Year 12

HSC Assessment Task 5 - Trial HSC

17th August 2017

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- A NESA reference sheet is provided
- Answer Questions 1-10 on the Multiple Choice Answer Sheet provided
- Start each of Questions 11-14 in a new writing booklet
- In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.
- Write your examination number on the front cover of each booklet
- If you do not attempt a question, submit a blank booklet marked your examination number and "N/A" on the front cover

Total marks - 70

Section I Pages 3-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

Pages 7-12
60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Note: Any time you have remaining should be spent revising your answers.

BLANK PAGE

Section I

10 marks
 Attempt Questions 1-10
 Allow about 15 minutes for this section

Use the Multiple Choice Answer Sheet for Questions 1-10.
1 A function is represented by the parametric equations $x=2 t+1$ and $y=t-2$.
Which of the following is the Cartesian equation for the function?
(A) $x-2 y+3=0$
(B) $x-2 y-3=0$
(C) $x+2 y+5=0$
(D) $x-2 y-5=0$

2 Given that $\sin \alpha=\frac{4}{5}$ and $\cos \beta=\frac{5}{13}$ and both α and β are acute, what is the exact value of $\cos (\alpha-\beta)$?
(A) $\frac{-33}{65}$
(B) $\frac{27}{65}$
(C) $\frac{56}{65}$
(D) $\frac{63}{65}$

3 What is the size of the acute angle, to the nearest degree, between the lines $2 x-3 y+4=0$ and $x+2 y-7=0$?
(A) 7°
(B) 19°
(C) 41°
(D) 60°

4 What is the Domain and Range of $y=3 \cos ^{-1} 2 x$?
(A) Domain: $-\frac{1}{2} \leq x \leq \frac{1}{2}$ and Range: $0 \leq y \leq 3 \pi$.
(B) Domain: $-1 \leq x \leq 1$ and Range: $-\pi \leq y \leq \pi$.
(C) Domain: $-\frac{1}{2} \leq x \leq \frac{1}{2}$ and Range: $-\pi \leq y \leq \pi$.
(D) Domain: $-1 \leq x \leq 1$ and Range: $0 \leq y \leq \frac{\pi}{3}$.

5 What is the value of $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$

6 The expression $\sin 4 x+\sqrt{3} \cos 4 x$ can be written in the form $2 \sin (4 x+\alpha)$. What is the value of α ?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

7 A particle is moving in simple harmonic motion with displacement x.
The acceleration a of the particle is given by

$$
a=25-5 x .
$$

What is the period of motion?
(A) $\sqrt{5}$
(B) 5
(C) $\frac{2 \pi}{\sqrt{5}}$
(D) $\frac{2 \pi}{5}$

8 In the diagram $A B C D$ is a cyclic quadrilateral. The tangent $P Q$ touches the circle at A. The diagonal $B D$ is parallel to the tangent $P Q$. $Q A$ produced intersects with $C B$ produced at $P . B P=B A$ and $\angle B P A=\theta$.

What is the size of $\angle B C D$?
(A) θ
(B) 2θ
(C) $180^{\circ}-\theta$
(D) $180^{\circ}-2 \theta$

9 Which of the following is the general solution of $2 \cos 2 x=1$?
(A) $2 n \pi \pm \frac{\pi}{6}$
(B) $2 n \pi \pm \frac{\pi}{3}$
(C) $n \pi \pm \frac{\pi}{6}$
(D) $n \pi \pm \frac{\pi}{3}$

10 Given that the roots of the cubic equation $4 x^{3}-3 x^{2}-5 x+2=0$ are α, β and γ, what is the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$?
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{9}{16}$
(D) $\frac{49}{16}$

End of Section I

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) Solve the inequality $\frac{x}{x-4} \geq 2$.
(b) The point P divides the interval $A B$ externally in the ratio $3: 1$.

Given the points $A(-3,1)$ and $B(1,-2)$, find the coordinates of P.
(c) In the diagram below, $A T$ is the tangent to the circle at A.
$B T$ is a secant meeting the circle at B and C.

Given that $A T=12 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $C T=x \mathrm{~cm}$, find the value of x.
No reasons are required.
(d) Use the substitution $x=u-2$ to evaluate $\int_{-1}^{2} \frac{3 x+5}{\sqrt{x+2}} d x$.

