Examination Number:
Set:

Shore

Year 12

HSC Assessment Task 5 - Trial HSC
14th August 2015

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this question paper
- Answer Questions 1-10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11-14 in a new writing booklet
- In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked your examination number and "N/A" on the front cover

Total marks - 70

Section I Pages 3-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 7-12
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Multiple Choice Answer Sheet for Questions 1-10.
1 What is the value of $\int_{0}^{\frac{1}{5}} \frac{1}{\sqrt{1-25 x^{2}}} d x$?
(A) $\frac{\pi}{10}$
(B) $\frac{\pi}{5}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{25}$

2 Which of the following is a simplification of $4 \log _{e} \sqrt{e^{x}}$?
(A) $4 \sqrt{x}$
(B) $\frac{1}{2} x$
(C) $2 x$
(D) x^{2}

3 The acute angle between the lines $2 x-y=0$ and $k x-y=0$ is equal to $\frac{\pi}{4}$. What is the value of k ?
(A) $k=-3$ or $k=-\frac{1}{3}$
(B) $k=-3$ or $k=\frac{1}{3}$
(C) $k=3$ or $k=-\frac{1}{3}$
(D) $k=3$ or $k=\frac{1}{3}$

4 What is the domain and range of $y=2 \cos ^{-1}(x-1)$?
(A) Domain : $0 \leq x \leq 2$. Range: $0 \leq y \leq \pi$
(B) Domain : $-1 \leq x \leq 1$. Range: $0 \leq y \leq \pi$
(C) Domain : $0 \leq x \leq 2$. Range: $0 \leq y \leq 2 \pi$
(D) Domain : $-1 \leq x \leq 1$. Range: $0 \leq y \leq 2 \pi$

5 Which of the following is a simplification of $\frac{1-\cos 2 x}{\sin 2 x}$?
(A) $1-\cot x$
(B) 1
(C) $\cot x$
(D) $\tan x$

6 The domain of the function $y=x^{2}(x-2)^{2}$ must be restricted to have an inverse function.

Which of the following restrictions on the domain allows for an inverse function to exist?
(A) $x \geq 2$
(B) $0 \leq x \leq 2$
(C) $x \geq 0$
(D) $x \leq 2$

7 A particle is moving in simple harmonic motion with displacement x.
The velocity v of the particle is given by

$$
v^{2}=4\left(25-x^{2}\right)
$$

What is the amplitude a of the motion and the maximum speed of the particle?
(A) $a=2$ and maximum speed is $5 \mathrm{~m} / \mathrm{s}$
(B) $a=2$ and maximum speed is $10 \mathrm{~m} / \mathrm{s}$
(C) $a=5$ and maximum speed is $5 \mathrm{~m} / \mathrm{s}$
(D) $\quad a=5$ and maximum speed is $10 \mathrm{~m} / \mathrm{s}$

8 In the diagram $A B C D$ is a cyclic quadrilateral. The tangent $P Q$ touches the circle at A. The diagonal $B D$ is parallel to the tangent $P Q$. $Q A$ produced intersects with $C B$ at P. Let $\angle Q A D=\theta^{\circ}$

What is the size of $\angle B C D$?
(A) θ°
(B) $2 \theta^{\circ}$
(C) $(\pi-\theta)^{\circ}$
(D) $(\pi-2 \theta)^{\circ}$

9 Which of the following is the general solution of $2 \sin \frac{x}{2}=\sqrt{3}$?
(A) $x=4 n \pi \pm \frac{\pi}{3}$, where n is an integer.
(B) $\quad x=2 n \pi+\frac{\pi}{3}$, where n is an integer.
(C) $x=2 n \pi+(-1)^{n} \times \frac{2 \pi}{3}$, where n is an integer.
(D) $x=4 n \pi+(-1)^{n} \times \frac{2 \pi}{3}$, where n is an integer.

