle's displacement x metres from O at time t seconds is given by $x=\sqrt{15} \sin 2 t+\sqrt{5} \cos 2 t$.
(i) Prove that the particle is in simple harmonic motion, by showing that $\ddot{x}=-n^{2} x$.
(ii) Express the displacement in the form $x=R \sin (2 t+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(iii) Determine when the particle is first $\sqrt{15}$ metres to the right of O and its speed at this time.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Five fair dice are rolled. Determine the probability that exactly three of the dice land with six showing on the uppermost face.
(b) Use mathematical induction to prove that for all integers $n \geq 4$,

$$
2^{n}<n!
$$

(c) Find the general solution(s) of $\sec ^{2} \theta+\sqrt{3} \tan \theta=1$. Leave your answer in radians.
(d) The region bounded by the curve $y=\frac{1}{\sqrt{3+x^{2}}}$, the lines $x=\sqrt{3}, x=3$ and the x-axis is rotated about the x-axis to form a solid.

Find the exact volume of the solid.
(e) The equation $e^{x}-2=\cos \frac{x}{2}$ has only one solution which is near $x=1$. this solution. Give your answer correct to two decimal places.
Use ONE application of Newton's method to find a better approximation of
(f) In the diagram, the chord $A B$ is produced to C, while $C D$ is tangent to the circle at D.

NOT TO
SCALE

Find the value of x, stating clearly any geometric theorem(s) used.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A projectile is fired from ground level with initial velocity $v \mathrm{~ms}^{-1}$ at an angle of α° to the horizontal.
(i) Starting from $\ddot{x}=0$ and $\ddot{y}=-g$, show that:

$$
x=v t \cos \alpha \text { and } y=-\frac{1}{2} g t^{2}+v t \sin \alpha .
$$

(ii) Prove that the flight path of the projectile is given by:

$$
y=-\frac{g x^{2}}{2 v^{2}}\left(1+\tan ^{2} \alpha\right)+x \tan \alpha
$$

(iii) Tom fires a projectile at $10 \mathrm{~ms}^{-1}$ from ground level at 45° to the horizontal. It strikes a 3 metre high wall which is 5 metres away. Determine how high up the wall the projectile hits. Use $g=9.8 \mathrm{~ms}^{-2}$.

(iv) Tom fired a second projectile at the same angle but this time it cleared the have been fired. Leave your answer correct to 2 decimal places.
(b) The helium gas from a tank is flowing into a large spherical balloon at the rate of 15 litres per second. Find the instantaneous rate of increase of the radius when it is 10 centimetres. Give the exact answer in simplified form.
(c) King Arthur, Sir Lancelot and the 10 other knights of the round table are about to sit down.
(i) Find the number of possible seating arrangements.

1

1

STANDARD INTEGRALS

$$
\int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0
$$

$$
\int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0
$$

$$
\int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0
$$

$$
\int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0
$$

$$
\int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0
$$

$$
\int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0
$$

$$
\int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

Extasion 1 Trial 2014
(1) D $P(-3)=(-3)^{3}+5 \times(-3)^{2}+4 \times(-3)-6$

$$
=0
$$

(2) A $\quad 1$ only 1 peont hit
in 'harizontal line test'
(3) A $\begin{aligned} \frac{\frac{2}{3}}{4} \times \lim _{x \rightarrow 0} \frac{\sin \frac{2 x}{3}}{\frac{3}{3}} & =\frac{1}{6} \times 1 \\ & =\frac{1}{6}\end{aligned}$
(4) $C \quad \dot{x}=-12 \cos 4 t$

$$
\therefore \quad-12 \leqslant \dot{x} \leq 12
$$

$$
4 \text { max speced }=12 \mathrm{~m} / \mathrm{s}
$$

(5) $\mathrm{B} \quad 12$ letters, 4E's, 2 R's

$$
\rightarrow \frac{12!}{4!2!} \leftarrow
$$

(6) D) $\quad{ }^{n} C_{k}=\frac{n!}{k!(n-k)!} \quad{ }^{\wedge} P_{k}=\frac{n!}{(n-k)!}$
(7) C

$$
\begin{aligned}
\angle A O B & =120^{\circ} \\
\angle O B B & =\angle O B A=30^{\circ} \\
\angle X C B & =40+30 \\
& =70^{\circ}
\end{aligned}
$$

