St George Girls High School

Trial Higher School Certificate Examination

2007

Mathematics Extension 1

Total Marks - 84

General Instructions

- Reading time -5 minutes
- Working time -2 hours
- Write using blue or black pen
- Attempt ALL questions.
- Begin each question on a new booklet
- Write your student number on each page
- All necessary working must be shown.
- Diagrams are not to scale.
- Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.

Question 1-12 marks (Start a new booklet)
a) Differentiate $\log \left(x e^{x}\right)$
b) Find the equation of the normal on the curve $y=\ln (x+2)$ at the point $(0, \ln 2)$
c) Solve $\frac{2 x+3}{x-4} \geq 1$
d) Let A be the point $(3,-1)$ and B be the point $(9,2)$. Find the coordinates of the point P which divides the interval $A B$ externally in the ratio 5:2
e) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{5}}{2 x}$

Question 2-12 marks (Start a new booklet)
a) Find $\int \frac{19 d x}{4+8 x^{2}}$
b) Find the acute angle between the lines $x+2 y=5$ and $x-3 y=-3$
c) Find $\frac{d}{d x}\left(\cos ^{-1}\left(2 \cos ^{2} x-1\right)\right)$ in simplest terms for $0 \leq x \leq \frac{\pi}{2}$
d) Evaluate $\int_{0}^{2} \frac{2 x}{\sqrt{x^{2}+1}} d x$ by using the substitution $u=x^{2}+1$
e) Differentiate $x^{2} \tan 5 x$

Question 3-12 marks (Start a new booklet)
a) Write down the period and amplitude of $y=2 \cos \frac{1}{3} x$
b) Use the change of base formula to evaluate $\log _{3} 14$ correct to one decimal place.
c) (i) Write $\sqrt{3} \sin x-\cos x$ in the form $r \sin (x-\alpha)$
(ii) And hence or otherwise solve $\sqrt{3} \sin x-\cos x=1 \quad 0 \leq x \leq 2 \pi$
d) Sketch a graph of $y=\frac{3}{\pi} \cos ^{-1} \frac{x}{2}$ indicating its domain and range.
e) Find $\frac{d}{d x}\left(2 \sin ^{-1} x\right)$

Question 4-12 marks (Start a new booklet)
a) $A B C$ is an equilateral triangle, side $2 r$. The circular arcs $A B, B C$ and $C A$ have centres at C, A and B respectively.

Show that for the figure bounded by the arcs:
(i) The perimeter is equal to that of a circle of radius r
(ii) The area is approximately 90% of that of a circle, radius r
b) Use the principle of mathematical induction to prove that $3^{2 n}-1$ is divisible by 8 when n is a positive integer.
c) Given that $f^{\prime}(x)=1-\frac{2}{x}$ and the graph of $y=f(x)$ passes through the point $(e,-2)$ find $f(x)$

Question 5-12 marks (Start a new booklet)
a) The remainder when $x^{3}+a x^{2}-3 x+5$ is divided by $(x+2)$ is 11 .

Find the value of a.
b) Find the general solution of $2 \cos x+\sqrt{3}=0$
c) In the diagram below $A B C D$ is a parallelogram, $\quad B E=E F$ and $A D$ is produced to F.

(i) Prove that $\triangle D E F$ is congruent to $\triangle B E C$
(ii) Hence prove that $D E=\frac{1}{2} D C$
d) If $y=\frac{x}{\operatorname{cosec} x}$ find $\frac{d y}{d x}$
e) Given that $\log _{b}\left(\frac{p}{q}\right)=3$ and $\log _{b}\left(\frac{q}{r}\right)=1.6$

Find $\log _{b}\left(\frac{p}{r}\right)$

Question 6-12 marks (Start a new booklet)
a) Use Newton's method to find a second approximation to the positive root of $x-2 \sin x=0$. Take $x=1.7$ as the first approximation.
b) One of the roots of the equation $x^{3}+6 x^{2}-x-30=0$ is equal to the sum of the other two roots. Find the value of the three roots.
c) A spherical balloon is being inflated and its radius is increasing at a constant rate of $3 \mathrm{~cm} / \mathrm{min}$. At what rate is its volume increasing when the radius of the balloon is 5 cm ?
d) From a point P due south of a vertical tower, the angle of elevation of the top of the tower is 20° and from a point Q due east of the tower it is 35°. If the distance from P to Q is 40 metres, find the height of the tower.

