

St Catherine's School

12 Year: Subject: Extension I Mathematics Time Allowed:2 hours (plus 5 mins reading time) August 2001 Date:

Exam	number:	

Directions to candidates:

- · All questions are to be attempted.
- · All questions are of equal value.
- All necessary working must be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Each question attempted should be started on a new booklet.
- Approved calculators and geometrical instruments are
- This page is a cover sheet for Section A. Write a cover page for Section B and C and include your number.
- Hand in your work in 3 bundles:

Section A Questions 1, 2 and 3.

Section B Questions. 4 and 5

Section C Questions. 6 and 7.

TEACHER'S USE ONLY Total Marks	
Λ	
В	
c	
	-
TOTAL	

AUGUST 2001 YEAR 12 EXTENSION 1

Ouestion 1:

(2 marks) (a) Solve for x: $\frac{3}{x+5} \le 1$

A root of $c^2 - x^2 = 0$ lies near x = -0.5. Use Newton's Method once to find (3 marks) a better approximation.

Consider the function $f(x) = 2 \sin^{-1} \frac{x}{2}$

Find the exact value of $f(\sqrt{2})$ (1 mark)

(2 marks) What is the domain and lange of f(x).

(1 mark) Sketch f(x).

(3 marks) Find the equation of the tangent to the curve at $x = \sqrt{2}$

Question 2:

Solve for x: 2|x-1| = 4x-1.

(3 marks)

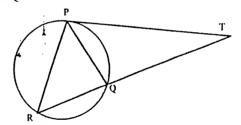
(1 mark)

If α , β , γ are the roots of $x^3 - 3x^2 - 2x + 1 = 0$, find:

(I mark) (1 mark) $\alpha\beta + \alpha\gamma + \beta\gamma$

(2 marks)

(c) PT is a tangent to the circle PRQ. RQ is a secant intersecting the circle in Q and R. The line RO intersects PT at T.



YEAR 12 EXTENSION 1 AUGUST 2001

2

Question 3:

(a) Find
$$\int x^2 (x^3 - 5)^5 dx$$
 using the substitution $u = x^3 - 5$ (3 marks)

(b) The angle between the lines
$$y = mx$$
 and $y = \frac{1}{2}x$ is 45° (3 marks)
Find two possible values of m .

(c) The rate at which a body cools in air is proportional to the difference between its temperature T and the temperature C of its surroundings. That is:

 $\frac{dT}{dt} = -k(T-C)$ where t is the time in hours and k is a positive constant.

i) Show that
$$T = C + Ae^{-h}$$
 is a solution to the differential equation above (where A is a real number). (2 marks)

A heated piece of metal is initially 90°C but cools to 70°C in one hour. Given the surroundings are 25°C find:

Question 4:

(a) Find
$$\int \cos^2 2x dx$$
 (2 marks)

- (b) A team of 4 is to be chosen from 5 boys and 6 girls. How many teams are possible if:
 - (i) there are no restrictions (1 mark)
 - (ii) the shortest girl must be included (1 mark)
- (c) Show by Mathematical Induction that the following statement: (4 marks) $(1 \times 2) + (2 \times 3) + (3 \times 4) + \dots + (n-1)(n) = \frac{(n-1)n(n+1)}{3}$ is true for all integers $n \ge 2$.

YEAR 12 EXTENSION 1 AUGUST 2001

(d) The diagram shows the parabola with parametric coordinates x = 2ap and $y = ap^2$ P is a point on the parabola. S is the focus and A is a point on the directrix.

The straight line drawn from point P (2ap ap²) on the parabola through the vertex at O(0,0) intersects the directrix at A.

- i) Find the equation of line PO Show that the coordinates of A are $\binom{-2a}{p}$, -a (1 mark)
- (iii) Prove that AS is parallel to the tangent at P. (2 marks)

of A are $\left(\frac{-2a}{p}, -a\right)$ (1 mark) the tangent at P. (2 marks)

3

Question 5:

(a) Eight different coloured beads are arranged so that two particular colours are next to each other. In how many ways can they be arranged in:
(You may leave your answer in factorial notation)

- (i) a line (1 mark) (ii) a circle (1 mark) (iii) a necklace (1 mark)
- (b) Find the exact value of

$$\int_{0}^{2} \frac{dx}{\sqrt{4-x^2}}$$

(2 marks)

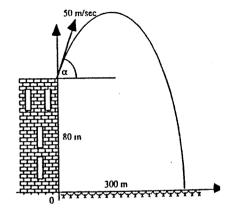
(c) Kelly throws a stone at an angle of elevation of α from the top of a tower 80 m high at an initial velocity of 50 m/sec, as in the diagram.

The acceleration due to gravity is assumed to be 10m/sec^2 . Take the origin to be the base of the tower.

(i) Given that $\frac{d^2x}{dt^2} = 0$ and $\frac{d^2y}{dt^2} = -10$ show that $x = 50t\cos\alpha$ and $y = -5t^2 + 50t\sin\alpha + 80$,

where x and y are the horizontal and vertical displacements of the stone in metres from the origin at time t seconds after throwing.

(ii) Kelly wants the stone to land in the sea 300 maters from the base of the tower.



(3 marks)

YEAR 12 EXTENSION 1 AUGUST 2001

5

Question 6:

(a) Differentiate $f(x) = \ln(\tan^3 x)$

(2 marks)

(b) Consider the function $f(x) = \frac{x^2}{x^2 - 2}$

(i) Give the equations of any horizontal and vertical asymptotes.

(2 marks)

(ii) Find the x and v intercepts if they exist.

(I mark)

- (iii) Given that this curve has only one stationary point and it is a local maximum, find its coordinates. (2 marks)
- (iv) Sketch the curve, indicating on your sketch all important features.

