

Examination Number:

Set:

Year 12 HSC Assessment Task 5 - Trial HSC 17th August 2017

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A NESA reference sheet is provided
- Answer Questions 1–10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11–14 in a new writing booklet
- In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked your examination number and "N/A" on the front cover

Total marks – 70

Pages 3–6

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Pages 7–12

60 marks

- Attempt Questions 11–14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

BLANK PAGE

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1–10.

- 1 A function is represented by the parametric equations x = 2t + 1 and y = t - 2. Which of the following is the Cartesian equation for the function?
 - (A) x 2y + 3 = 0
 - (B) x 2y 3 = 0
 - (C) x + 2y + 5 = 0

(D)
$$x - 2y - 5 = 0$$

- 2 Given that $\sin \alpha = \frac{4}{5}$ and $\cos \beta = \frac{5}{13}$ and both α and β are acute, what is the exact value of $\cos(\alpha \beta)$?
 - (A) $\frac{-33}{65}$ (B) $\frac{27}{65}$ (C) $\frac{56}{65}$ (D) $\frac{63}{65}$
- 3 What is the size of the acute angle, to the nearest degree, between the lines 2x 3y + 4 = 0 and x + 2y 7 = 0?
 - (A) 7°
 - (B) 19°
 - (C) 41°
 - (D) 60°

4

What is the Domain and Range of $y = 3\cos^{-1} 2x$?

- (A) Domain: $-\frac{1}{2} \le x \le \frac{1}{2}$ and Range: $0 \le y \le 3\pi$.
- (B) Domain: $-1 \le x \le 1$ and Range: $-\pi \le y \le \pi$.
- (C) Domain: $-\frac{1}{2} \le x \le \frac{1}{2}$ and Range: $-\pi \le y \le \pi$.
- (D) Domain: $-1 \le x \le 1$ and Range: $0 \le y \le \frac{\pi}{3}$.

5 What is the value of
$$\int_{0}^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}}$$
?

- (A) $\frac{\pi}{6}$
- (B) $\frac{\pi}{3}$

(C)
$$\frac{\pi}{2}$$

- (D) $\frac{2\pi}{3}$
- 6 The expression $\sin 4x + \sqrt{3} \cos 4x$ can be written in the form $2\sin(4x + \alpha)$. What is the value of α ?

(A)
$$\frac{\pi}{6}$$

(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

7 A particle is moving in simple harmonic motion with displacement *x*. The acceleration *a* of the particle is given by

$$a=25-5x.$$

What is the period of motion?

- (A) $\sqrt{5}$
- (B) 5
- (C) $\frac{2\pi}{\sqrt{5}}$
- (D) $\frac{2\pi}{5}$
- 8 In the diagram *ABCD* is a cyclic quadrilateral. The tangent *PQ* touches the circle at *A*. The diagonal *BD* is parallel to the tangent *PQ*. *QA* produced intersects with *CB* produced at *P*. BP = BA and $\angle BPA = \theta$.

NOT TO SCALE

What is the size of $\angle BCD$?

- (A) θ
- (B) 2θ
- (C) $180^\circ \theta$
- (D) $180^{\circ} 2\theta$

- 9 Which of the following is the general solution of $2\cos 2x = 1$?
 - (A) $2n\pi \pm \frac{\pi}{6}$ (B) $2n\pi \pm \frac{\pi}{3}$ (C) $n\pi \pm \frac{\pi}{6}$

(D)
$$n\pi \pm \frac{\pi}{3}$$

- 10 Given that the roots of the cubic equation $4x^3 3x^2 5x + 2 = 0$ are α , β and γ , what is the value of $\alpha^2 + \beta^2 + \gamma^2$?
 - (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{9}{16}$ (D) $\frac{49}{16}$

End of Section I

Section II 60 marks **Attempt Questions 11–14** Allow about 1 hour 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet

- Solve the inequality $\frac{x}{x-4} \ge 2$. (a)
 - 2
- (b) The point *P* divides the interval *AB* externally in the ratio 3:1. 2 Given the points A(-3,1) and B(1,-2), find the coordinates of P.
- In the diagram below, AT is the tangent to the circle at A. (c) *BT* is a secant meeting the circle at *B* and *C*.

2

Given that AT = 12 cm, BC = 7 cm and CT = x cm, find the value of x. No reasons are required.

