St George Girls High School

Trial Higher School Certificate Examination

2015

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen.
- Write your student number on each booklet.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.

Total Marks - 70

Section I – Pages 2 – 5 10 marks

- Attempt Questions 1 10.
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II – Pages 6 – 11 60 marks

- Attempt Questions 11 14.
- Allow about 1 hour 45 minutes for this section.
- Begin each question in a new booklet.
- Show all necessary working in Questions 11 14.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

2.

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1. In the diagram, AB is a diameter of the circle and MN is tangent to the circle at C. $\angle CAB = 35^{\circ}$. What is the size of $\angle MCA$?

Section I (cont'd)

3. Find $f^{-1}(x)$, given $f(x) = \frac{3x-3}{x-2}$

(A)
$$f^{-1}(x) = \frac{3y-3}{x-2}$$

(B) $f^{-1}(x) = \frac{2x-3}{x-3}$
(C) $f^{-1}(x) = \frac{x-2}{3x-3}$
(D) $f^{-1}(x) = \frac{3-3x}{2-x}$

4. Which diagram best represents $y = -x(2-x)^3(x+1)^2$?

Section I (cont'd)

- 5. Find *k* given x 2 is a factor of $P(x) = x^3 3x^2 + kx + 12$
 - (A) k = -4
 - (B) k = 0
 - (C) k = 2
 - (D) k = 4
- 6. The acute angle between $l_1: 2x y 3$ and $l_2: y = 3x + 7$ is closest to:
 - (A) 15°
 - (B) 8°
 - (C) 82°
 - (D) 45°
- 7. $\int 2\cos^2 x \, dx$ (A) $\sin x \cos x + x + C$ (B) $-\frac{1}{2}\sin 2x + x + C$ (C) $\frac{2}{3}\cos^3 x + C$ (D) $\frac{-2}{\sqrt{1-x^2}} + C$
- 8. The velocity of a particle at a position x is $\dot{x} = 2e^{-\frac{x}{2}}$ metres per second. Calculate the particle's acceleration when its displacement is -2 metres.
 - (A) $-e m/s^2$
 - (B) $-\frac{4}{e^2}$ m/s²
 - (C) $-2e^2 \text{ m/s}^2$
 - (D) $e^2 m/s^2$

Section I (cont'd)

9. Find the exact value of sin 15°

(A)
$$\frac{1}{3\sqrt{2}}$$

(B) $\frac{2-\sqrt{2}}{2\sqrt{2}}$
(C) $2(\sqrt{6}-\sqrt{2})$
(D) $\frac{\sqrt{6}-\sqrt{2}}{4}$

10. Given the curve below, Eden intends to use Newtons Method to find an approximation to the root shown. Which initial estimate will not produce a good approximation with this method?

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet		
a)	Solve the inequality $\frac{1}{ x-1 } > \frac{1}{2}$	2
b)	Sketch the intersection of $y \ge x - 1$ and $y < 1$	3
c)	Given $A(-2,3)$ and $B(10,11)$, find the coordinates of the point P which divides the interval AB in the ratio 3:1.	2
d)	You are given 3.6 as an approximate root of the equation $x^3 - 50$. Use one application of Newton's method to find a better approximation. (to 2 decimal places)	2

e) If $y = \sin(\ln x)$, find

(i)
$$\frac{dy}{dx}$$
 (ii) $\frac{d^2y}{dx^2}$ 1,2

Question 11 (continued)

f) BC is tangent to the circle at B. Find the value of x, giving reasons.

Marks

3

a) Solve $3\sin x + 4\cos x = 2.5$, $0 \le x \le 2\pi$

The tangents from *Q* touch the circle at *A* and *B*. *PC* and *PQ* are straight lines $\angle BAQ = \alpha$.

- (iii) Show that $\angle BCD = 2\alpha$.
- (iv) Show that *PQBC* is a cyclic quadrilateral.

2

3

Question 12 (continued)

c) The rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed by the differential equation

$$\frac{dT}{dt} = k(T - A)$$

where t is time in minutes and k is constant.

- (i) Show that $T = A + Ce^{kt}$ where C is a constant, is a solution of the differential equation.
- (ii) A glass of milk warms from $4^{\circ}C$ to $8^{\circ}C$ in 15 minutes. The air temperature is $25^{\circ}C$. Find the temperature of the glass of milk after a further 45 minutes, correct to the nearest degree.
- (iii) With reference to the equation for T, explain the behaviour of T as t becomes very large.

