Examination Number:

Set:

Shore

Year 12 HSC Assessment Task 5 - Trial HSC 14th August 2015

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this question paper
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11–14 in a new writing booklet
- In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked your examination number and "N/A" on the front cover

Total marks – 70

Section I Pages 3-6

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 7–12

60 marks

- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

BLANK PAGE

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1-10.

1 What is the value of
$$\int_{0}^{\frac{1}{5}} \frac{1}{\sqrt{1-25x^2}} dx?$$
(A) $\frac{\pi}{10}$
(B) $\frac{\pi}{5}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{25}$

- 2 Which of the following is a simplification of $4\log_e \sqrt{e^x}$?
 - (A) $4\sqrt{x}$

(B)
$$\frac{1}{2}x$$

- (C) 2*x*
- (D) x^2
- 3 The acute angle between the lines 2x y = 0 and kx y = 0 is equal to $\frac{\pi}{4}$. What is the value of *k*?
 - (A) k = -3 or $k = -\frac{1}{3}$
 - (B) k = -3 or $k = \frac{1}{3}$

(C)
$$k = 3$$
 or $k = -\frac{1}{3}$

(D)
$$k = 3$$
 or $k = \frac{1}{3}$

- 4 What is the domain and range of $y = 2\cos^{-1}(x-1)$?
 - (A) Domain : $0 \le x \le 2$. Range: $0 \le y \le \pi$
 - (B) Domain : $-1 \le x \le 1$. Range: $0 \le y \le \pi$
 - (C) Domain : $0 \le x \le 2$. Range: $0 \le y \le 2\pi$
 - (D) Domain : $-1 \le x \le 1$. Range: $0 \le y \le 2\pi$
- 5 Which of the following is a simplification of $\frac{1-\cos 2x}{\sin 2x}$?
 - (A) $1 \cot x$
 - (B) 1
 - (C) $\cot x$
 - (D) $\tan x$
- 6 The domain of the function $y = x^2(x-2)^2$ must be restricted to have an inverse function.

Which of the following restrictions on the domain allows for an inverse function to exist?

- (A) $x \ge 2$
- (B) $0 \le x \le 2$
- (C) $x \ge 0$
- (D) $x \le 2$

7 A particle is moving in simple harmonic motion with displacement *x*. The velocity *v* of the particle is given by

 $v^2 = 4(25 - x^2).$

What is the amplitude *a* of the motion and the maximum speed of the particle?

- (A) a = 2 and maximum speed is 5 m/s
- (B) a = 2 and maximum speed is 10 m/s
- (C) a = 5 and maximum speed is 5 m/s
- (D) a = 5 and maximum speed is 10 m/s
- 8 In the diagram *ABCD* is a cyclic quadrilateral. The tangent *PQ* touches the circle at *A*. The diagonal *BD* is parallel to the tangent *PQ*. *QA* produced intersects with *CB* at *P*. Let $\angle QAD = \theta^{\circ}$

What is the size of $\angle BCD$?

- (A) θ°
- (B) $2\theta^{\circ}$

(C) $(\pi - \theta)^{\circ}$

(D) $(\pi - 2\theta)^{\circ}$

9 Which of the following is the general solution of $2\sin\frac{x}{2} = \sqrt{3}$?

(A)
$$x = 4n\pi \pm \frac{\pi}{3}$$
, where *n* is an integer.

(B)
$$x = 2n\pi + \frac{\pi}{3}$$
, where *n* is an integer.

- (C) $x = 2n\pi + (-1)^n \times \frac{2\pi}{3}$, where *n* is an integer.
- (D) $x = 4n\pi + (-1)^n \times \frac{2\pi}{3}$, where *n* is an integer.
- 10 The polynomial graph shown below has equation $y = A(x + B)(x + C)^2$.

Which of the following is true?