Question 11 (continued)
(e) The function $f(x)=\log _{e} x-\sin x+1$ has a zero near $x=0.75$.

Use one application of Newton's Method to obtain another approximation to this zero.

Give your answer correct to 2 significant figures.
(f) Find the term independent of x in the expansion of $\left(x^{2}-\frac{2}{x}\right)^{12}$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) The polynomial $P(x)=2 x^{3}+x^{2}+a x+6$ has a zero at $x=2$.
(i) Determine the value of a. 1
(ii) Find the linear factors of $P(x)$. 2
(iii) Hence, or otherwise, solve $P(x) \geq 0$
(b) Prove by Mathematical Induction that
$2 \times 1!+5 \times 2!+10 \times 3!+\ldots .+\left(n^{2}+1\right) n!=n \times(n+1)!$ for $n \geq 1$.
(c) Consider the function $f(x)=6 x-2 x^{3}$.
(i) Find the largest domain containing the origin for which $f(x)$ has an inverse function $f^{-1}(x)$.
(ii) Find the gradient of the inverse function at $x=0$.

Question 12 (continued)

(d) Chris and Aaron are competing in a sailing boat race. Chris (C) can see the top of a vertical cliff (D) that is 800 m above sea level. The cliff is on a bearing of 329° from his position and the angle of elevation to the top of the cliff (D) is 16°.
Aaron (A) can also see the top of the cliff on a bearing of 049° with an angle of elevation of 23°.
The base of the cliff (B) is at sea level.

(i) Show that $\angle A B C=80^{\circ}$.
(ii) Find the distance $A C$ between the two sailing boats to the nearest metre.

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) Consider the point $P\left(2 p, p^{2}\right)$ that lies on the parabola $x^{2}=4 y$.
(i) Show that the equation of the normal at P is given by

$$
x+p y-2 p-p^{3}=0
$$

(ii) The normal meets the y-axis at Q.

Find the coordinates of the midpoint M of $P Q$.
(iii) Find the locus of the point M.

1
(b) The acceleration of a particle moving in a straight line is given by

$$
a=2 x^{3}+2 x
$$

where x is the displacement of the particle from the origin at time t seconds.
Initially the particle is at the origin moving at $1 \mathrm{~m} / \mathrm{s}$.
(i) Show that the velocity of the particle is given by $v=x^{2}+1$.
(ii) Hence, or otherwise, find the displacement of the particle after $\frac{\pi}{4}$ seconds.
(c) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
(d) A rectangle is expanding in such a way that at all times, its length is twice as 3 long as its width. If its area is increasing at a rate of $18 \mathrm{~cm}^{2} / \mathrm{s}$, find the rate at which its perimeter is increasing when the width of the rectangle is 80 centimetres.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) A frozen cake is removed from a freezer at $-10^{\circ} \mathrm{C}$ and is placed in a room at a constant temperature of $20^{\circ} \mathrm{C}$.
Thereafter its temperature T° is changing so that after t minutes

$$
\frac{d T}{d t}=K(20-T) \text { where } K \text { is a constant. }
$$

(i) Show that $T=20-B e^{-K t}$ satisfies this condition.
(ii) Find the value of B.
(iii) If, initially, the temperature was increasing at the rate of $3^{\circ} \mathrm{C}$ per minute, find the value of K.
(iv) Find the temperature of the cake 5 minutes after it was placed in the room.
Give your answer to the nearest degree.
(b) A football is kicked at an angle of α to the horizontal. The position of the ball at time t seconds is given by

$$
\begin{aligned}
& x=v t \cos \alpha \quad \text { and } \\
& y=v t \sin \alpha-\frac{1}{2} g t^{2}
\end{aligned}
$$