Use the substitution x = u - 2 to evaluate $\int_{-1}^{2} \frac{3x + 5}{\sqrt{x + 2}} dx$. 3 (d)

Question 11 continues on the following page

Question 11 (continued)

(e) The function $f(x) = \log_e x - \sin x + 1$ has a zero near x = 0.75. Use one application of Newton's Method to obtain another approximation to this zero.

Give your answer correct to 2 significant figures.

(f) Find the term independent of x in the expansion of $\left(x^2 - \frac{2}{x}\right)^{12}$. **3**

3

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a)	The polynomial $P(x) = 2x^3 + x^2 + ax + 6$ has a zero at $x = 2$.		
	(i)	Determine the value of <i>a</i> .	1
	(ii)	Find the linear factors of $P(x)$.	2
	(iii)	Hence, or otherwise, solve $P(x) \ge 0$	1

(b) Prove by Mathematical Induction that

$$2 \times 1! + 5 \times 2! + 10 \times 3! + \dots + (n^2 + 1)n! = n \times (n+1)! \text{ for } n \ge 1.$$

(c) Consider the function $f(x) = 6x - 2x^3$.

(i)	Find the largest domain containing the origin for which $f(x)$ has an		
	inverse function $f^{-1}(x)$.		

(ii) Find the gradient of the inverse function at x = 0. 2

Question 12 continues on the following page

Question 12 (continued)

(d) Chris and Aaron are competing in a sailing boat race. Chris (*C*) can see the top of a vertical cliff (*D*) that is 800 m above sea level. The cliff is on a bearing of 329° from his position and the angle of elevation to the top of the cliff (*D*) is 16°. Aaron (*A*) can also see the top of the cliff on a bearing of 049° with an angle of elevation of 23°.

The base of the cliff (B) is at sea level.

- (i) Show that $\angle ABC = 80^{\circ}$.
- (ii) Find the distance AC between the two sailing boats to the nearest metre. **3**

1

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) Consider the point $P(2p, p^2)$ that lies on the parabola $x^2 = 4y$.

(i)	Show that the equation of the normal at P is given by	
	$x+py-2p-p^3=0.$	

(ii) The normal meets the y-axis at Q. 2 Find the coordinates of the midpoint M of PQ.

1

- (iii) Find the locus of the point *M*.
- (b) The acceleration of a particle moving in a straight line is given by

$$a = 2x^3 + 2x$$

where x is the displacement of the particle from the origin at time t seconds.

Initially the particle is at the origin moving at 1 m/s.

(i)	Show that the velocity of the particle is given by $v = x^2 + 1$.	2
-----	--	---

(ii) Hence, or otherwise, find the displacement of the particle 3 after $\frac{\pi}{4}$ seconds.

(c) Evaluate
$$\int_{0}^{\frac{x}{2}} \cos^2 x \, dx$$
. 2

(d) A rectangle is expanding in such a way that at all times, its length is twice as long as its width. If its area is increasing at a rate of 18 cm²/s, find the rate at which its perimeter is increasing when the width of the rectangle is 80 centimetres.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) A frozen cake is removed from a freezer at $-10^{\circ}C$ and is placed in a room at a constant temperature of $20^{\circ}C$. Thereafter its temperature T° is changing so that after *t* minutes

$$\frac{dT}{dt} = K(20 - T)$$
 where K is a constant.

- (i) Show that T = 20 Be^{-Kt} satisfies this condition.
 (ii) Find the value of B.
 (iii) If, initially, the temperature was increasing at the rate of 3°C per minute, find the value of K.
 (iv) Find the temperature of the cake 5 minutes after it was placed in the room. Give your answer to the nearest degree.
- (b) A football is kicked at an angle of α to the horizontal. The position of the ball at time *t* seconds is given by

$$x = vt \cos \alpha$$
 and
 $y = vt \sin \alpha - \frac{1}{2}gt^2$

(DO <u>NOT</u> PROVE THESE)

where $g \text{ m/s}^2$ is the acceleration due to gravity and v m/s is the initial velocity of the football.

(i) Show that the equation of the path of the football is

$$y = x \tan \alpha - \frac{g x^2}{2 v^2} \sec^2 \alpha \,.$$

(ii) If $g = 10 \text{ m/s}^2$, v=20 m/s and the ball just clears the head of a 1.8 3 metre tall player that is 10 metre away, calculate the angle(s) to the horizontal at which the football is initially kicked. Give your answer correct to the nearest minute.