(8) $C \quad 6^{3}-{ }^{6} C_{3}$
(9) A

$$
\begin{aligned}
& \begin{array}{l}
y=2 x-1 \rightarrow m_{2}=2 \\
y=x^{3} \rightarrow 4 y=3 x^{2}
\end{array} \\
& y=x^{3} \rightarrow \frac{d y}{x+x}=3 x^{2} \\
& \operatorname{mim}_{x=1} \frac{d y}{d x}=3 \quad \therefore m_{1}=3 \\
& \tan \theta=\frac{3-2 \mid}{1+3 \times 2} \\
& =\frac{1}{7} \\
& \begin{aligned}
2 & =\tan ^{-1}\left(\frac{1}{7}\right) \\
& \vdots 8^{\circ}
\end{aligned}
\end{aligned}
$$

(10) B

Same heigat, Same time \rightarrow Sarce vetiond Velocity doulte \rightarrow Cistame dowble Qet velecity has both vecticial \& horizontal component, didecimpact

$$
\sum_{4}^{204 / 5} y_{y} \int_{y}^{100 y_{4}^{1}}
$$

(11) a)

$$
\begin{aligned}
\alpha \beta \gamma(\alpha+\beta+\gamma) & =\frac{-\alpha}{a} \times \frac{-b}{a} \\
& =\frac{\pi}{5} \times \frac{9}{5} \\
& =\frac{99}{25}
\end{aligned}
$$

b)

$$
\begin{aligned}
& (7,3) \\
& p=(1,6) \\
& 5:-2 \\
& =\left(\frac{5(1)-2(7)}{5-2}, \frac{5(6)-2(3)}{5-2}\right)
\end{aligned}
$$

d) Critical Points

$$
0<x<7
$$

(11) C)

$$
\begin{aligned}
& u=\frac{x}{5} \quad v=\sin ^{-15} x \\
& u^{\prime}=\frac{5}{5} \quad v^{\prime}=\frac{5}{\sqrt{1-25 x^{2}}} \\
& \begin{aligned}
\frac{d}{d x}\left(\frac{x}{5} \sin ^{-1} 5 x\right) & =\frac{1}{5} \sin ^{-1} 5 x+\frac{x}{5} \times \frac{x}{\sqrt{-25 x^{2}}} \\
& =\frac{1}{5} \sin ^{-1} 5 x+\frac{x}{\sqrt{1-25 x^{2}}}
\end{aligned}
\end{aligned}
$$

e)

$$
\begin{aligned}
G \cos 2 \theta & =2 \cos ^{2} \theta-1 \\
\cos ^{2} \theta & =\frac{1}{2} \cos 2 \theta+\frac{1}{2} \\
\int \cos ^{2} 3 x d x & =\int\left(\frac{1}{2} \cos 6 x+\frac{1}{2}\right) d x \\
& =\frac{1}{12} \sin 6 x+\frac{x}{2}+C
\end{aligned}
$$

f)

$$
\begin{aligned}
& x=\ln \frac{\sqrt{3}}{2} \rightarrow u=\frac{\sqrt{5}}{2} \\
& x=0 \rightarrow u=1 \\
& u=e^{x} \\
& \frac{d u=e^{x} d x}{\int_{0}^{\ln \frac{\pi}{2}} e^{x} \sqrt{1-e^{x x}}} d x=\int_{1}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\left[\sin ^{-1} u\right]_{1}^{\frac{\sqrt{3}}{2}} \\
& =\frac{\pi}{3}-\frac{\pi}{2} \\
& =-\frac{\pi}{6}
\end{aligned}
$$

(12) a) For constant

$$
\begin{aligned}
& x^{9-k} \times(x-2)^{k}=x^{0} \\
& 9-k-2 k=0
\end{aligned}
$$

$$
\begin{aligned}
& 9-k-2 k=0 \\
& 3 k=9 \\
& k=3 \\
& \therefore \quad{ }^{9} C_{3}(2 x)^{6}\left(-\frac{1}{4} x^{-2}\right)^{3}=84 \times 64 \times \frac{-1}{64} \\
&=-84
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& T=20-A e^{-k t} \rightarrow T-20=-A e^{-k t} \text { (1) } \\
& \frac{d T}{d t}=k A e^{-k t} \text { (2) }
\end{aligned}
$$

$$
\frac{d T}{d t}=-k\left(-A e^{-k t}\right)
$$

$$
=-k(T-20)
$$

ii) When $t=0, T=-10$

$$
\begin{aligned}
& -10=20-A e^{\circ} \\
& \therefore A=30 \\
& T=20-30 e^{-k t}
\end{aligned}
$$