(A) $A = -\frac{1}{6}, B = 3, C = -2$ (B) $A = \frac{1}{6}, B = -3, C = 2$ (C) A = 1, B = 3, C = -2(D) A = -1, B = 3, C = -2

End of Section I

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or
calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Solve the inequality
$$\frac{x-3}{x+4} \le 2$$
. 3

2

3

2

(b) The point C(-3,8) divides the interval *AB* externally in the ratio k : 1. Find the value of *k* if *A* is the point (6,-4) and *B* is the point (0,4).

(c) Find
$$\frac{d}{dx}(x\sin^{-1}2x)$$
. 2

(d) Use the substitution
$$u = \ln x$$
 to evaluate $\int_{\frac{1}{e}}^{\sqrt{e}} \frac{dx}{x\sqrt{1 - (\ln x)^2}}$. 3

- (e) The region bounded by the curve $y = \cos 3x$ and the *x* axis between the lines x = 0 and $x = \frac{\pi}{6}$ is rotated through one complete revolution about the *x*-axis. Find the exact volume of the solid formed.
- (f) Use one application of Newton's method with an initial approximation of x = 1.5 to find the next approximation to the root of the equation $2\log_{a} x \cos x = 0$. Give your answer correct to 2 significant figures.

Question 12 (15 marks) Use a SEPARATE writing booklet

- (a) Find the constant term of the expansion $\left(\frac{1}{x^2} 2x^3\right)^{10}$. 3
- (b) The polynomial $P(x) = x^3 + ax^2 + bx 6$ has a remainder of 8 when divided by (x+1) and (x-3) is a factor of the polynomial P(x). Find the values of *a* and *b*.
- (c) The displacement *x* metres of a particle moving in simple harmonic motion is given by

 $x = 4\cos \pi t$

- where time t is in seconds.
 - (i) What is the period of the oscillation?

1

1

(ii) What is the speed of the particle as it moves through the equilibrium position?

Question 12 continues on the following page

Question 12 (continued)

(d) In the diagram AB is a diameter of the circle centre, O, and BC is tangential to the circle at B. The line AED intersects the circle at E and BC at D. The tangent to the circle at E intersects BC at F. Let $\angle EBF = \alpha$.

Copy or trace the diagram into your writing booklet.

(i) Prove that
$$\angle FED = \frac{\pi}{2} - \alpha$$
. 2

(ii) Prove that
$$BF = FD$$
. 2

3

(e) Use mathematical induction to prove that $5^n + 2 \times 11^n$ is a multiple of 3 for all integers $n \ge 1$.

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) An oven which had been heated to $180^{\circ}C$ was switched off when the cook was finished baking at 11:30 am. The oven was in a kitchen which was kept at a constant temperature of $22^{\circ}C$.

After *t* minutes, the temperature, $T^{\circ}C$, of the oven was given by:

 $T = 22 + Be^{-kt}$

where A, B and k are positive constants.

- (i) If after 10 minutes, the oven's temperature has dropped to $115^{\circ}C$, find B 2 and the exact value of k.
- (ii) At what time will the oven's temperature drop to $23^{\circ}C$. **2** Give your answer correct to the nearest minute.
- (b) A particle is moving along the *x*-axis so that its acceleration after *t* seconds is given by

 $\ddot{x} = -e^{-\frac{x}{2}}$

The particle starts at the origin with an initial velocity of 2 m/s.

- (i) If v is the velocity of the particle, find v^2 as a function of x. 2
- (ii) Given that v > 0 throughout the motion, show that the displacement x as a function of time t is given by 3

$$x = 4\log_e\left(\frac{t+2}{2}\right)$$

Question 13 continues on the following page

End of Question 12

Question 13 (continued)

(c)

NOT TO SCALE

2

2

2

(c)

The diagram shows the parabola $x^2 = 4ay$. The normal at the point $P(2at, at^2)$ cuts the y-axis at Q and is produced to a point R on the normal such that PQ = QR.