2

(c) By considering the expansion of
$$(1 + x)^n$$
 and the value of $\int_0^3 (1 + x)^n dx$, 4

show that
$$\sum_{k=0}^{n} \frac{1}{k+1} {n \choose k} 3^{k+1} = \frac{1}{n+1} (4^{n+1} - 1).$$

END OF PAPER

2017 EXT 1 TRIAL HSC 1_{0} $\chi = 2+ + 1$ y=+-2 : +=Y+2 $\chi = 2(y+2) + 1.$ > = 2 + 4 + 1. (D)2-24-5=0 2. 5 12 13 a B $Cos(\lambda - \beta) = cos \lambda cos \beta + sin \lambda sin \beta$ = $\frac{3}{5} \cdot \frac{5}{13} + \frac{4}{5} \cdot \frac{12}{13}$ $= \frac{63}{65}$ $3 = M_{1} = 2 = M_{2} = -\frac{1}{2}$ $+\alpha n \theta = \frac{\frac{2}{3} + \frac{1}{2}}{1 + (\frac{2}{3})(\frac{-1}{2})}$. . : 9 = 60°

 $\frac{4}{3} = \cos^2 2x$ $-1 \le 2x \le 1 \rightarrow -\frac{1}{2} \le x \le \frac{1}{2}$ $0 \leq \frac{1}{3} \leq \pi \rightarrow 0 \leq \gamma \leq 3\pi$ 5. $\int \frac{dx}{\sqrt{4-x^2}} = \left[5 \times 5 \times 5 \times 5 \right]$ = II B 6. 25. ~ (4x + x) = 25. nux cost + 25. nd costor $2\cos d = 1$ $2\sin d = 5$ $\cos d = \frac{1}{2}$ $\sin d = 5$ $2 = \frac{1}{2}$ $\chi = \frac{T}{3}$ a = -5(x - 5)7. $-n^2 = -5$ n = 15 $P = 2\pi$ (C)

8. (B) 9. $2\cos 2x = 1$ $\cos 2x = 2$: 2x = 2mm + Tz $x = Tn \pm T_6$ (C) 10. 4x - 3x - 5x + 2 =0 $(\mathcal{A} + \mathcal{B} + \mathcal{V})^2 - 2(\mathcal{A}\mathcal{B} + \mathcal{A}\mathcal{V} + \mathcal{B}\mathcal{V})$ $=\left(\frac{3}{4}\right)^2-2\left(\frac{-5}{4}\right)$ = 49 16 D

 $\frac{11.}{2.4} \xrightarrow{7} 2$ Critical points JC = 4 $\frac{\gamma_c}{\gamma_{c-4}} = 2$ x = 2x - 8 $\chi = 8$ 0 4 8 test x=0 O >2 FALSE · 4 4 × 58 6) 3:-1 $\begin{array}{r} \chi = -1 \times -3 \times 3 \times 1 \\ \hline 2 \end{array}$ = 3 $\frac{Y = -1 \times 1 \pm 3 \times -2}{2}$ 2 = -32 P (3,-32)

c) $12^{2} = \chi (2+7)$ $144 = \chi^{2} + 7\chi$ $0 = \chi^{2} + 7\chi - 144$ $0 = (\chi + 16)(\chi - a)$ $\therefore x = 9 \quad (7, 70)$ $\chi = U - \chi$ 0) dx = 1 dx = du $U = \chi + 2$ $\chi = 2 \rightarrow U = 4$ x=-1 -> U=1 32 +5 = 3(0-2) +5 =30-6+5 $= 3 \circ -1$ $= 3 \circ -1$ $= \left(\frac{4}{3 \circ -1} \circ \frac{1}{2} \circ \frac{$ $= \int_{1}^{4} 3u^{\frac{1}{2}} - u^{\frac{1}{2}} du$ $= \left[2 \sqrt{2} - 2 \sqrt{2} \right]^{4}$ =(16-4)-(2-2)= 17

e) $f'(x) = \frac{1}{x} - \cos x$ $\frac{1}{2} = 0.75 - \frac{109e(0.75) - 5.n(0.75) + 1}{\frac{1}{0.75} - \cos(0.75)}$ = 6 . 699 . . . $f)_{Constant} = \binom{12}{4} \left(\chi^2 \right) \left(-\frac{1}{\chi} \right)^{*}$ = 126720