(DO NOT PROVE THESE)

where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity and $v \mathrm{~m} / \mathrm{s}$ is the initial velocity of the football.
(i) Show that the equation of the path of the football is

$$
y=x \tan \alpha-\frac{g x^{2}}{2 v^{2}} \sec ^{2} \alpha
$$

(ii) If $g=10 \mathrm{~m} / \mathrm{s}^{2}, v=20 \mathrm{~m} / \mathrm{s}$ and the ball just clears the head of a 1.8 metre tall player that is 10 metre away, calculate the angle(s) to the horizontal at which the football is initially kicked. Give your answer correct to the nearest minute.
(c) By considering the expansion of $(1+x)^{n}$ and the value of $\int_{0}^{3}(1+x)^{n} d x$,
show that $\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} 3^{k+1}=\frac{1}{n+1}\left(4^{n+1}-1\right)$.
END OF PAPER

2017 TRT $E X T$ HSC
1.

$$
\begin{align*}
& x=2 t+1 \\
& y=+-2 \\
& \therefore+=y+2 \\
& x=2(y+2)+1 \\
& x=2 y+4+1 \\
& x-2 y-5=0 \tag{D}
\end{align*}
$$

2.

$$
\begin{align*}
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& =\frac{3}{5} \times \frac{5}{13}+\frac{4}{5} \times \frac{12}{13} \\
& =\frac{63}{65} \tag{D}
\end{align*}
$$

3.

$$
\begin{align*}
& m_{1}=\frac{2}{3} \quad m_{2}=-\frac{1}{2} \\
& \therefore \tan \theta=\left|\frac{\frac{2}{3}+\frac{1}{2}}{1+\left(\frac{2}{3}\right)\left(-\frac{1}{2}\right)}\right| \\
& \therefore \theta=60^{\circ} \tag{D}
\end{align*}
$$

4.

$$
\begin{aligned}
& \frac{4}{3}=\cos ^{-1} 2 x \\
& -1 \leqslant 2 x \leqslant 1 \quad \rightarrow \quad-\frac{1}{2} \leqslant x \leqslant \frac{1}{2} \\
& 0 \leqslant \frac{y}{3} \leqslant \pi \quad 0 \leqslant y \leqslant 3 \pi
\end{aligned}
$$

5. $\sqrt{3}$
6. $2 \sin (4 x+\alpha)$

$$
=2 \sin 4 t x \cos \alpha+2 \sin \alpha \cos 4 x
$$

$$
\begin{array}{rr}
\therefore 2 \cos \alpha=1 & 2 \sin \alpha=\sqrt{3} \\
\cos \alpha=\frac{1}{2} & \sin \alpha=\frac{\sqrt{3}}{2} \\
& \alpha=\frac{\pi}{3}
\end{array}
$$

7.

$$
\begin{gather*}
a=-5(x-5) \\
\therefore-n^{2}=-5 \\
n=\sqrt{5} \\
\therefore P=\frac{2 \pi}{\sqrt{5}} \tag{C}
\end{gather*}
$$

8. (B)
9. $2 \cos 2 x=1$

$$
\cos 2 x=\frac{1}{2}
$$

$$
\begin{align*}
\therefore 2 x & =2 \pi n \pm \frac{\pi}{3} \\
\therefore x & =\pi n \pm \frac{\pi}{6} \tag{c}
\end{align*}
$$

10.

$$
\begin{align*}
& 4 x^{3}-3 x^{2}-5 x+2=0 \\
& (\alpha+\beta+r)^{2}-2(\alpha \beta+\alpha r+\beta r) \\
& =\left(\frac{3}{4}\right)^{2}-2\left(-\frac{5}{4}\right) \\
& =\frac{49}{16} \tag{D}
\end{align*}
$$

(1. a)

$$
\begin{gathered}
\frac{x}{x-4} \geqslant 2 \\
\text { critical pouts } \\
x \neq 4 \\
\frac{x}{x-4}=2 \\
x=2 x-8 \\
x=8
\end{gathered}
$$

test $x=0$

$$
\begin{aligned}
& \frac{0}{-4} \geqslant 2 \quad \text { FALSE } \\
& \therefore \quad 4<x \leqslant 8
\end{aligned}
$$

b)

$$
\begin{aligned}
x & =\frac{-1 \times-3+3 \times 1}{2} \\
& =3 \\
Y & =\frac{-1 \times 1+3 \times-2}{2} \\
& =-3 \frac{1}{2} \quad P\left(3,-3 \frac{1}{2}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
12^{2} & =x(x+7) \\
144 & =x^{2}+7 x \\
0 & =x^{2}+7 x-144 \\
0 & =(x+16)(x-a) \\
\therefore x & =9 \quad(x>0)
\end{aligned}
$$