(2 marks)

(c) Show that the equation $2x^3 - 5x^2 + 3x - 2 = 0$ has only one real root.

(3 marks)

Question 7:

- (a) The displacement x metres of a particle from the origin is in simple harmonic motion and is given by $x = 5\cos \pi t$, where the time t is in seconds.
 - (i) What is the period of the oscillation?

(1 mark)

(ii) What is the speed v of the particle as it moves through the origin?

(2 marks)

(b) Show that (x-1)(x-2) is a factor of $P(x) = x^n(2^m-1) + x^m(1-2^n) + 2^n - 2^m$ (2 marks where m, n are positive integers.

Ouestion 7 (continued):

(c) An eggtimer has the same shape as the curve $y = x^3$ rotated about the y axis. The top half of the eggtimer is filled with sand to a depth of h units.

(i) Show that the volume V of sand needed is given by $V = \frac{3\pi}{5} \sqrt[3]{h^5}$.

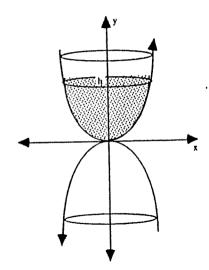
(3 marks)

The rate with which the sand falls into the bottom of the timer is found to be proportional to the height h of the sand in the top of the eggtimer.

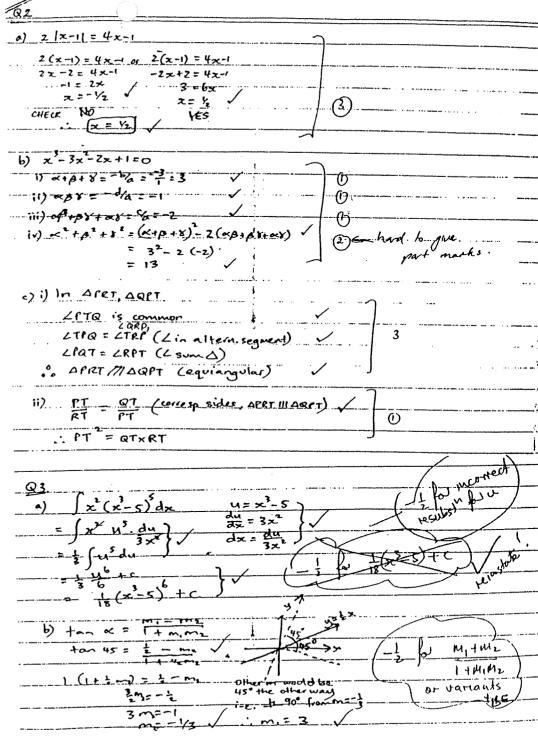
(ie $\frac{dV}{dt} = kh$ where k is a real number)

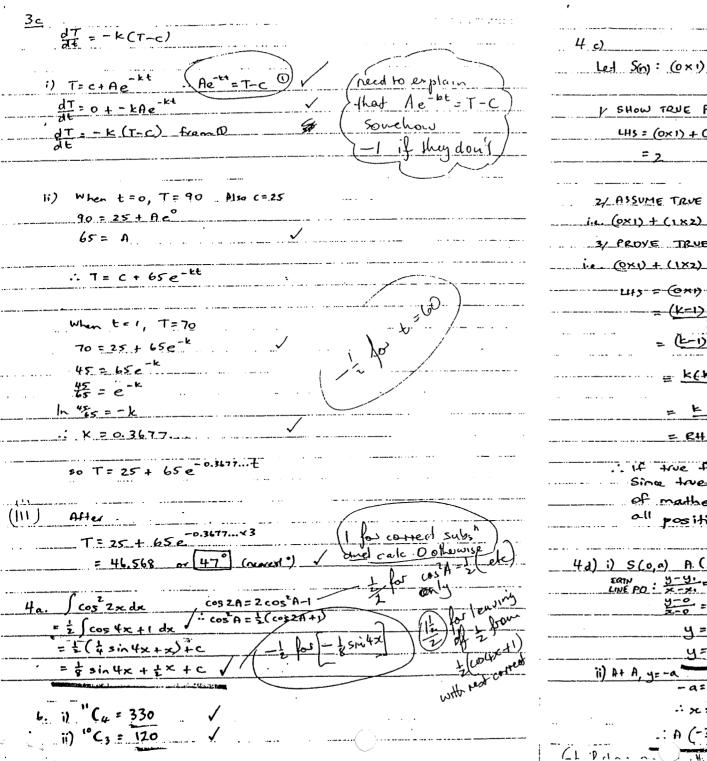
(ii) Find the exact rate at which the height of the sand in the top of the eggtimer is falling when $h = \frac{27}{8}$ cm if the sand is flowing through the neck at 1 cm³ / minute when h = 5 cm

(4 marks)









```
Let Sm: (0x1) + (1x2) + (2x3)+...+ (h-1) n =
    V SHOW TRUE FOR 5(2)
      LHS = (0x1) + (1x2)
   2/ ASSUME TRUE FOR S (E)
     (0x1) + (1x2) + (2x3)+...+(k-1)k
    3/ PROVE TRUE FOR S (KI)
      (0×1) + (1×2) + (2×3) + ... + (k-1) =
       415 = (0x1) + (1x2) + (2x3) + ... + (k=1) k +
            = k(t+1)(k+2)
      : If true for S(+) then true for S(++1)
     Since tree for s(2) then by the principle
        of mathematical induction, S(n) is true for
        all positive integers n > 2
4d) i) S(o,a) A. (x, -a)
                              As//tangent of P (equal gradients
               . Hin I showing do anditedral
```