

ST CATHERINE'S SCHOOL

YEAR 12 HSC TRIAL EXAMINATIONS
3/4 UNIT MATHEMATICS

TIME ALLOWED: 2 HOURS

DATE: AUGUST 1997

Examination N	Number:		
		and the second second second second	

INSTRUCTIONS:

- All questions are to be attempted.
- All questions are of equal value.
- All necessary working should be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Each question attempted should be started on a NEW PAGE.
- Approved calculators and geometrical instruments are required.
- Standard Integrals are printed on the last page.
- Hand in your work in 3 bundles:

Section A: Questions 1 and 2 Section B: Questions 3, 4 and 5 Section C: Questions 6 and 7.

	TOTAL MARKS
A	
В	
C	,

. (

St Catherine's School

SECTION A

Que	stion 1. Use a separate Writing Booklet.	Marks		
a)	Differentiate $x \sin x$	2		
b)	Find the exact value of cos 23° cos 22° – sin 23° sin 22°	2		
c)	Find the co-ordinates of the point P which divides the interval AB with endpoints $A(3,5)$ and $B(4,-6)$ internally in the ratio $4:9$.			
d)	Solve for $x: \frac{x^2 - 5x}{x - 4} \le 3$	3		
e)	If $\sin \alpha = \frac{4}{5}$ and $\cos \beta = \frac{5}{13}$ find $\sin(\alpha + \beta)$ in exact form	3		

Question 2. Use a separate Writing Booklet

a) i) Show that
$$x = -1$$
 is a root of the polynomial $P(x) = x^3 - 7x - 6$.

- ii) Find the values of the other roots.
- iii) Sketch the curve y = P(x) (Do not find the turning points)

b) i) Evaluate
$$\int_0^3 x\sqrt{1+x^2} dx$$
 using 6 the substitution $u = 1 + x^2$

ii) Find
$$\int (\cos x + \sin x)^2 dx$$

c) Find
$$\lim_{x \to 0} \frac{3x}{\sin 5x}$$
 2

SECTION B

Question 3. Use a separate Writing Booklet.

Marks

a) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.

5

- i) Find the equation of the chord PQ
- ii) If *PQ* is a focal chord, prove that the normals to the parabola at *P* and *Q* are perpendicular to each other.
- b) Prove that $\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}=t$ where $t=\tan\frac{\theta}{2}$
- 3
- c) Find the acute angle between y = 2x 1 and x + 3y 1 = 0
- 2
- d) How many odd numbers between 5000 and 6000 can be made from the digits 4, 5, 6, 7 if each digit is to be <u>used once</u> only in any order?
- 2

Question 4 Use a separate Writing Booklet.

a) The population of a town has its rate of growth proportional to the population. If the annual growth rate is 0.02 and the original population is 2400

5

- i) what would the population be in 4 years?
- ii) how many years would it take for the population to reach 3400?
- b) The approximate root of $\cos x = \frac{x}{3}$ was found to be x = 1.1 Use one application of Newton's method to find a closer approximation.

2

c) I have forgotten the combination of my lock for my locker. It is a combination lock with four rollers each having the numerals 0, 1, 2, 3, . . . ,9. What is the chance of guessing the correct combination in 3 tries?

2

I attached a small stone to the end of a piece of elastic and tied the other end onto a handrail. If I throw the stone vertically down from the handrail (the point O) with a velocity of $\sqrt{14} \ cm$ / sec and if it has an acceleration of (6-2x) GM/ sec after it has travelled $x \ cm$, find its greatest velocity.

Question 5 Use a scparate Writing Booklet

Marks

a) The polynomial equation P(x) = 0 has a triple root at x = a. Form an expression for this polynomial and show that $P(a) = P^{I}(a) = 0$.

3

b) If x = 2 is a double root of $ax^4 - 2x^3 - 8x + 16 = 0$ find the value of a and the sum of the other two roots.

3

c) Using Mathematical Induction, prove $4^n \ge 3n + 7$ for all integers n > 1.

3

d) A thin circular plate is put into a refrigerator so that it contracts uniformly. When the radius of the plate is 30 cm, it is decreasing at a rate of 4mm/sec. Find the rate of decrease of the area at this point.

3

SECTION C

Question 6 Use a separate Writing Booklet

a) Given AE=OA

O is the centre of the larger circle and EF is the tangent to the circle

- $\begin{array}{c|c}
 D & 7 \\
 \hline
 C & A
 \end{array}$
- i) Copy this diagram into your writing booklet
- ii) Prove 0C BD
- iii) Show $EF = \sqrt{3} AE$
- iv) If OB = 8cm and BD = 7 cm, find the length of OC
- b) If there is a 70% chance that Susan can hit a target and an 80% chance that Mei can hit the target, what is the chance that

2

- i) both will hit it
- ii) at most one will hit the target?
- c) Ulug Beg (1393 1449) used the relation $\sin^3 \theta = \frac{1}{4}(3\sin \theta \sin 3\theta)$ 3 to draw up a table of values. Prove this relation.

Question 7 Use a separate Writing Booklet

Marks

3

a) A cylinder with radius 4 cm and perpendicular height 15 cm is tilted so that it will just fit inside a 12 cm high box.

At what angle to the horizontal must it be tilted?

- b) Assume that over several days of constant weather the cycle of temperatures each day is simple harmonic between 13° at 4 am and 23° at 4 pm. At what time of the day would the temperature be 15°?
- The acceleration after t sec of a particle is given in metres per second per second by $a = 3t^2 + 1$. If you were to draw an acceleration-time graph, what would the area under the curve from t = 0 to t = 1 measure? (You do not have to sketch the graph)
- d) Two particles P and Q move along a given line, their displacement at t > 0 from the origin being x(t) and X(t) respectively.
 - i) Given that $\frac{d^2x}{dt^2} = 6 + e^{-\frac{x}{t}}$, and $\frac{dx}{dt} = -1$ and x = 0 when t = 0, find and expression for x(t).
 - ii) If $X(t) = 2\sin 5t + 3t^2 + 2$ prove that X(t) > x(t) for all t > 0. Explain this result in terms of the motion of the particles P and Q.

: 1