d)

$$
\begin{aligned}
3 x+5 & =3(u-2)+5 \\
& =3 u-6+5 \\
& =3 u-1
\end{aligned}
$$

$$
\therefore \int_{+1}^{4}(3 v-1) v^{-\frac{1}{2}} d v
$$

$$
=\int_{1}^{+1} 3 v^{\frac{1}{2}}-v^{-\frac{1}{2}} d v
$$

$$
=\left[2 v^{\frac{3}{2}}-2 v^{\frac{1}{2}}\right]_{1}^{4}
$$

$$
=(16-4)-(2-2)
$$

$$
=12
$$

$$
\begin{aligned}
& x=u-2 \\
& \therefore \frac{d x}{d u}=1 \quad d x=d u \\
& v=x+2 \quad x=2 \rightarrow v=4 \\
& x=-1 \rightarrow v=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } f(x)=\frac{1}{x}-\cos x \\
& \therefore x_{2}=0.75-\frac{\log _{e}(0.75)-\sin (0.75)+1}{\frac{1}{0.75}-\cos (0.75)} \\
& =0.699 \ldots \\
& \\
& =0.70
\end{aligned}
$$

f)

$$
\begin{aligned}
\text { Constant } & =\binom{12}{4}\left(x^{2}\right)^{4}\left(-\frac{2}{x}\right)^{8} \\
& =126720
\end{aligned}
$$

12.

$$
\text { (i) } \begin{aligned}
0 & =2(2)^{3}+2^{2}+2 a+6 \\
0 & =16+4+2 a+6 \\
0 & =2 b+2 a \\
\therefore a & =-13
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } P(x)=2 x^{3}+x^{2}-13 x+6 \\
& x - 2 \longdiv { 2 x ^ { 2 } + 5 x - 3 } \underset { 2 x ^ { 3 } + x ^ { 2 } - 1 3 x + 6 } { 2 x ^ { 3 } - 4 x ^ { 2 } } \\
& 5 x^{2}-13 x+6 \\
& 5 x^{2}-10 x \\
& -3 x+6 \\
& -3 x+6
\end{aligned}
$$

$$
\therefore P(x)=(x-2)(x+3)(2 x-1)
$$

(14)

$$
P(x) \geqslant 0 \quad-3 \leqslant x \leqslant \frac{1}{2}, \quad x \geqslant 2
$$

b) Prove tree for $n=1$.

$$
\begin{aligned}
\angle H S & =2 \times 1! \\
& =2 \\
R H S & =1 \times(1+1)! \\
& =2
\end{aligned}
$$

\therefore true for $n=1$.
Assume the for $a>k$.

$$
2+1!+5-2!+\cdots\left(k^{2}+1\right) k!=k+(k+1)!
$$

If tree for $n=k$, frae tore
for $n=k+1$

$$
\begin{aligned}
& \text { RT } \\
& \begin{aligned}
2 & =1!+5+2!+\cdots\left(u^{2}+1\right) k!+\left((k+1)^{2}+1\right)(u+1)! \\
& =(u+1)(u+2)! \\
\angle H S & =k+(u+1)!+\left(k^{2}+2 k+2\right)(u+1)! \\
& =(k+1)!\left[k+k^{2}+2 k+2\right] \\
& =(u+1)!\left(k^{2}+3 k+2\right) \\
& =(v+1)!(k+2)(k+1) \\
& =(u+2)!(u+1) \\
& =R(+5
\end{aligned}
\end{aligned}
$$