Question 7-12 marks (Start a new booklet)
a) A particle is moving in simple harmonic motion. Its displacement x metres at any time t seconds is given by $x=3 \cos (2 t+5)$
(i) Find the period and amplitude of the motion.
(ii) Find the maximum acceleration of the particle.
(iii) Find the speed of the particle when $x=2$
b) A projectile is fired with initial velocity $V \mathrm{~m} / \mathrm{s}$ at an angle of projection θ from a point O on horizontal ground. After 2 seconds it just passes over a 10 metre high wall that is 12 metres from the point of projection.

Assume acceleration due to gravity is $10 \mathrm{~m} / \mathrm{sec}^{2}$. Assume the equations of displacement are $x=V t \cos \theta$ and $y=-5 t^{2}+V t \sin \theta$
(i) Find V and θ to the nearest degree.
(ii) Find the maximum height reached by the projectile.
(iii) Find the range in the horizontal plane through the point of projection.

End of Paper

TABLE OF STANDARD INTEGRALS

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Trial Solutions Mathematics 2007
Question 1
(a)

$$
\begin{aligned}
\frac{d}{d x} \log \left(x e^{x}\right) & =\frac{d}{d x}\left(\ln x+\ln e^{x}\right) \\
& =\frac{d}{d x}(\ln x+x) \\
& =\frac{1}{x}+1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\ln (x+2) \\
& y^{\prime}=\frac{1}{x+2}
\end{aligned}
$$

$$
x=0 \quad y^{\prime}=\frac{1}{2}
$$

$$
\therefore M_{T}=\frac{1}{2} \quad M_{N}=-2
$$

$\therefore m=-2 \quad(0, \ln 2)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-\ln 2=-2(x-0) \\
y-\ln 2=-2 x \\
2 x+y-\ln 2=0
\end{gathered}
$$

(c)

$$
\begin{gathered}
\frac{2 x+3}{x-4} \geqslant 1 \quad x \neq 4 \\
(x-4)(2 x+3) \geqslant(x-4)^{2} \\
2 x^{2}-5 x-12 \geqslant x^{2}-8 x+16 \\
x^{2}+3 x-28 \geqslant 0 \\
(x+7)(x-4) \geqslant 0 \\
x>4 \\
x \leqslant-7
\end{gathered}
$$

$$
\begin{array}{rl}
\text { (d) } A & B \\
(3,-1) & (9,2)-5: 2 \\
P & =\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right) \\
& =\left(\frac{-5.9+2.3}{-5+2}, \frac{-5.2+2 .-1}{-5+2}\right) \\
& =(13,4)
\end{array}
$$

$$
\text { (e) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin \frac{x}{5}}{2 x} \\
= & \lim _{x \rightarrow 0} \frac{1}{2} \cdot \frac{1}{5} \cdot \frac{\sin \frac{x}{5}}{\frac{x}{5}}
\end{aligned}
$$

$$
=\frac{1}{10} \lim _{x \rightarrow 0} \frac{\sin \frac{x}{5}}{\frac{x}{5}}
$$

$$
=\frac{1}{10}
$$

Question 2
(a) $\int \frac{19 d x}{4+8 x^{2}}=\frac{19}{8} \int \frac{d x}{\frac{1}{2}+x^{2}}$

$$
\begin{aligned}
& =\frac{19}{8} \cdot \frac{1}{1} \cdot \operatorname{ch}^{-1} \frac{x}{\frac{1}{\sqrt{2}}}+C \\
& =\frac{19 \sqrt{2}}{8} \tan ^{-1} \sqrt{2} x+c
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \tan \alpha=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\
& x+2 y=5 \quad x-3 y=-3 \\
& 2 y=-x+5 \quad \quad \quad 3 y=x+3 \\
& y=-\frac{1}{2} x+\frac{5}{2} \quad y=\frac{1}{3} x+1 \\
& \therefore \quad m_{1}=-\frac{1}{2} \quad m_{2}=\frac{1}{3}
\end{aligned}
$$