10 The polynomial graph shown below has equation $y=A(x+B)(x+C)^{2}$.

Which of the following is true?
(A) $A=-\frac{1}{6}, B=3, C=-2$
(B) $A=\frac{1}{6}, B=-3, C=2$
(C) $A=1, B=3, C=-2$
(D) $A=-1, B=3, C=-2$

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Solve the inequality $\frac{x-3}{x+4} \leq 2$.
(b) The point $C(-3,8)$ divides the interval $A B$ externally in the ratio $k: 1$.

Find the value of k if A is the point $(6,-4)$ and B is the point $(0,4)$.
(c) Find $\frac{d}{d x}\left(x \sin ^{-1} 2 x\right)$.
(d) Use the substitution $u=\ln x$ to evaluate $\int_{\frac{1}{e}}^{\sqrt{e}} \frac{d x}{x \sqrt{1-(\ln x)^{2}}}$.
e) The region bounded by the curve $y=\cos 3 x$ and the x axis between the lines $x=0$ and $x=\frac{\pi}{6}$ is rotated through one complete revolution about the x-axis. Find the exact volume of the solid formed.
(f) Use one application of Newton's method with an initial approximation of

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) Find the constant term of the expansion $\left(\frac{1}{x^{2}}-2 x^{3}\right)^{10}$.
(b) The polynomial $P(x)=x^{3}+a x^{2}+b x-6$ has a remainder of 8 when divided by $(x+1)$ and $(x-3)$ is a factor of the polynomial $P(x)$. Find the values of a and b.
(c) The displacement x metres of a particle moving in simple harmonic motion is given by

$$
x=4 \cos \pi t
$$

where time t is in seconds.
(i) What is the period of the oscillation?
(ii) What is the speed of the particle as it moves through the equilibrium position? $2 \log _{e} x-\cos x=0$. Give your answer correct to 2 significant figures

Question 12 (continued)

(d) In the diagram $A B$ is a diameter of the circle centre, O, and $B C$ is tangential to the circle at B. The line $A E D$ intersects the circle at E and $B C$ at D. The tangent to the circle at E intersects $B C$ at F. Let $\angle E B F=\alpha$

Copy or trace the diagram into your writing booklet.
(i) Prove that $\angle F E D=\frac{\pi}{2}-\alpha$.
(ii) Prove that $B F=F D$
(e) Use mathematical induction to prove that $5^{n}+2 \times 11^{n}$ is a multiple of 3 for all integers $n \geq 1$

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) An oven which had been heated to $180^{\circ} \mathrm{C}$ was switched off when the cook was finished baking at 11:30 am. The oven was in a kitchen which was kept at a constant temperature of $22^{\circ} \mathrm{C}$.

After t minutes, the temperature, $T^{\circ} \mathrm{C}$, of the oven was given by:

$$
T=22+B e^{-k t}
$$

where A, B and k are positive constants given by
(i) If after 10 minutes, the oven's temperature has dropped to $115^{\circ} \mathrm{C}$, find B and the exact value of k.
(ii) At what time will the oven's temperature drop to $23^{\circ} \mathrm{C}$. Give your answer correct to the nearest minute
(b) A particle is moving along the x-axis so that its acceleration after t seconds is

$$
\ddot{x}=-e^{-\frac{x}{2}}
$$

The particle starts at the origin with an initial velocity of $2 \mathrm{~m} / \mathrm{s}$.
(i) If v is the velocity of the particle, find v^{2} as a function of x.
(ii) Given that $v>0$ throughout the motion, show that the displacement x as

$$
x=4 \log _{e}\left(\frac{t+2}{2}\right)
$$

(c)

NOT TO SCALE

The diagram shows the parabola $x^{2}=4 a y$. The normal at the point $P\left(2 a t, a t^{2}\right)$ cuts the y-axis at Q and is produced to a point R on the normal such that $P Q=Q R$.
(i) Show that the equation of the normal at P is given by

$$
x+t y=2 a t+a t^{3}
$$

(ii) Find the coordinates of Q and show that the coordinates of R are $\left(-2 a t, a t^{2}+4 a\right)$.
(iii) Show that the locus of R is another parabola and state its vertex.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) A particle is projected under gravity g with speed V metres per second at an angle of θ from a point O on horizontal ground. It strikes the ground at P, where $O P=R$.