\therefore true for $n=k+1$.
c)
(11) $y=6 x-2 x^{3}$

$$
\frac{d y}{d x}=6-6 x^{2}
$$

$$
\therefore \text { at } x=0
$$

$$
\frac{d y}{d x}=6
$$

$$
\frac{d x}{d y}=\frac{1}{6}
$$

$$
\therefore m=\frac{1}{6}
$$

$$
\begin{aligned}
& f(x)=6 x-2 x^{3} \\
& f(x)=6-6 x^{2} \\
& \text { let } f^{\prime}(x)=0 \\
& 6-6 x^{2}=0 \\
& \therefore x= \pm 1 \\
& f^{\prime \prime}(x)=-12 x \\
& f^{\prime \prime}(1)=-12 \\
& \begin{array}{l}
(1,4) \text { is a } \\
\text { max } e \text { e }
\end{array} \\
& f^{\prime \prime}(-1)=12 \quad(-1,-4) \text { is a } \\
& \text { Do-cin: }\{x:-1 \leq x \leq 1\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) }(1) \angle A B C=\left(360^{\circ}-329^{\circ}\right)+49^{\circ} \\
&=80^{\circ} \\
&(11) \tan 16^{\circ}=\frac{800}{B C} \\
& \therefore B C=\frac{800}{\tan 16^{\circ}} \\
& \tan 23^{\circ} \\
&=\frac{800}{A B} \\
&=\left(\frac{800}{\tan 16}\right)^{2}+\left(\frac{800}{\tan 23}\right)^{2} \\
& \tan 23 \\
&(A C)^{2}-2\left(\frac{800}{\tan 16}\right)\left(\frac{800}{\tan 23}\right) \cos 80^{\circ} \\
&= 9509760 \\
&= 3083.79 \\
&= 3084 \sim
\end{aligned}
$$

13. a) $y=\frac{x^{2}}{4} \quad y^{\prime}=\frac{x}{2}$

$$
\begin{aligned}
& m_{T}=\frac{2 p}{2} \\
&=p \\
& m_{\sim}=-\frac{1}{p} \\
& y-e^{2}=-\frac{1}{e}(x-2 p) \\
& p y-e^{3}=-x+2 p \\
& x+e y-2 p-e^{3}=0
\end{aligned}
$$

(ii) let $x=0$

$$
\begin{gathered}
p y-2 p-e^{3}=0 \\
p y=2 p+e^{3} \\
y=2+e^{2} \\
Q\left(0,2+e^{2}\right) \\
M \rightarrow \frac{0+2 p}{2}, \frac{e^{2}+p^{2}+2}{2} \\
\left(p, e^{2}+1\right)
\end{gathered}
$$

(II.) $\quad \therefore \quad y=x^{2}+1$
b)

$$
\begin{aligned}
& a=2 x^{3}+2 x \\
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=2 x^{3}+2 x \\
& \frac{1}{2} v^{2}=\frac{1}{2} x^{4}+x^{2}+C
\end{aligned}
$$

incer $x=0 \quad v=1$.

$$
\begin{aligned}
\frac{1}{2} & =c \\
\frac{1}{2} v^{2} & =\frac{1}{2} x^{4}+x^{2}+\frac{1}{2} \\
v^{2} & =x^{4}+2 x^{2}+1 \\
& =\left(x^{2}+1\right)^{2} \\
v & = \pm\left(x^{2}+1\right)
\end{aligned}
$$

but cler $x=0 \quad v=1$.

$$
\begin{aligned}
\therefore v & =x^{2}+1 \\
\text { (1i) } \quad \frac{d x}{d t} & =x^{2}+1 \\
\frac{d+}{d x} & =\frac{1}{x^{2}+1} \\
+ & =\tan ^{-1}(x)+c \\
x & =0,+t=0 \\
\therefore x & =\tan (t)
\end{aligned}
$$

$$
\begin{aligned}
x & =\tan \left(\frac{\pi}{4}\right) \\
& =1 \mathrm{~m} .
\end{aligned}
$$

c)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1+\cos 2 x d x \\
& =\frac{1}{2}\left[x+\frac{1}{2} 5 \cdot n 2 x\right]_{0}^{\pi / 2} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+0\right)-(0+0)\right. \\
& =\frac{\pi}{\pi}[1
\end{aligned}
$$

d) . cith $=x$ length $=2 x$

$$
\begin{aligned}
& A=2 x^{2} \\
& \frac{d A}{d x}=4 x \\
& \frac{d \Delta}{d t}=\frac{d A}{d x} \times \frac{d x}{d t} \\
& 18=4 x \times \frac{d x}{d t} \\
& x=80
\end{aligned}
$$

$$
\frac{d A}{d t}=18
$$

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{18}{320} \\
& \\
& =\frac{9}{160} \\
& \begin{aligned}
& P=6 x \\
& \frac{d P}{d x}=6 \\
& \frac{d P}{d t}=\frac{d x}{d t} \times \frac{d 8}{d x} \\
&=\frac{9}{160} \times 6 \\
&=\frac{27}{80} \mathrm{~cm} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