(i) Show that the equation of the normal at P is given by

$$x + ty = 2at + at^3.$$

- (ii) Find the coordinates of Q and show that the coordinates of R are $(-2at, at^2 + 4a)$.
- (iii) Show that the locus of *R* is another parabola and state its vertex.

(a) A particle is projected under gravity g with speed V metres per second at an angle of θ from a point O on horizontal ground. It strikes the ground at P, where OP = R.

The equations of motion of the particle are

 $x = Vt \cos \theta$ and $y = Vt \sin \theta - \frac{1}{2}gt^2$ (Do not derive these equations)

(i) If θ is 45° show that the equation of trajectory of the particle is given by 2

$$y = x - g \frac{x}{V^2}$$

(ii) Hence, or otherwise, show that
$$R = \frac{v}{g}$$
. 2

- (iii) A bullet is fired from *O* with velocity 30 m/s at an angle of 45° to the horizontal. Find the speed of the ball when it has travelled a horizontal distance of 15 m from its starting point. (Take $g = 10 \text{ ms}^{-2}$). Give your answer correct to 1 decimal place.
- (b) Initially, a ladder leaning against a wall just reaches a window sill 2.4 metres above the ground. The foot of the ladder is *x* metres from the wall and it makes an angle of θ (in radians) with the horizontal. The foot of the ladder is slipping at a rate of 2 cm/s.

i) Show that
$$\frac{dx}{d\theta} = -\frac{2.4}{\sin^2 \theta}$$
. 2

(ii) Find the rate of change of the angle when
$$\theta = \frac{\pi}{4}$$
. 2

- (i) Use the binomial theorem to give the expansion of $(1+x)^{2n}$. 1
- (ii) Hence prove the following identity.

3

$$^{2n}C_1 + 3^{2n}C_3 + \dots + (2n-1)^{2n}C_{2n-1} = 2^{2n}C_2 + 4^{2n}C_4 + \dots + 2n^{2n}C_{2n}$$

END OF PAPER

End of Question 13

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \ \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x , \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note $\ln x = \log_e x, \quad x > 0$

-3-	al i ten o	~ <i>ų</i> -	
SECTION IL	Markers Communz		Markers Comments
Question 11:		c) d (2 sin 12x) = 2 - 1 + sin 22 x1	
a) x-3 < 2		dre Vi-4z-	
2+4		$= 2x + \sin^{-1}2x$	
critical values x = -4		$\sqrt{1-4\chi^2}$	
Solve = 2-3 = 22 + 8		d) u= Inx ar= Je u= 1	
-11 - 24		$du = 1$ $x = 1$ $u = ine^{-1}$	
		$du = \frac{1}{2}$	
		x ,	
-3. 6.7		r dre p	
Feat 2 = 0 "4 & 2 T.			
		E VI-(Inx)	
2 ≤ -11 or 27-4		F 1 7	
		= [sin-'u]-1	
$\Theta_{R} = x (x+4)^{2} \frac{x-3}{(x+4)^{2}} \leq 2(x+4)^{2}$		$= \sin^{-1} \frac{1}{2} - \sin^{-1} (-1)$	
· 2+4		= <u>m</u> + <u>m</u>	
$(2-3)(2+4) \leq 2(2+4)^2$			
$0 \leq 2(2+4)^2 - (2-3)(2+4)$		= 411	
$0 \leq (x+4)[2x+8-x+3)$		= 2n	
$O \in (x+4)(x+11)$			
		$(C) y = \cos 3x$	
1. x <-11 on x7-4 to A.		F	
-11 4		Voi = TT (cos ² 3x dx	
		° TV	
$h(c(-3, 8)) \land \beta$		= T ([5 + + 100 6x] dx	
(-4) (au)		0	
(0,4)		$= \Pi \left[x + L c_{11} L_{2} \right]^{\Pi}$	
X		2 6 6 5 11 0 2 0	
K		= # [(#++0; =) (-)]	
		2 [[7 6 2 M I] - [0-0]]	
-3 = 0 - 6		2 4 6	
		- - 2	
-3k+3=-6		12 unuts 2	
9 = 3k			· · · · · · · · · · · · · · · · · · ·
K=3	1		