The equations of motion of the particle are

$$
\begin{aligned}
& x=V t \cos \theta \text { and } \\
& y=V t \sin \theta-\frac{1}{2} g t^{2} \quad \text { (Do not derive these equations) }
\end{aligned}
$$

(i) If θ is 45° show that the equation of trajectory of the particle is given by

$$
y=x-g \frac{x^{2}}{V^{2}}
$$

(ii) Hence, or otherwise, show that $R=\frac{V^{2}}{g}$.
(iii) A bullet is fired from O with velocity $30 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal. Find the speed of the ball when it has travelled a horizontal distance of 15 m from its starting point. (Take $g=10 \mathrm{~ms}^{-2}$),
Give your answer correct to 1 decimal place.
(b) Initially, a ladder leaning against a wall just reaches a window sill 2.4 metres above the ground. The foot of the ladder is x metres from the wall and it makes an angle of θ (in radians) with the horizontal. The foot of the ladder is slipping at a rate of $2 \mathrm{~cm} / \mathrm{s}$
(i) Show that $\frac{d x}{d \theta}=-\frac{2.4}{\sin ^{2} \theta}$.
(ii) Find the rate of change of the angle when $\theta=\frac{\pi}{4}$.
(c)
(i) Use the binomial theorem to give the expansion of $(1+x)^{2 n}$.
(ii) Hence prove the following identity.

$$
{ }^{2 n} C_{1}+3^{2 n} C_{3}+\ldots \ldots .+(2 n-1)^{2 n} C_{2 n-1}=2^{2 n} C_{2}+4^{2 n} C_{4}+\ldots \ldots . .+2 n^{2 n} C_{2 n}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

SHoRE TRIAL EXARI LOIS
Mathematics Extension 1
Section I Multiple choice

$$
\begin{align*}
\int_{0}^{\frac{1}{5}} \frac{1}{\sqrt{1-25 x^{2}}} d x & =\int \frac{1}{\sqrt{25\left(\frac{1}{25} x^{2}\right)}} d x \\
& =\frac{1}{5}\left[\sin ^{-1} 5 x\right]_{0}^{\frac{1}{5}} \\
& =\frac{1}{5}\left[\sin ^{-1} 1-\sin ^{-1} 0\right] \\
& =\frac{1}{5}\left[\frac{\pi}{2}-0\right] \tag{A}\\
& =\frac{\pi}{10}
\end{align*}
$$

2.

$$
\begin{align*}
4 \log _{e} \sqrt{e^{x}} & =\log \left(\left(e^{x}\right)^{\frac{1}{2}}\right)^{4} \\
& =\log _{2 x} e^{2 x} \\
& =2 x \tag{c}
\end{align*}
$$

3. $\quad m_{1}=k \quad m_{2}=2 \quad \theta=\frac{\pi}{4}$.

$$
\begin{align*}
& \tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right| \\
& \tan \frac{\pi}{4}=\left|\frac{2-k}{1+2 k}\right| \\
& \pm 1=\frac{2-k}{1+2 k} \\
& 2-k=1+2 k \text { or } 2-k=-1-2 k \\
& 1=3 k \\
& k=-3 \tag{B}
\end{align*}
$$

4. $D: \quad-1 \leq x-1 \leq 1$

$$
0 \leq x \leq 2
$$

R.

$$
\begin{align*}
& 0 \leq \frac{y}{2} \leq \pi \tag{c}\\
& 0 s^{y} y \leq 2 w \\
& \hline
\end{align*}
$$

5.

$$
\begin{align*}
\frac{1-\cos 2 x}{\sin 2 x} & =\frac{1-\left(\cos ^{2} x-\sin ^{2} x\right)}{2 \sin x \cos x} \\
& =\frac{\left(1-\cos ^{2} x\right)+\sin ^{2} x}{2 \sin x \cos x} \\
& =\frac{\dot{2} \sin ^{2} x}{2 \sin x \cos x} \\
& =\frac{\sin x}{\cos x} \\
& =+\tan x \tag{D}
\end{align*}
$$

6.