$\tan \alpha=\frac{-\frac{1}{3}-\frac{1}{3}}{1+\frac{-1}{2} \cdot \frac{1}{3}}$

$$
=\frac{-\frac{5}{6}}{\frac{5}{6}}
$$

$$
\doteq-1
$$

$$
\therefore \tan \alpha=-1
$$

$$
\alpha=135
$$

\therefore acute angle $=45^{\circ}$
d)

$$
\begin{aligned}
& \frac{d}{d x}\left(\cos ^{-1}\left(2 \cos ^{2} x-1\right)\right) \\
= & \frac{d}{d x}\left(\cos ^{-1}(\cos 2 x)\right) \\
= & \frac{d}{d x}(2 x) \\
& (2 x)
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \int_{0}^{2} \frac{2 x}{\sqrt{x^{2}+1}} d x \\
& \text { let } u=x^{2}+1 \quad x=2 \quad u=9 \\
& d u=2 x d x \quad x=0 \quad u=1 \\
& \therefore \quad I=\int_{1}^{5} \frac{d u}{\sqrt{u}} \\
&=\int_{1}^{5} u^{-\frac{1}{2}} d u \\
&=\left[\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{5} \\
&\left.=2 u^{\frac{1}{2}}\right]_{1}^{5} \\
&=2 \sqrt{5}-2 \sqrt{1} \\
&=2 \sqrt{5}-2
\end{aligned}
$$

(e)

$$
\begin{aligned}
y & =x^{2} \tan 5 x \\
y^{\prime} & =2 x \tan 5 x+x^{2} \cdot 5 \sec ^{2} y^{2} \\
& =2 x \cdot \tan 5 x+5 x^{2} \cdot \sec ^{2}
\end{aligned}
$$

Question 3
(a)

$$
\begin{aligned}
& y=2 \cos \frac{1}{3} x \\
& \text { period }=\frac{2 \pi}{\frac{1}{3}} \\
&=6 \pi \\
& \text { amp }=2
\end{aligned}
$$

(b) $\log _{3} 14=\frac{\log 14}{\log 3}$

$$
=2.4
$$

$$
\begin{aligned}
& \text { (c)(i) } \sqrt{3} \sin x-\cos x \\
& r \sin (x-\alpha)=r(\sin x \cos \alpha-\cos x \sin \alpha) \\
& =r \cos \alpha \sin x-r \sin \alpha \cos x
\end{aligned}
$$

(d) $\quad y=\frac{3}{\pi} \cos ^{-1} \frac{x}{2}$

$$
-1 \leqslant \frac{x}{2} \leq 1
$$

$$
-2 \leqslant x \leqslant 2
$$

$$
0 \leqslant \cos ^{-1} \frac{x}{2} \leqslant \pi
$$

$0 \leqslant \frac{3}{\pi} \cos ^{-1} \frac{x}{2} \leqslant 3$

domain $-2 \leq x \leq 2$ rage $0 \leq y \leq 3$

$$
\begin{array}{cl}
r \cos \alpha=\sqrt{3} & r^{2} \cos ^{2} \alpha=3 \\
r \sin \alpha=1 & r^{2} \sin ^{2} \alpha=1 \\
& r^{2}=4
\end{array}
$$