20	-5-	Marker's Comments	-6-		
		1	Question 12:	Marker's Con	rments.
(f)	let $f(x) = 2 \ln x - \cos x$		a) (1-2x ³) ¹⁰		and a state
	$f(i.5) = 2 \ln 1.5 - \cos 1.5$		(1) (2)	and the second	
	= 0 · 740193 (A)		General term is ${}^{10}C_{k}(x^{-2}){}^{10-k}(-2)^{k}(x^{3})^{k}$	1 mark	
	$f(x) = \frac{2}{x} + \sin x$		Constant term is the cofficient of 2°		
	$f'(1.5) = \frac{2}{1.5} + \sin 1.5$		$x^{\circ} = x^{-2\circ + 2k + 3k}$		
			0 = 5k - 20		
	= 2 · 3308 (B)		4 = K	1 mark	
	$\begin{aligned} \chi_2 &= \chi_1 - \frac{f(\chi_1)}{f(\chi_1)} \end{aligned}$		$\therefore \text{ Constant term is } ^{10}C_4 (z)^4 = 3360$	1 mark	3
	= 1.5 - 0.74 2.33.		(b) $P(x) = x^3 + ax^2 + bx - 6$ $P(3) = 0$ and $P(-1) = 8$		
	= 1.1824		$P(3) = 3^3 + 0.3^2 + 3b = b$		
	= 1.2 (\$ sig figures)		0 = 21 + 92 + 26 (+2)		
	0,0		-7=3a+b 0	Imaric	
			d a litert		
			P(-1) = -1 + a = 0 - 0		
			8 = a-b-7		
			15 = a = b (2)	lmark	
			()+(2) 8=4a		
			2 = a sub into (1)		
			7 - 1 - 1		
			-1-670	South Courts	San San
			-13 = 0		2.4.5
			:. a=2 b=-13	. I mark	[3]

12	Marker's (Comments
(C) X = 4 cos mt		
$(1) P = 2\pi = 2$	Imark	
$(ii) = -4\pi \sin \pi t.$	x=0 when $I = Tt$	
When t=1	$\begin{bmatrix} 2\\ 2 \end{bmatrix} = 4$ Poorly done.	
$\dot{x} = -4\pi$		
Speed = 4 tr m/s.	1 marte	2
G (tangents	drawnfrom external pt) =F = & 1 mark. the equal sides equal) II (angle in a 2 semicords)	
: · <u>L</u> FED = <u></u> -	d (straights) (marc	~
(ii) LEDF = II-d (angle sum of L A FED is isosceled	BED)	
· FE = FD	1 mark	
SINCE BF = FE		
and FE = FD ((mark)	
<u>, , , , , , , , , , , , , , , , , , , </u>		12

Marker's Comments 12 es. step 1: Prove true for n=1 3'+2×11 = 5+22 = 27 which is a multiple 73. 1 mark Stepd: Assume true for n=k $5^{k} + 2 \times 11^{k} = 3 M$ where Misan is $5^{k} = 3M - 2 \times 11^{k}$ integer 1 mark Now prove true for n=k+1 5 Kt1 + 2 × 11 Kt1 = 5.5 K + 2 × 11 × 11 K =5 (3M-2×11K)+2×11×11 = (5M - 10×11 + 22×11 K =15 m + 12 × 11 k = 3 (5m + 4×11 k) which is a multiple of 3. step 3: Since true for n=1, then true for n=1+1, 1 mark n=2 and so on for all n>1. 13