7. $v^{2}=4\left(25-x^{2}\right)$ Max speed whev $x=0$

$$
\begin{align*}
v^{2}=n^{2}\left(a^{2}-x^{2}\right) & \therefore v^{2}
\end{align*}=4 \times 25 .
$$

(B)

$$
\text { 9. } \quad \begin{align*}
\sin \frac{x}{2} & =\frac{\sqrt{3}}{2} \\
\frac{x}{2} & =n \pi \pm(-1)^{n} \sin ^{-1} \frac{\sqrt{3}}{2} \\
& =n \pi \pm(-1)^{n} \frac{\pi}{3} \\
x & =2 n \pi \pm(-1)^{n} \frac{2 \pi}{3} \tag{c}
\end{align*}
$$

10. Polynomial : $a<0 \quad y$ intercept -2
A. $\frac{1}{6}(x+3)(x-2)^{2} \quad$ y interupt. -2 a $<0 \quad V$
11. $+\frac{1}{6}(x+3)(x+2)^{2} \quad \cdots-2 \quad a>0$.
c $1(x-3)(x+2)^{2} \quad$. -12
d. $-1(x-3)(x+2)^{2} \quad$.. $12 \quad x$

SECTION II
Marker's Commens.
Questionll:
a) $\frac{x-3}{x+4} \leq 2$
critical values: $\quad x \neq-4$

Solve $\quad x-3=2 x+8$

$$
-11=x
$$

$$
\operatorname{tent} x=0 \quad-3 / 4 \leqslant 2 T
$$

$x \leqslant-11$ or $x>-4$
OR $x(x+4)^{2} \quad \frac{x-3}{x \neq-4}(x+4)^{2} \leqslant 2(x+4)^{2}$

$$
(x-3)(x+4) \leqslant 2(x+4)^{2}
$$

$$
0 \leqslant 2(x+4)^{2}-(x-3)(x+4)
$$

$$
\theta \leq(x+4)(2 x+8-x+3)
$$

$$
0 \leqslant(x+4)(x+11)
$$

$$
\therefore \quad x \leqslant-14 \text { or } x>-4
$$

b) c

$$
\begin{aligned}
\therefore-3 & =\frac{0-6}{k-1} \\
-3 k+3 & =-6 \\
9 & =3 k \\
k & =3
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{d}{d x}\left(x \sin ^{-1} 2 x\right) & =x \cdot \frac{2}{\sqrt{1-4 x^{2}}}+\sin ^{-1} 2 x \times 1 \\
& =\frac{2 x}{\sqrt{1-4 x^{2}}}+\sin ^{-1} 2 x
\end{aligned}
$$

d)

$$
\begin{array}{rll}
u=\ln x & x=\sqrt{e} & u=\frac{1}{2} \\
\frac{d u}{d x}=\frac{1}{x} & x=\frac{1}{e} & u=\ln e^{-1} \\
d u=\frac{d x}{x} & & u=-1
\end{array}
$$

$$
\begin{aligned}
\int_{\frac{1}{2}}^{\sqrt{e}} \frac{d x}{x \sqrt{1-(\ln x)^{2}}} & =\int_{-1}^{\frac{1}{2}} \frac{d u}{\sqrt{1-u^{2}}} \\
& =\left[\sin ^{-1} u\right]_{-1}^{\frac{1}{2}} \\
& =\sin ^{-1} \frac{1}{2}-\sin ^{-1}(-1) \\
& =\frac{\pi}{6}+\frac{\pi}{2} \\
& =\frac{4 \pi}{6} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

