

ST CATHERINE'S SCHOOL

YEAR 12 - 3 UNIT MATHEMATICS

TIME ALLOWED: 2 HOURS (plus 5 mins reading time).

DATE: AUGUST 1996

Student Number:	
-----------------	--

INSTRUCTIONS:

- · All questions are to be attempted.
- · All questions are of equal value.
- · All necessary working should be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- · Approved calculators and geometrical instruments are required.
- · Standard Integrals are printed on the last page.
- Each question should be started in a separate Writing Booklet, clearly marked with the question number and your student number on the cover.
- You may ask for extra Writing Booklets if you need them.
- Tie your Booklets in bundles:

Section A:

Questions 1, 2 and 3.

Section B:

Questions 4 and 5.

Section C:

Questions 6 and 7.

 Hand in Section A, Section B and Section C and this examination paper separately

TEACHERS USE ONLY TOTAL MARKS
A
В
TOTAL

DECEMON A

Question 1. Use separate Writing Booklet. Marks a) Solve for x: $(x^2 - 1)(x + 5) > 0$ Differentiate $y = \log \sqrt{x+1}$ Find $\int \frac{t}{\sqrt{1+t}} dt$, use u = 1 + td) Find the area enclosed by the x axis, $y = \sin x$ and 3 $y = \cos x$ in the first quadrant. e) Find the exact value of $\int_0^{\sqrt{3}} \frac{1}{9+x^2} dx$ Question 2. Use separate Writing Booklet. $\int x e^{x^2} dx$ 2 Use the principle of mathematical induction to show that $2^{3n} - 1$ is divisible by 7. Show that the equation of the normal to the parabola $x^{2} = 4ay$ at $(2ap, ap^{2})$ is $x + py = ap^{3} + 2ap$

- Derive the equation of the line which passes through the focus S(0, a) and is perpendicular to the normal.
 If this line meets the normal at N, then
- iii) Find the coordinates of N
- iv) Find the locus of N

18

A rectangle is inscribed under the curve $y = \frac{1}{x^2 + 1}$ as

shown, such that the rectangle is symmetrical about the y axis.

- i) Find the expression for the area of the rectangle in terms of x.
- ii) Find the maximum area.

SECTION C

Question 6. Use separate Writing Booklet.

a) For the curve $y = 1 + 2\cos x - 2\cos^2 x$.

5

- i) Show that $\frac{dy}{dx} = 2\sin x(2\cos x 1)$.
- ii) Hence, find the stationary point(s) in the interval $o \le x \le \frac{\pi}{2}$
- iii) Sketch the curve and find the greatest and least value of y in $0 \le x \le \frac{\pi}{2}$.
- b) Show that $\frac{1-\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\tan\frac{\theta}{2}$.

- c) Evaluate $\cos\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$.
- d) Find the domain and range of $y = 3\sin^{-1}\sqrt{1-x^2}$.

Question 7. Use separate Writing Booklet.

- a) Solve $4x^3 12x^2 + 11x 3 = 0$ if the roots are in

 Arithmetic progression.
- b) i) A particle is projected from a point O with a velocity V at an angle θ to the horizontal. Taking the coordinate axes at the point of projection, find parametric expression for velocity and the position of the particle at any time t.
 - ii) After 1 second the position of the particle is $(6\sqrt{3},1)$. Show that the initial velocity and the angle of projection are respectively 12cm/sec and 30°. (Take g = 10cm/s²).
 - iii) Find the range of the motion.
 - iv) Find the maximum height reached.

END OF EXAMINATION