-8-

Question 13:	, Marker's Comments	-18-	Marker's Comments
$(a) T = 22 + Be^{-\kappa t}$		$(b) \ddot{x} = -e^{-\frac{\pi}{2}} t = 0 \ x = 0 \ u = 2$	
(i) t=0 T = 180		$(1) d(4v^2) = -e^{-\frac{x}{2}}$	
180 = 22 + Be		$Lv^2 = -e^{-\frac{2}{2}} + C$	
158 = B		7 -1	-
		$= 2e^{-\frac{1}{2}}tc$	
$T = 22 + 158e^{-kt}$		$2 = 2e^{\circ} + c$	
		V=2 $0=c$	
When t = 10 /15 = 22 + 158 e - 10 t		x=0 : Lv2 = 2e-x/2	
T=115 _ 93 = e-10k		$v^2 = 4e^{-\chi/2}$	
158			
$k = \ln \frac{93}{15}$		(ii) $V = \sqrt{4e^{-2/2}} = \sqrt{20}$	
		$= 2e^{-3}4$	
$= -1 \ln \frac{93}{2}$		dx = 2	
10 158		Ch Ex/4	
		$\frac{dt}{dx} = e^{x/4}$	
T=73 23-22+158e-Kt		2	
(1) $1 = e^{-kt}$		$t = 1 e^{24} + C$	
158		2 4	
$-1\ln\frac{1}{158}=\pm$		= 2e x4+c	
K		$t=07$ $0=9e^{\circ}tc$	
t= 95.52. minutes		2=0 -2 = C	
time = 11:30 + 1 hr 36'		t= 2e 214-2	
= 1:06 pm		$t+2 = e^{x/4}$	
		2	
		n(t+2) = 2	
		$\left(\frac{1}{2}\right)$ 4	
		$4\ln(t+2) = x$	

			1	
 - 1	1	-		

Q

0

8

(ii

-12-

ues 13	Marters comments	15.	Marker's Comments
A Ray 1 x= 4ay		(ii) Locus of R.	
1201		0	
(hot att)		$\chi = -2at \qquad y = at^2 + 4a$	
/ / min /	and the second second	$\frac{\chi}{-2a} = t $	
		Sub (1) into (2) $(\pi^2 - 2^2 + 4)$	
~ 2		$y = \alpha \left(\frac{\Delta}{2\alpha}\right) + 4\alpha$	
) $y = \frac{x}{4a}$		$= 0.02^{2} + 4\alpha$	
dy = cr du ta		$Aa_{11} - Aa_{12} = x^{2}$	
the dat	STATES STATES	$x^{2} = 4a(y-4a)$	
On ta		which is a parabola with vertex	
$M_{T} = t : M_{N} = -\frac{1}{t}$		(0,4a)	
ngnormal: $y - at = -\frac{1}{2} (x - 2at)$		Question 14.	
yt - at = -x + 2at		13	
$x + ty = 2at + at^2$.			
1		K	
tut x = 0 ty = tat + at		$e R \rightarrow P \rightarrow x$	
y = Lattin			
O(O = O(2+12)) (middle $O(O)$)		$G \rightarrow M = M^{2}G^{2}$	Wall store.
Stop aller (and gin)		X = V t $= V t$ $= V t$ (2)	Willin, chierte
$R: 0 = x + 2at$ $a(2+t^{2}) = y + at^{2}$		52 52 20	
$-2at = \chi^2$ 2		$\sqrt{2x} = t 0 \checkmark$	Innank for t
$2\alpha(2+t^2) = y+\alpha t^2$		$V = V (42x) - 19 (52x)^2$	0
- at 2+ 4a + 2at = 4		Sub Dinto D JZ (I) 20(V)	
$y = at^2 + 4a$		$y = \chi - \frac{1}{7}q \cdot \frac{2\chi^2}{\chi^2}$	1
, R (-2at, at +4a)			
		$y = x - gx^2 \checkmark$	I maile for correct
		V 2	Substitution (which
			must be showing)