(e)

$$
\begin{aligned}
y & =\cos 3 x \\
V d x & =\pi \int_{0}^{\frac{\pi}{6}} \cos ^{2} 3 x d x \\
& \left.=\pi \int_{0}^{\pi / 6}+\frac{1}{2}+\frac{1}{2} \cos 6 x\right] d x \\
& =\frac{\pi}{2}\left[x+\frac{1}{6} \sin 6 x\right]_{0}^{\frac{\pi}{6}} \\
& =\frac{\pi}{2}\left[\left(\frac{\pi}{6}+\frac{1}{6} \sin \pi\right)-(0-0)\right] \\
& =\frac{\pi}{2} \times \frac{\pi}{6} \\
& =\frac{\pi^{2}}{12} \text { uncts }^{3}
\end{aligned}
$$

Marker's Comments

Markier's Comments
(+

$$
\text { Let } \begin{aligned}
& f(x)=2 \ln x-\cos x \\
& f^{\prime}(1.5)=2 \ln 1.5-\cos 1.5 \\
&=0.740193 \ldots(A) \\
& f^{\prime}(x)=\frac{2}{x}+\sin x \\
& f^{\prime}(1.5)=\frac{2}{1.5}+\sin 1.5 \\
&=2.3308 \ldots(3) \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f_{1}^{\prime}\left(x_{1}\right)} \\
&=1.5-0.74 \ldots \\
& 2.33
\end{aligned}{ }^{=} \begin{aligned}
& 1.1824 \ldots \\
& =1.2 \\
& \text { (32... sig figues) }
\end{aligned}
$$

Question 12 :
a) $\left(\frac{1}{x^{2}}-2 x^{3}\right)^{10}$

Cieneral term is ${ }^{10} \mathrm{C}_{k}\left(x^{-2}\right)^{10-k}$
Constant term is the coffrount of x^{0}

$$
\begin{aligned}
\therefore x^{0} & =x^{-20+2 k+3 k} \\
0 & =5 k-20 \\
4 & =k
\end{aligned}
$$

$$
\therefore \text { constant termis }{ }^{10} \mathrm{C}_{4}(-2)^{4}=3360
$$

(b)

$$
\begin{align*}
& P(x)=x^{3}+a x^{2}+b x-6 \\
& P(3)=3^{3}+a \cdot 3^{2}+3 b-6 \\
& 0=21+9 a+3 b \\
& -7=3 a+b \tag{1}\\
& P(-1)=-1+3) \\
& 8=a-b-7 \\
& 15=a-b
\end{align*}
$$

$$
P(3)=0 \text { and }
$$

$$
P(-1)=8
$$

(1) + (2)

$$
\begin{aligned}
& 8=4 a \\
& 2=a \\
&-7=6+b \\
&-13=b \\
& \therefore a=2 \quad b=-13
\end{aligned}
$$

sub inso

Marker's Comments.

1 mark
1 mark

1 mark

Imark

1 mask
(c) $x=4 \cos \pi t$
() $P=\frac{2 \pi}{\pi}=2$
(ii) $\dot{x}=-4 \pi \sin \pi t$.

When $t=\frac{1}{2}$

$$
\dot{x}=-4 \pi
$$

Speed $=4 \pi \mathrm{~m} / \mathrm{s}$.
(d)

(ii) $\angle E D F=\frac{\pi}{2}-\alpha$ (angle sum of $\triangle B E D$)

$$
\begin{aligned}
& \therefore \triangle F E D \text { is is asceleo } \\
& \therefore F E=F D
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { since } B F=F E \\
\text { and } F E=F D \\
\text { then } B F=F D
\end{array}\right\}
$$

(i) $B F=F E$
(tangents drawn from
an external pt)
(Es opposite equal sides equal)

$$
\begin{aligned}
& \text { D } C \angle A E B=\frac{\pi}{2} \begin{array}{c}
(\text { angle ina } \\
\text { semicarcha }
\end{array} \\
& \therefore \angle F E D=\frac{\pi}{2}-\alpha(\text { straight } \angle)
\end{aligned} 1 \text { nave }
$$

Marker's Comments

I mark

Poorly done.
1 mark

$$
\therefore \angle B F F=\alpha \quad 1 \text { mark. }
$$

1 mark

1 mark
-8-
12.