$$
\tan \alpha=\frac{1}{\sqrt{3}}
$$

$$
\alpha=\frac{\pi}{6}
$$

$$
\therefore \sqrt{3} \sin x-\cos x=2 \sin \left(x-\frac{\pi}{6}\right)
$$

$$
\begin{aligned}
& \text { ii) } \begin{array}{r}
\sqrt{3}-x-\cos x=1 \\
\therefore 2 \sin \left(x-\frac{\pi}{6}\right)=1 \\
\therefore-\left(x-\frac{\pi}{6}\right)=\frac{1}{2} \\
x-\frac{\pi}{6}=\frac{\pi}{3} \quad 2 \frac{\pi}{3}
\end{array}
\end{aligned} \begin{aligned}
& =1
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(2 \sin ^{-1} x\right) & =2 \cdot \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Question 4
(a) i

length of one are radius $=2 r$

$$
\theta=\frac{\pi}{3}
$$

arc last $=r \theta$

$$
=2 \pi \cdot \frac{\pi}{3} .
$$

3 are lengths $=3 \cdot \frac{2 \pi r}{3}$

$$
=2 \pi r
$$

(ii) Area of one segmat

$$
\begin{aligned}
&=\frac{1}{2} r^{2}(\theta-\sin \theta) \\
&= \frac{1}{2}(2 r)^{2}\left(\frac{\pi}{3}-5-\frac{\pi}{3}\right) \\
&=\frac{1}{2} \cdot 4 r^{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\
&=r^{2}\left(\frac{2 \pi}{3}-\sqrt{3}\right) \\
& \text { Area of } \Delta=\frac{1}{2} a b \sin C \\
&=\frac{1}{2} \cdot 2 r \cdot 2 r \cdot \sin \frac{\pi}{3} \\
&=2 r^{2}-\frac{\sqrt{3}}{2} \\
&=r^{2} \sqrt{3} \\
& \\
& \hline \text { Total area }=\sqrt{3}^{2} r^{2}+3\left[r^{2}\left(\frac{2 \pi}{3}-\sqrt{3}\right)\right] \\
&=\sqrt{3} r^{2}+3 r^{2}\left(\frac{2 \pi}{3}-\sqrt{3}\right) \\
&=r^{2}\left[3\left(\frac{2 \pi}{3}-\sqrt{3}\right)+\sqrt{3}\right] \\
&=r^{2}(2 \pi-2 \sqrt{3})
\end{aligned}
$$

$$
\begin{aligned}
\% \text { of circle } & =\frac{r^{2}(2 \pi-2 \sqrt{3})}{\pi r^{2}} \times 100 \% \\
& =89.7 \% \\
& \approx 90 \%
\end{aligned}
$$

Show true for $n=1$

$$
3^{2}-1=8 \quad \therefore \text { divisible by } \varepsilon
$$

let statemat be true for $n=k$

$$
\therefore \quad 3^{2 k}-1=8 \mathrm{~m}
$$

Need to show true for $n=k+1$

$$
\begin{aligned}
3^{2(k+1)}-1 & =3^{2 k+2}-1 \\
& =3^{2 k} \cdot 3^{2}-1 \\
& =3^{2 k} \cdot 9-1 \\
& =3^{2 k} \cdot 9-9+8 \\
& =9\left(3^{2 k}-1\right)+8 \\
& =9 \cdot 8 m+8 \\
& =8(9 m+1)
\end{aligned}
$$

\therefore divisible by 8
Sivice true for $n=1$ then must be true for $n=H 1=2$ then $n=2+1=3 \quad \therefore$ true for all n $n \geqslant 1$

$$
\text { (c) } \begin{aligned}
f^{\prime}(x) & =1-\frac{2}{x} \\
f(x) & =\int 1-\frac{2}{x} d x \\
& =x-2 \ln x+c \\
y=-2 \text { when } x & =e \\
-2 & =e-2 \ln e+c \\
c & =e
\end{aligned}
$$

$$
\therefore f(x)=x-2 \ln x+2
$$

Question 5
(a)

$$
\begin{aligned}
P(x) & =x^{3}+a x^{2}-3 x+5 \\
P(-2) & =11 \\
P(-2) & =(-2)^{3}+a(-2)^{2}-3 \cdot-2+5 \\
= & -8+4 a+6+5 \\
& =3+4 a \\
\therefore 3+4 a & =11 \\
4 a & =8 \\
a & =2
\end{aligned}
$$