12. (1) $0 = 2(2)^3 + 2^2 + 2a + 6$ 0 = 16 + 4 + 2a + 6 0 = 26 + 2a:. G= -13 $(u) R(x) = 2x^3 + x^2 - 13x + 6$ $\frac{2x^{2} + 5x - 3}{2x^{3} + x^{2} - 13x + 6}$ 5x2 -13x +6 5x2 -10x -32 +6 -3x +6 ρ : ((x) = (x-2) (x+3) (2x-1) (11) P(x) >0 -35x52, 272

b) Prove true for n=1. $LHS = 2 \times 1!$ $= 1 \times (1 + 1)!$ =2 \therefore true for n=1. Assure the for now. 2-11 + 5 - 21 + ... (k+1) k! = K + (u+1)! If the for new, proc tore for newer. RTP 2-11 + 5 + 21 + ... (w+1) w! = ((w+1) +1) (w+1)! = (u+.) (u+2)! $LHS = K * (K+1)! + (K^{2}L2K+2)(K+1)!$ = (K+1)! [K + K + 2K + 2] = (v.+1)! (K2 + 3x +2) = (u+1) (u+2)(u+1) = (u+2)! (u+1)= RIHS ... leve for n=K+1.

 $c) f(x) = 6x - 2x^3$ $f'(x) = 6 - 6x^2$ le+ f'(2)=0 $6 - 6x^2 = 0$ f'''(x) = -12xf''(1) = -12 (1,4) is a max + e. $\begin{pmatrix} \cdots & (-1) = 12 \\ \cdots & (-1, -4) & \text{is } \alpha \\ \cdots & -1 & \rho \\ \end{array}$ Doncin : { 72: -1 47241}. $(u) y = 6x - 2x^3$ $dy = 6 - 6x^2$: Cit 7c =0 $\frac{dy}{dx} = 6$ $dx = \frac{1}{6}$ $m = \frac{1}{6}$

d)(1) LABC = (360° - 329°) + 49° = 80° (11) + cm 16° = 800 BC $BC = \frac{800}{4an16^{\circ}}$ $+com 23^\circ = 800$ $AB = \frac{800}{tcn23}$ $\left(AC\right)^{2} = \left(\frac{800}{400}\right)^{2} + \left(\frac{800}{40023}\right)^{2}$ -2 (800) (800) (1005 80° = 9509760 AC = 3083.79 > 3084~

13. a) $y = \frac{x^2}{4}$ y = x z $m_{T} = Zp$ = p $m_{n} = -\frac{1}{p}$ $\gamma - e^2 = -\frac{1}{e} (x - 2e)$ $ey - e^3 = -x + 2e$ x+ py - 2p - p3 = 0 (11) let x=0 Py - 2p - p3 =0 $e_{Y} = 2e + e^{3}$ $Y = 2 + e^{2}$ $Q\left(0, 2+e^{2}\right)$ $M \rightarrow 0 + 2p$, $p^2 + p^2 + 2$ 7 $\left(\rho, \rho^{2} + i \right)$ $(111) \qquad \qquad 1 = \chi^2 + 1$

 $b) \quad \alpha = 2x^3 + 2x$ $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = 2x^3 + 2x$ when x=0 V=1 $\frac{1}{z} = C$ $\frac{1}{2}v^2 = \frac{1}{2}x^4 + x^2 + \frac{1}{2}$ $V^2 = X^4 \perp Z x^2 \perp 1$ $= (\chi^2 \pm i)^2$ $V = \frac{+}{2} \left(\chi^2 + \left(\right) \right)$ but den x=0 v=1. $\therefore v = \lambda^2 + 1$ $(i) \frac{dx}{dt} = x^2 + 1.$ $\frac{Cl+}{Cl>c} = \frac{l}{>c^2+1}$ $+ = +cn^{-1}(2) + c$ $\chi = 0$, A = 0 . C = 0. $\therefore x = -1 con (+).$