Marker's Comments
e). Step 1: Prove true for $n=1$

$$
5^{\prime}+2 \times 11=5+22
$$

$$
=27 \text { which is a multiple }
$$

gl.

Step 2: Assume true for $n=k$

$$
\begin{align*}
& 5^{k}+2 \times 11^{k}=3 M \text { where } M \text { is an } \\
& \text { ie } 5^{k}=3 M-2 \times 11^{k} \text { intege } \tag{integer}
\end{align*}
$$

Now prove true for $n=k+1$

$$
\begin{aligned}
& 5^{k+1}+2 \times 11^{k+1}=5.5^{k}+2 \times \| \times 11^{k} \\
&=5\left(3 m-2 \times \| 1^{k}\right)+2 \times\|x\|^{k} \\
&=\left(5 M-10 \times 11^{k}+22 \times 11^{k}\right. \\
&=15 m+12 \times 1^{k} \\
&=3\left(5 m+4 \times 11^{k}\right) \\
& \text { Which is a multiple of } 3 .
\end{aligned}
$$

SEep 3: Since true for $n=1$, thentrue for $n=1+1$, $n=2$ ad so on for all $n \geqslant 1$.

Question 13 :
(a) $T=22+B e^{-k t}$
(i)

$$
\begin{gathered}
t=0 \quad T=180 \\
180=22+B e^{0} \\
158=B \\
T=22+158 e^{-k t}
\end{gathered}
$$

When $t=10] \quad 115=22+158 e^{-10 t}$

$$
\begin{aligned}
T=1150] \frac{93}{158} & =e^{-10 k} \\
K & =\frac{\ln \frac{93}{158}}{-10} \\
& =-\frac{1}{10} \ln \frac{93}{158}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& T=23 . \quad 23=22+158 e^{-k t} \\
& \frac{1}{158}=e^{-k t} \\
&-\frac{1}{k} \ln \frac{1}{158}=t \\
& t=95.52 . \text { minutes } \\
& \text { time }=11: 30+1 \mathrm{hr} 36^{\prime} \\
&=1: 06 \mathrm{pm}
\end{aligned}
$$

Marker's Comments
(i)

$$
\text { i) } \left.\begin{array}{rl}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =-e^{-\frac{x}{2}} \\
\frac{1}{2} v^{2} & =-\frac{e^{-\frac{x}{2}}}{-\frac{1}{2}}+c \\
& =2 e^{-\frac{x}{2}}+c \\
2 & =2 e^{0}+c \\
0 & =c \\
v=27 \quad x=0
\end{array}\right] \quad \begin{aligned}
\frac{1}{2} v^{2} & =2 e^{-x / 2} \\
v^{2} & =4 e^{-x / 2}
\end{aligned}
$$

$$
x=0
$$

(ii)

$$
\begin{aligned}
v & =\sqrt{4 e^{-x / 2}} \quad v>0 \\
& =2 e^{-x / 4} \\
\frac{d x}{d t} & =\frac{2}{e^{x / 4}} \\
\frac{d t}{d x} & =\frac{e^{x / 4}}{2} \\
t & =\frac{1}{2} \frac{e^{x / 4}}{\frac{1}{4}}+c \\
& =2 e^{x / 4}+c
\end{aligned}
$$

$$
\left.\begin{array}{l}
t=0 \\
x=0
\end{array}\right]
$$

$$
0=2 e^{0}+c
$$

$$
-1=c
$$

$$
t=2 e^{x / 4}-2
$$

$$
\frac{t+2}{2}=e^{x / 4}
$$

$$
\ln \left(\frac{t+2}{2}\right)=\frac{x}{4}
$$

$$
4 \ln \left(\frac{t+2}{2}\right)=x
$$

(i)