When $t=30, T=0$

$$
0=20-30 e^{-30 k}
$$

$$
30 e^{-35 k}=20
$$

$$
e^{-50 k}=\frac{2}{3}
$$

$$
e^{3 x_{n}}=\frac{3^{3}}{2}
$$

$$
k=\frac{12}{30} \ln \left(\frac{3}{2}\right)
$$

$$
\begin{aligned}
& T=20-30 e^{-\frac{1}{3} \ln \left(\frac{3}{2}\right) t} \\
& 10=20-30 e^{-\frac{1}{3} \sin \left(\frac{3}{2}\right) t}
\end{aligned}
$$

$$
\begin{aligned}
& T=20-30 e^{2} \\
& 10=20-30 e^{-\frac{1}{3} \ln \left(\frac{3}{2}\right) t}
\end{aligned}
$$

(12)
(ctd)

$$
\begin{aligned}
& -10=-30 e^{-\frac{1}{3 x} \ln \left(\frac{1}{2}\right) t} \\
& \frac{1}{3}=e^{-\frac{1}{30} \ln \left(\frac{1}{2}\right) t} \\
& e^{\frac{1}{3 \ln }\left(\frac{3}{2}\right) t}=3 \\
& \begin{aligned}
\frac{1}{30} \ln \left(\frac{5}{2}\right) t & =\ln 3 \\
t & =\frac{30 \ln 3}{\ln \left(\frac{3}{2}\right)} \\
& =81.2853 \ldots
\end{aligned}
\end{aligned}
$$

$$
\doteq 81 \mathrm{~min} 17 \mathrm{sec}
$$

\therefore Apporox 51 min mare
c)

$$
\begin{array}{r}
y=\frac{3 x}{x+2} \quad \text { lnv } x=\frac{3 y}{y+2} \\
x(y+2)=3 y \\
x y+2 x=3 y \\
x y-3 y=-2 x \\
y(x-3)=-2 x \\
y=\frac{-2 x}{x-3} \\
\text { D } x \neq 3, x \in \mathbb{R}
\end{array}
$$

d) i)

$$
\begin{aligned}
x & =\sqrt{15} \sin 2 t+\sqrt{5} \cos 2 t \\
\dot{x} & =2 \sqrt{15} \cos 2 t-2 \sqrt{5} \sin 2 t \\
\ddot{x} & =-4 \sqrt{15} \sin 2 t-4 \sqrt{5} \cos 2 t \\
& =-4(\sqrt{15} \sin 2 t+\sqrt{5} \cos 2 t) \\
& =-2^{2} x
\end{aligned}
$$

(12) d) ii) $R \sin (2 t+\alpha)=R \sin 2 t \cos \alpha+R \cos 2 t \sin \alpha$

$$
\therefore R \cos \alpha=\sqrt{15} \quad R \sin \alpha=\sqrt{5}
$$

$$
\cos x=\frac{\sqrt{15}}{R} \quad \sin \alpha=\frac{\sqrt{5}}{k}
$$

$$
\begin{aligned}
R & =\sqrt{(\sqrt{5})^{2}+(\sqrt{15})^{2}} \\
& =2 \sqrt{5} \\
\alpha & =\frac{\sqrt{5}}{\sqrt{15}} \\
& =\frac{1}{\sqrt{3}} \\
\alpha & =\frac{\pi}{6}
\end{aligned}
$$

$$
\tan \alpha=\frac{\sqrt{5}}{\sqrt{15}}
$$

$$
\therefore x=2 \sqrt{5} \sin \left(2 t+\frac{\pi}{6}\right)
$$

iii) $\quad \begin{aligned} \sqrt{15} & =2 \sqrt{5} \sin \left(2 t+\frac{\pi}{6}\right) \\ \frac{\sqrt{3}}{2} & =\sin \left(2 t+\frac{\pi}{6}\right)\end{aligned}$