-13-

	Markers Conments
(ii) To find R, let y=0 find x	Well dane.
$0 = \chi - g\left(\frac{\chi^2}{\sqrt{2}}\right)$	1/2 mark
$0 = x - 9x^2$	
$0 = \varkappa (1 - g \varkappa)$	12 marti
x = 0 or 1 - 9x = 0	factorice x, not = x
$(origin)$ $T = \sqrt{V_1}$ $\sqrt{2} = \chi [h + m - p]$	
$i \in R = V^2$	1 marte.
	Students who found
$\binom{10}{10}$ V=30 x=15.	t'usually were
15 = 30 t V2	finding the speed .
15.52 = t 30 t > 52 2	± mark for t.
$x = \frac{\sqrt{30}}{\sqrt{2}} = \frac{30}{\sqrt{2}} + t = \sqrt{2} + \frac{\sqrt{30}}{2} + \frac{\sqrt{30}}{\sqrt{2}} = \frac{30}{\sqrt{2}} - 5\sqrt{2}$ $y = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2$	1 mark 2 Zat t= 5 1 mark y Jat t= 5
$= \frac{30}{\sqrt{2}} - 10t$	1 mark
$V = \int x + y^{2}$ = $\int \frac{902 + 200}{2}$	1/2 marie
$v = \frac{25 \cdot 5}{5} m/s$ Speed = $\frac{25 \cdot 5}{5} m/s$.	2 mark capavatien

14.	Mayker's Comments
$\frac{dx}{dt} = 2cm/s$ $\frac{dx}{dt} = 0.02 m/s$	
$\neq /\theta \in tan \theta = 2.4$	
$\frac{2}{2} = \frac{2 \cdot 4}{4 \alpha \cdot \theta}$ $= 2 \cdot 4 (4 \alpha \cdot \theta)^{-1}$	12 mark.
$\frac{dx}{d\theta} = -2\cdot 4(\tan\theta)^2 \times \sec^2\theta$	
= - 2.4 sec20 tan20	1 marte
= -2-4 · cos*9 cos28 · Sin*9	
= -2.4 <u>Sin²8</u>	2 maile Correct simplificat
(a) the 2-14 costs fragments	
Sing $\mu^{1} = -2 \cdot 4 \sin \theta$	
$\frac{dx - vu' - uv'}{d\theta} = \frac{vu' - uv'}{v^2}$	
= sind 204 sind - 204650 6050	
SIN'S	
$\frac{-2\cdot 4(\sin\theta + \cos\theta)}{\sin^2\theta}$	
= -2.4 which is required	
- Straffer the m	

-14-

	Marker's comments
$\begin{array}{c} (ii) d\theta = d\theta \cdot dx \\ dt dx dt \end{array}$	
$= \frac{\sin^2 \theta}{2 \cdot 4} \times 0.02$	1/2 wids (2m=0-02m)
$= -\frac{1}{\sqrt{2}} \sqrt{2 \times 0.02}$	2 substitution into correct product
= -1	answer.
1. angle is decreasing by 1 radians /s	2
$C_{1}(1)(1+2c)^{2n} = {}^{2n}C_{0} + {}^{2n}C_{1} \times + {}^{2n}C_{2} \times + {$	I mark.
(ji) Differentiate b.s (1) wrt z	1 maile
$\frac{2n(1+x)^{2n-1}}{1+x^{2n}} = \frac{-C_1 + 2 - C_2 + 3 - C_3 x + \dots + k C_2 x}{1+\dots + 2n^{2n} C_2 x^{2n-1}}$	
Substitute $x = -1$ $0 = {}^{2n}C_1 - 2 {}^{2n}C_2 + 3 {}^{2n}C_3 - 4 {}^{2n}C_4 + \frac{1}{2n}C_4 + \frac$	1 mark
Move the negative terms to Lits of the eqn	mark
$2^{2n}C_2 + 4^{2n}C_4 + 6^{2n}C_5 + \dots + 2n^{2n}C_{2n}$ = ${}^{2n}C_1 + 3^{2n}C_3 + 5^{2n}C_5 + \dots + 2n - 1^{2n}C_{2n}$	-

-15-