Eqn gnormal:

$$
\begin{aligned}
& y-a t^{2}=-\frac{1}{t} \quad(x-2 a t) \\
& y t-a t^{3}=-x+2 a t \\
& x+t y=2 a t+a t^{3} .
\end{aligned}
$$

(i) let $x=0$

$$
\begin{aligned}
t y & =2 a t+a t^{3} \\
y & =2 a+a t^{2} \\
& =a\left(2+t^{2}\right)
\end{aligned}
$$

$$
\left.Q\left(0, a\left(2+t^{2}\right)\right) \quad \text { (midpt of } R P\right)
$$

$$
\begin{aligned}
& \therefore R: 0=\frac{x+2 a t}{2} \quad a\left(2+t^{2}\right)=\frac{y+a t^{2}}{2} \\
&-2 a t= \\
& 2 a\left(2+t^{2}\right)=y+a t^{2} \\
&-a t^{2}+4 a+2 a t^{2}=y \\
& y=a t^{2}+4 a
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{x^{2}}{4 a} \\
& \frac{d y}{d x}=\frac{2 x}{4 a} \\
& \text { At } P x=2 \text { at } \\
& \frac{d y}{d x}=\frac{4 a t}{4 a} \\
& M_{T}=t \quad \therefore M_{N}=-\frac{1}{t} \text {. }
\end{aligned}
$$

Marker's Comments
-12-
13.
(iii) Locus of R.

$$
\begin{array}{ll}
x=-2 a t & y=a t^{2}+4 a \\
-\frac{x}{2 a}=t \text { (1) }
\end{array}
$$

Sub (1) into (2)

$$
\begin{aligned}
y & =a\left(\frac{x}{-2 a}\right)^{2}+4 a \\
& =\frac{x^{2}}{4 a^{x}}+4 a \\
4 a(y-4 a) & =x^{2} \\
x^{2} & =4 a(y-4 a)
\end{aligned}
$$

which is a parabola with vertex
$(0,4 a)$
Queotion 14 .

(i)

$$
\begin{array}{rlrl}
\begin{aligned}
x & =v t \cos \frac{\pi}{4}
\end{aligned} & y=v t \sin \frac{\pi}{4}-\frac{1}{2} g t^{2} \\
x & =\frac{v t}{\sqrt{2}} & & =\frac{v t}{\sqrt{2}}-\frac{1}{2} g t^{2}
\end{array} \quad \begin{aligned}
\frac{\sqrt{2} x}{v}=t \text { (1) } & \\
\text { Sub (1) int (2) } & y=\frac{v}{\sqrt{2}}\left(\frac{\sqrt{2} x}{x}\right)-\frac{1}{2} g\left(\frac{\sqrt{2} x}{v}\right)^{2} \\
y & =x-\frac{1}{2} g \cdot \frac{2 x^{2}}{v^{2}} \\
& y=x-\frac{g x^{2}}{v^{2}}
\end{aligned}
$$

(i)

Marker's Comments

Well done

Ilnaritk for t

1 mavis for correct substitution (whick must be shown)