$$
2 t+\frac{\pi}{6}=\frac{\pi}{3}
$$

$$
2 t=\frac{\frac{3}{6}}{6}
$$

$$
t=\frac{\pi}{12} \sec
$$

$\dot{x}=4 \sqrt{5} \cos \left(2 t+\frac{\pi}{6}\right)$

$$
=4 \sqrt{5} \cos \left(\frac{\pi}{6}+\frac{\pi}{6}\right)
$$

$$
=2 \sqrt{5} \mathrm{~m} / \mathrm{s}
$$

(13) d

$$
\begin{aligned}
V= & \pi \int_{\sqrt{3}}^{3}\left(\frac{1}{\sqrt{3+2 x}}\right)^{2} d x \\
& =\pi \int_{\sqrt{3}}^{3} \frac{1}{3+x^{2}} d x \\
= & \pi\left[\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)\right]_{\sqrt{3}}^{3} \\
= & \pi\left(\frac{1}{\sqrt{3}} \tan ^{-1} \sqrt{3}-\frac{1}{\sqrt{3}} \tan ^{-1} 1\right) \\
= & \frac{\pi}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
= & \frac{\pi^{2}}{12 \sqrt{3}} u_{x i t}{ }^{3} \\
& \quad \operatorname{di} \frac{\pi^{2} \sqrt{3}}{36} u_{n i t}{ }^{3}
\end{aligned}
$$

e)

$$
\begin{aligned}
& C \begin{array}{l}
e^{x}-2=\cos \frac{x}{2} \\
\rightarrow(x) \\
f(x)=e^{x}-2-\cos \frac{x}{2} \\
f^{\prime}(x) \sin \frac{x}{2} \\
x_{2}=1-\frac{e^{1}-2-\cos \frac{1}{2}}{e^{1}+\frac{1}{2} \sin \frac{1}{2}} \\
\div 1.05
\end{array}
\end{aligned}
$$

(()

$$
\begin{gathered}
(3 x)^{2}=x(2 x+4) \\
9 x^{2}=2 x^{2}+4 x \\
7 x^{2}-4 x=0 \\
x(7 x-4)=0 \\
\therefore x=\frac{4}{7}
\end{gathered}
$$

(Square of targent equals prodivet of metrepts of chord)
(14) a)i) mitially

$$
\ddot{x}=0
$$

$$
\dot{x}=c_{r}
$$

$$
=r \cos \alpha
$$

$$
x=v t \cos \alpha+c_{3} \quad \therefore y=-g t+v \sin \alpha
$$

$$
\text { when } t=0, x=0
$$

$$
y=-\frac{1}{2} g t^{2}+v t \operatorname{tsn} \alpha+C_{4}
$$

$$
\begin{array}{ll}
\therefore c_{3}=0 & \text { when } t=0, y=0: c_{1}=0 \\
x=v t \cos \alpha & y=-\frac{1}{9} g t^{2}+v t \sin \alpha
\end{array}
$$

$$
x=v t \cos \alpha \quad y=-\frac{1}{2} g t^{2}+v t \sin \alpha
$$

ii)

$$
\begin{aligned}
C=v \cos \alpha \quad & y=-\frac{1}{2} g t^{2}+v t \sin \alpha \text { (2) } \\
t & =\frac{x}{v \cos \alpha} \text { (1) } \\
y & =-\frac{1}{2} g\left(\frac{x}{v \cos \alpha}\right)^{2}+v\left(\frac{x}{v \cos \alpha}\right) \sin \alpha \\
& =-\frac{g x^{2}}{2 v^{2} \cos ^{2} \alpha}+x \tan \alpha \\
& =\frac{-g x^{2}}{2 v^{2}} \sec ^{2} \alpha+x \tan \alpha \\
& =\frac{-g x^{2}}{2 v^{2}}\left(1+\tan ^{2} \alpha\right)+x \tan \alpha
\end{aligned}
$$

iii)

$$
\begin{aligned}
& x=5, \alpha=45, g=9.8 \\
& y=\frac{-9.8 \times 5^{2}}{2 \times 10^{2}}\left(1+\tan ^{2} 45^{\circ}\right)+5 \times \tan 45^{\circ} \\
& \\
& =2.55 \\
& \therefore 2.55 \mathrm{~m} \text { up the wall }
\end{aligned}
$$

(13) (a)

$$
\begin{aligned}
& P(6)=\frac{1}{6} \\
& p(\text { Not } 6)=\frac{5}{6} \\
& p={ }^{5} C_{3}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{3} \\
&=\frac{125}{3888}
\end{aligned}
$$