 $y_{c} = +an\left(\frac{T_{a}}{T_{a}}\right)$ $= 1 \dots$ $\int_{0}^{\pi} \cos^{2} x \, dx$ $\int_{0}^{\pi} \int_{1}^{\pi} \frac{1}{2} \int_{0}^{\pi} 1 + \cos 2x \, dx$ č $=\frac{1}{2}\left[x + \frac{1}{2}5.02x\right]^{\frac{1}{2}}$ $=\frac{1}{2}\left[\left(\frac{T_2}{2}+0\right)-\left(0+0\right)\right]$ = T_4 ith = 7c length = 2x K. Cith $\begin{array}{rcl} A = 2x^2 & \underline{dA} = 18 \\ \underline{dA} = 4x & \overline{d1} \\ \overline{dx} \end{array}$ $\frac{dA}{dt} = \frac{dA}{dx}, \quad \frac{dx}{dt}$ $18 = 4x \times 0x$ $\chi = 100$

 $\frac{dx}{dt} = \frac{18}{320}$ $= \frac{9}{160}$ P= 62 $\frac{dP}{dx} = 6$ $\frac{dP}{dt} = \frac{dx}{dt} + \frac{dP}{dx}$ $= \frac{9}{160} \times 6$ $=\frac{27}{80}$ cm/s

14. a) T= 20 - Be-Kt $\frac{dT}{dt} = -Be^{-\kappa t} - \kappa$ $= \kappa Be^{-\kappa t}$ +=20-Be-"+ Be = 20-T $\frac{dT}{dT} = \kappa \left(20 - T \right)$ (i) + = 0, T = -10-10 = 20 - Be° -30 = - R : B = 30 (111) 3 = K (20 + 10) K = 10-3 = 4 (20 + 10) $k = \frac{1}{10}$

-10 + 5 (v) T = 20 - 30 e= 1.8 20. b)(i) = v + cosk $f = \frac{\chi}{V \cos x}$ $Y = V \begin{bmatrix} x \\ v \cos x \end{bmatrix} 5.0x - \frac{1}{2}g \begin{bmatrix} x \\ v \cos x \end{bmatrix}$ = x +and - gz sec2 $\frac{(11)}{1.8 = 10 + cm x - 10 (10)^2} = 5ec^2 x$ $\frac{10}{2(20)^2}$ 1.8 = 10 + cm 2 - 1000 (1 + + cm 2 1.8 = 10+and - 1-25 - 1-25+an2d 1.25+an2x -10+anx +3.05 =0

+ cn x = 10 = 100 - 4 (1.25) (3.05) 2.5 -: + on L = 7.682390528 X = 82.58 ... = 83° 05 +0-2 = 0-3176094721 x = 17.62 ... = 18°

 $\frac{c}{dx}\left(1+x\right)^{n} = \left(\begin{array}{c}c\\c\end{array}\right)x^{n} + \left(\begin{array}{c}c\\i\end{array}\right)x^{n} + \cdots + \left(\begin{array}{c}c\\c\end{array}\right)x^{n}$ $\int_{0}^{3} (1+2c)^{n} dx = \begin{bmatrix} (1+2c)^{n+1} \\ (1+2c)^{n+1} \end{bmatrix}_{0}^{3}$ $=\left(\frac{4^{n+1}}{n+1}\right) - \left(\frac{1^{n+1}}{n+1}\right)$ $=\frac{1}{n+1}\left(\frac{1}{1}-1\right)$ $\int \left(\begin{array}{c} (n) \\ 0 \end{array} \right) \chi^{\circ} + \left(\begin{array}{c} (n) \\ 1 \end{array} \right) \chi^{\circ} + \left(\begin{array}{c} (n) \\ 1 \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n) \\ n \end{array} \right) \chi^{\circ} - \left(\begin{array}{c} (n)$ $= \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} \times^{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \times^{2} + \cdots + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \times^{1+1} \right]^{3}$ $= \begin{pmatrix} 0 \\ 0 \end{pmatrix} 3^{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \frac{3^{2}}{2} + \cdots + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \frac{3^{n+1}}{n+1}$ $= \sum_{k=0}^{n} \binom{n}{2} \frac{3^{k+1}}{k+1}$ $= \sum_{k=0}^{n} \binom{n}{k} \frac{1}{K+1} 3^{K+1}$

 $\frac{1}{2} \left(\frac{n}{k} \right) \frac{1}{2} = \frac{1}{n+1} \left(\frac{1}{k} - 1 \right)$ n 17 ں ب د K=0