Markers Comment o
(ii) To find R, let $y=0$ find x

$$
\begin{aligned}
& 0=x-g\left(\frac{x^{2}}{V^{2}}\right) \\
& 0=x-\frac{g x^{2}}{V^{2}} \\
& 0=x\left(1-\frac{g x}{V^{2}}\right) \\
& \therefore x=0 \text { or } 1-\frac{g x}{V^{2}}=0 \\
& 1=\frac{g x}{V^{2}} \\
&(\text { origin }) \\
& \frac{v^{2}}{g}=x \quad \text { but } x=R \\
& R=\frac{v^{2}}{g}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& v=30 \quad x=15 . \\
& x=v t \cos \theta \\
& 15=\frac{30}{\sqrt{2}} t \\
& 15 \cdot \frac{\sqrt{2}}{30}=t \\
& t=\frac{\sqrt{2}}{2} s
\end{aligned}
$$

$$
\begin{array}{rlrl}
\dot{x}=\frac{V}{\sqrt{2}} & =\frac{30}{\sqrt{2}} \quad A t=\frac{\sqrt{2}}{2} & \begin{aligned}
\dot{y} & =\frac{30}{\sqrt{2}}-5 \sqrt{2} \\
& =\frac{15 \sqrt{2}}{2 t}-5 \sqrt{2} \\
&
\end{aligned} & \\
& =10 \sqrt{2}
\end{array}
$$

$$
=\frac{30}{v_{2}}-10 t
$$

$$
V=\frac{\sqrt{x^{2}+\dot{y}^{2}}}{0}
$$

$$
=\frac{900+200}{2}
$$

$$
=\sqrt{650}
$$

$$
v= \pm 25.5 \mathrm{~m} / \mathrm{s}
$$

$$
\text { Speed }=25.5 \mathrm{~m} / \mathrm{s} .
$$

Well done.

Students must factorise x, not $1 x$

1 mank.

Students who found t usually wrue successful in finding the speed.
$\frac{1}{2}$ mark for t.

$\frac{1}{2}$ mare.
$\frac{1}{2}$ mane.
correct
$\frac{1}{2}$ monk calculation
$\left.\begin{array}{l}\frac{1}{2} \text { mark } \dot{x} \\ \frac{1}{2} \text { monk } \dot{y}\end{array}\right\}$ ot $t=\frac{6}{2}$
14.

Marker's Comments

$$
=\frac{-2.4 \sec ^{2} \theta}{\tan ^{2} \theta}
$$

$$
=\frac{-2 \cdot 4 \cdot \cos ^{2} \theta}{\cos ^{2} \theta \cdot \sin ^{2} \theta}
$$

$$
=\frac{-2.4}{\sin ^{2} \theta}
$$

θR

$$
\begin{aligned}
& \bar{u}=2.4 \cos \theta \\
& u^{\prime}=-2.4 \sin \theta \\
& v=\sin \theta \\
& v^{\prime \prime}=\cos \theta \\
& =\frac{\sin \theta \cdot-2.4 \sin \theta-2.4 \cos \theta \cos \theta}{\sin ^{2} \theta} \\
& =\frac{-2.4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\sin ^{2} \theta} \\
& =\frac{-2.4}{\sin ^{2} \theta} \text { which is required }
\end{aligned}
$$

$\frac{1}{2}$ mauve Correct simplifies

Narker's comments

(ii) Differentiate b.s (i) wrt x

$$
\begin{aligned}
2 n(1+x)^{2 n-1}={ }^{2 n} C_{1} & +2^{2 n} c_{2} x+3^{2 n} c_{3} x^{2}+\cdots+k_{k}^{2 n} C_{k} x^{k} \\
& +\ldots .+\frac{7}{2} n^{2 n} C_{2 n} x^{2 n-1}
\end{aligned}
$$

Solbstatite $x=-1$
1 maxk

$$
+(-1)^{n} 2 n \cdot{ }^{2 n} c_{2 n}
$$

Mave the negative tems to Lits of the eqn I mank

$$
\begin{aligned}
& 2^{2 n} C_{2}+4^{2 n} C_{4}+6^{2 n} C_{6}+\ldots .+2 n^{2 n} C_{2 n} \\
& \quad={ }^{2 n} C_{1}+3^{2 n} C_{3}+5^{2 n} C_{5}+\ldots+2 n-1^{2 n} C^{2 n-1}
\end{aligned}
$$