(b) Prove for $n=4$

$$
\begin{aligned}
& \text { LHS }=2^{4} \text { RHS }=4 \text { ! } \\
& =16=24 \\
& \therefore \text { RHS }>\text { LHS for } n=4
\end{aligned}
$$

Assume for $n=k$
ce assume $2^{k}<k$!
Prove for $n=k+1$
\therefore RTP

$$
\begin{array}{rlrl}
2^{k+1} & <(k+1)! & & =(k+1)! \\
& =(k+1) k! & =2^{k+1} \\
& =2 \times 2^{k}
\end{array}
$$

But $(k+1) \ll(k+1) 2^{k}$ by assumpption and $(k+1) 2^{k}>2 \times 2^{k}$ as $k \geqslant 4$

$$
\therefore \text { RHS }>\text { LHS }
$$

\therefore trice by unduction for $n \geqslant 4$
(c)

$$
\begin{aligned}
& 1+\tan ^{2} \theta+\sqrt{3} \tan \theta=1 \\
& \tan ^{2} \theta+\sqrt{3} \tan \theta=0 \\
& \tan \theta(\tan \theta+\sqrt{3})=0 \\
& \tan \theta=0, \tan \theta=-\sqrt{3} \\
& \theta=\pi n,-\frac{\pi}{3}+\pi n \text { where } \\
& \text { an is integer }
\end{aligned}
$$

(14)
a) ii)

$$
\begin{aligned}
& 3=\frac{-9.8 \times 5^{2}}{2 \times v^{2}}\left(1+\tan ^{2} 45^{\circ}\right) \\
& 3=\frac{-245}{v^{2}}+5 \\
& -2=\frac{-245}{v^{2}} \\
& \sqrt{v^{2}}=\sqrt{\frac{245}{2}} \\
& v \cong 11.07 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) i) No. arracomenets $=(12-1)$!
ii) P

$$
\text { if } \begin{aligned}
P & =\frac{2!\times 10!}{11!} \\
& =\frac{2}{11}
\end{aligned}
$$

c)

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d V}{d r}=4 \pi r^{2} \quad \frac{d V}{d t}=15000 \mathrm{~cm}^{3} / \mathrm{s} \\
& \text { When } \\
& \begin{aligned}
\frac{d V}{d r} & =400 \pi \\
\frac{d r}{d t} & =\frac{d r}{d r} \times \frac{d V}{d t} \\
& =\frac{1}{400 \pi} \times 15000 \\
& =\frac{75}{2 \pi} \mathrm{~cm} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

(11) d)

$$
\begin{aligned}
& (1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} \\
& (1+x)^{n}=\binom{n}{0}+\left(\frac{1}{1}\right) x+\left(\frac{1}{2}\right) x^{2}+\left(\frac{1}{3}\right) x^{3}+\ldots+(n) x^{n} \\
& \therefore \int\left((1+x) d x=\int\left(\begin{array}{l}
\left.(0)+\binom{n}{1} x+\binom{n}{2} x^{2}+\left(\frac{1}{3}\right) x^{3}+\cdots+\binom{n}{1} x^{n}\right) d x \\
n
\end{array}\right.\right. \\
& \frac{1}{n+1}(1+x)^{n+1}+C=(0) x \cdot \frac{1}{2}(n) x^{2}+\frac{1}{3}\left(\frac{1}{2}\right) x^{3}+\ldots+\frac{1}{n+1}(n) x^{n+1} \\
& \text { when } x=0 \\
& \frac{1}{n+1}+c=0 \\
& \therefore c=-\frac{1}{n+1} \\
& \therefore \frac{1}{n+1}(1+x)^{n+1}-\frac{1}{n+1}=\left(\frac{n}{(2)}\right) x+\frac{1}{2}(n) x^{2}+\frac{1}{3}(n) x^{3}++\frac{1}{n+1}(n) x^{n+1} \\
& \text { Let } x=2 \\
& \frac{\text { Let } x=2}{\frac{1}{n+1}\left(3^{n+1}-1\right)=\binom{n}{0} 2+\frac{1}{2}(n) 2^{2}+\frac{1}{3}\left(\frac{n}{2}\right)^{3} 2^{3}+\ldots+\frac{1}{n+1}(n) 2^{n+1}} \\
& =\sum_{k=0}^{n} \frac{2^{k+1}}{k+1}\binom{n}{k}
\end{aligned}
$$