bx

$$
\begin{aligned}
2 \cos x & =-\sqrt{3} \\
\cos x & =-\frac{\sqrt{3}}{2} \\
x & =\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)
\end{aligned}
$$

general solution

$$
x=2 n \pi \pm \cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)
$$

\Rightarrow

$D \hat{E F}=B \hat{E C}$ (vertically op. angles)
$\hat{B C E}=\widehat{E D F}$ (alternate angles on parallel, lines)
$F E=B E$ (given)

$$
\therefore \triangle D E F \equiv \triangle C \subset B \quad(A A S)
$$

(ii) $D E=E C$ (corresponding sides in congivent Δs)
$\therefore E$ is midpoint of $D C$

$$
\therefore D E=\frac{1}{2} D C
$$

(d)

$$
\begin{aligned}
& y=\frac{x}{\operatorname{cosec} x} \\
& y=x \sin x \\
& y^{\prime}=\sin x+x \cos x
\end{aligned}
$$

$$
\text { (e) } \begin{aligned}
& \log \left(\frac{p}{q}\right)=3 \quad \log \left(\frac{q}{r}\right)=1.6 \\
& \frac{p}{r}=\frac{p}{q} \cdot \frac{q}{r} \\
& \therefore \log \left(\frac{p}{r}\right)=\log \left(\frac{p}{q} \cdot \frac{q}{r}\right) \\
&=\log \frac{p}{q}+\log \frac{q}{r} \\
&=3+1.6 \\
&=4.6
\end{aligned}
$$

Question 6 .
(a)

Questron

$$
\begin{array}{l}f(x)=x-2 \sin x \\ f^{\prime}(x)=1-2 \cos x\end{array}
$$

(c) $\quad \frac{d V}{d t}=? \quad r=5 \frac{d r}{d t}=3$

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

$$
V=\frac{4}{3} \pi r^{3}
$$

$f(1-7)=-0.2833$

$$
\frac{d V^{5}}{d r}=4 \pi r^{2}
$$

$$
\begin{aligned}
& =1.7-\frac{-0.2833}{1.2577} \\
& =1.9253
\end{aligned}
$$

(b) $x^{3}+6 x^{2}-x-30=0$

$$
\begin{aligned}
& -, \beta, \alpha+\beta \\
& \alpha+\beta+\gamma=\frac{-b}{a}
\end{aligned}
$$

$\alpha+\beta+\alpha+\beta=-6$
$2 \alpha+2 \beta=-6$
$\alpha+\beta=-3$
$\alpha=-3-\beta$
$\alpha \beta+\alpha \cdot \gamma+\beta \gamma=\frac{c}{a}$
$\alpha \beta+\alpha(\alpha+\beta)+\beta(\alpha+\beta)=-1$
$\alpha \beta+(\alpha+\beta)^{2}=-1$
$\alpha \beta+q=-1$
$\alpha \beta=-10$
$\alpha \beta \gamma=-\frac{d}{a} \quad \therefore \beta=-5,2$
$\alpha \beta(\alpha+\beta)=30$
$\therefore \alpha, \beta, \gamma$
$-5,2,-3$
$\beta^{2}+3 \beta-10=0$
$(\beta+5)(\beta-2)=0$
(d)

$\begin{array}{rlr}\operatorname{ta} 20=\frac{h}{P A} & \text { te } 35=\frac{h}{Q A} \\ P A=\frac{h}{\tan 20} & Q A=\frac{h}{\tan 35} \mathrm{C}\end{array}$
$P A^{2}+Q A^{2}=40^{2}$
$\left(\frac{h}{t-20}\right)^{2}+\left(\frac{h}{t-35}\right)^{2}=1600$
$h^{2}\left(\frac{1}{t^{2} 20}+\frac{1}{\tan ^{2} 35}\right)=1600$
$h=\sqrt{\frac{1600}{\frac{1}{t^{2} 20}+\frac{1}{t^{2} 35}}}$
$=\sqrt{166.87}$
$=12.9 \mathrm{~m}$.