M. a) $T=20-B e^{-k t}$

$$
\begin{aligned}
\frac{d T}{d t} & =-B e^{-k t} \times-k \\
& =k B e^{-k t}
\end{aligned}
$$

$$
\begin{aligned}
& T=20-B e^{-k t} \\
& B e^{-k T}=20-T \\
& \therefore \frac{d T}{d t}=k(20-T)
\end{aligned}
$$

$$
\begin{gathered}
\text { (11) } t=0, T=-10 \\
-10=20-B e^{\circ} \\
-30=-B \\
\therefore B=30
\end{gathered}
$$

(1i1) $3=k(20+10)$

$$
\begin{aligned}
& 3=k(20+10) \\
& k=\frac{1}{10}
\end{aligned}
$$

$$
\begin{aligned}
(l) T & =20-30 e^{-\frac{1}{10} \times 5} \\
& =1.8 \ldots \\
& =20
\end{aligned}
$$

b) (1) $\quad x=v+\cos \alpha$

$$
\begin{gathered}
\therefore t=\frac{x}{v \cos \alpha} \\
y=v\left[\frac{x}{v \cos \alpha}\right] \sin \alpha-\frac{1}{2} g\left[\frac{x}{v \cos \alpha}\right]^{2} \\
=x+\cos \alpha-\frac{g x^{2}}{2 v^{2}} \sec ^{2} \alpha
\end{gathered}
$$

(II)

$$
\begin{aligned}
& 1.8=10 \tan \alpha-\frac{10(10)^{2}}{2(20)^{2}} \sec ^{2} \alpha \\
& 1.8=10 \tan \alpha-\frac{1000}{800}(1+\tan \alpha) \\
& 1.8=10 \tan \alpha-1.25-1.25 \tan ^{2} \alpha \\
& 1.25 \tan ^{2} \alpha-10 \tan \alpha+3.05=0
\end{aligned}
$$

$$
\begin{aligned}
\tan \alpha & =\frac{10 \pm \sqrt{100-4(1.25)(3.05)}}{2.5} \\
& = \\
\therefore \tan \alpha & =7.682390528 \\
\alpha & =82.58 \ldots \\
& =83^{\circ} \\
0 \quad & \\
\tan \alpha & =0.3176094721 \\
\alpha & =17.62 \ldots \\
& =180
\end{aligned}
$$

$$
\begin{aligned}
& (1+x)^{n}=(\hat{0}) x^{0}+\binom{n}{1} x^{1}+\cdots\binom{n}{n} x^{n} \\
& \int_{0}^{3}(1+x)^{n} d x=\left[\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{3} \\
& \\
& =\left(\frac{4^{n+1}}{n+1}\right) \cdots\left(\frac{1^{n+1}}{n+1}\right) \\
& \\
& =\frac{1}{n+1}\left(4^{n+1}-1\right) \\
& \int_{0}^{3}\binom{n}{0} x^{0}+\binom{n}{1} x^{1}+\cdots(n) x^{n} d x \\
& \left.n)\binom{n}{n} \frac{x^{n+1}}{n+1}\right]_{0}^{3} \\
& =\left[\binom{n}{0} x^{1}+\binom{n}{1} \frac{x^{2}}{2}+\cdots\binom{n}{n} \frac{3^{n+1}}{n+1}\right. \\
& =\binom{n}{0} 3^{1}+\binom{n}{1} \frac{3^{2}}{2}+\cdots\left(\frac{n^{2}}{n}\right. \\
& =\sum_{k=0}^{n}\binom{n}{k+1} 3^{k+1} \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{1}{k+1} 3^{k+1}
\end{aligned}
$$

$$
\therefore \sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} 3^{k+1}=\frac{1}{n+1}\left(4^{n+1}-1\right)
$$