Question 7
(a) $x=3 \cos (2 t+5)$
(i)

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{n} \quad \text { amplitiole }=3 \\
& =\frac{2 \pi}{2} \\
& =\pi
\end{aligned}
$$

ii)

$$
\begin{aligned}
& x=3 \cos (2 t+5) \\
& \dot{x}=-6 \sin (2 t+5) \\
& \ddot{x}=-12 \cos (2 t+5)
\end{aligned}
$$

$\max \cos (2 t+5)=-1$

$$
\dot{x}=12 \mathrm{~m} / \mathrm{s}^{2}
$$

(ii) $\quad x=2$

$$
\begin{gathered}
3 \cos (2 t+5)=2 \\
\cos (2 t+5)=\frac{2}{3} \\
2 t+5=5.44 \\
2 t=.44 \\
t=0.22 \\
\dot{x}=-6 \sin (2 \times 0.22+5) \\
=-6 \sin 5.44 \\
=4.47 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

b) $x=V \cos \theta \cdot t \quad y=V \sin \theta \cdot t-s t^{2}$

$$
\text { i) } t=2 \quad y=10 \quad t=2 \quad x=12
$$

$$
12=2 V \cos \theta
$$

$$
\omega=2 \sqrt{\sin \theta-20}
$$

$$
30=2 v \sin \theta
$$

$$
\frac{2 v \sin \theta}{2 v \cos \theta}=\frac{30}{12}
$$

$$
\begin{gathered}
V \cos \theta=6 \quad V^{2} \cos ^{2} v=36 \\
V \sin \theta=15 \quad V^{2} \sin ^{2} \theta=225 \\
V^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=261 \\
V^{2}=261 \\
V=\sqrt{261} \\
\\
=16.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

(ii)

$$
\begin{array}{cc}
\ddot{y}=-10 & y=\int-10 t+\sqrt{\sin \theta} \\
\dot{y}=f-10 d t & y=-5 t^{2}+\sqrt{\sin \theta t} \\
\dot{y}=-10 t+c & y=0 \quad t=0 \quad c=0 \\
y=\sqrt{s}=\sigma \quad t=0 & \therefore y=-5 t^{2}+\sqrt{\sin \theta} \\
\therefore \dot{y}=-10 t+\sqrt{2}-68^{\circ} 12^{\prime}
\end{array}
$$

$\dot{y}=0$ for max height

$$
\begin{aligned}
& -10 t+\sqrt{5 i 0}=0 \\
& t=\frac{\sqrt{5}=0}{10} \\
& y=V \sin 0 . t-5 t^{2} \\
& =V \sin \theta \cdot \frac{V 5 \pi \theta}{10}-5\left(\frac{\sqrt{\sin \theta}}{10}\right)^{2} \\
& =v^{2} \frac{\sin ^{2} \theta}{10}-\frac{v^{2} s \dot{s}^{2} 0}{100} \\
& =\frac{\sqrt{2}^{2} \sin ^{2} \theta}{2 \theta}
\end{aligned}
$$

but $V=16.16 \quad 0=68^{\circ} 12^{\prime}$

$$
\therefore y=\frac{(16 \cdot 16)^{2} 5 i^{2} 68^{\circ} / 2^{\prime}}{20}
$$

$$
=11.25 \mathrm{~m}
$$

(iii)

$$
\begin{aligned}
\text { the of flight } & =2 t \\
& =\frac{V / 2}{5}
\end{aligned}
$$

range

$$
\begin{aligned}
& x=V \cos \theta \cdot t \\
&=V \cos \theta \cdot \frac{V s-\theta}{5} \\
&=V^{2} \cos \theta \cdot \operatorname{si} \theta \\
&-17.99 \approx 18 \mathrm{ma}
\end{aligned}
$$