1

3

1

Question 13 (15 marks) Use a SEPARATE writing booklet				
a)	Eval	uate $\int_0^1 x^3 \left(\sqrt{x^4 + 1} \right) dx$ using the substitution $u = x^4 + 1$.	3	
b)	(i)	By considering its second derivative, show that $y = e^x - 4x$ is always concave up.	2	
	(ii)	Use the trapezoidal rule with 3 function values to find an approximation to $\int_{3}^{5} (e^{x} - 4x) dx$, correct to 4 significant figures.	3	
	(iii)	Is this approximation too large or too small? Justify your answer?	1	
c)	3	· 个		

A projectile is launched from the top of a 50 m high building with an initial speed of 40 m/s. It is launched at an angle of α° above the horizontal, as in the diagram. Acceleration due to gravity is 10 m/s^{2.}

- (i) Given that $\frac{d^2x}{dt^2} = 0$ and $\frac{d^2y}{dt^2} = -10$, show that $x = 40t \cos \alpha$ and $y = -5t^2 + 40t \sin \alpha + 50$ where x and y are the horizontal and vertical displacements of the projectile in metres from 0 at time t seconds after launching.
- (ii) The projectile lands on the ground 200 metres from the base of the building. Find the two possible values of α . Give your answers to the nearest degree.

Question 14 (15 marks) Use a SEPARATE writing booklet
 Marks

 a)
$$P(2ap, ap^2)$$
 and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$.
If $p + q = 4$, find the locus of M , the mid point of PQ .
 3

 b) Given that x is a positive integer, prove by the method of mathematical induction that $(1 + x)^n - 1$ is divisible by x for all positive integers $n \ge 1$.
 3

 c) The velocity $v ms^{-1}$ of a particle moving on a horizontal line is given by $v^2 = 252 + 216x - 36x^2$
 1

 (i) Show that the particle is performing simple harmonic motion.
 1

 (ii) Find the centre of the motion.
 1

 (iii) Find the period of the motion.
 1

 (iv) Find the particle is at one of the particle.
 1

 (vi) Initially the particle is at one of the extreme points of the motion.
 2

 (vii) Find its average speed during the first $\frac{13\pi}{12}$ seconds.
 2

YR 12 2015 EXT 1 TRIAL HSC SOLL SECTION 1 /mcA=55° 1 A C R 2) y = sin - x For given graph. -1 = x < 1 - E2 < y = E2 $-3 \le x \le 3$ $-2\pi \leq \gamma \leq +2\pi$ $S_0 - 1 \leq \frac{x}{3} \leq 1$ 7 = s ~ × 3 . D 3) If $y = \frac{3x-3}{x-2}$ $x = \frac{3\gamma - 3}{\gamma - 2}$ inverse function is xy - 2x = 3y - 3 y (n-3) = 2n-3 $Y = \frac{2x-3}{x-3}$ 3n-3 So for f (n) = $f^{-1}(x) = \frac{\pi - 2}{2x - 3}$ ·· 12

TIONS

4)
$$y = -x (2-x)^{3} (x+i)^{2}$$

Single 200 of x=0 All
Double 200 of x=1 A,
Triple 200 of x=2 A,
 $\therefore A$
 $= 5$, $P(2) = 0$
 $2^{3} - 3(2)^{2} + k(2) + i2 = 0$
 $2^{3} - 3(2)^{2} + k(2) + i2 = 0$
 $2^{3} - 3(2)^{2} + k(2) + i2 = 0$
 $2^{4} = -8$
 $k = -7$
 $= \frac{3}{1+3x^{2}}$
 $= \frac{1}{7}$
 $\therefore B$
 7) $2\int \cos^{2} x dx$
 $= 2\int [\frac{1}{2}(1 + \cos 2\pi)] dx$
 $= \chi + \frac{1}{2}\sin 2\pi + c$
 $= \chi + \sin x \cos \pi + c$
 A

20 $\dot{x} = \frac{d(\frac{1}{2}v^2)}{d(\frac{1}{2}v^2)}$ $=\frac{d(\frac{1}{2}.4e^{-n})}{dn}$ $=-2e^{-x}$ n=-2 $\dot{x} = -2e^2$ at $Sin 15^{\circ} = sin (45^{\circ} - 30^{\circ})$ = $sin 45^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 45^{\circ}$ 9) = J2 × J3 - 2 × J2 $= \frac{\sqrt{3}-1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{6}-\sqrt{2}}{4}$ as tangent nowhere •۱) $x_o = a$ re=C rear

QuestionII		
XI trial 2015 Question	11 (15 marks)	Consents
Method 1		Methods
$a) \frac{1}{2} \frac{1}{2}$	2 martes	Students using this
x-1 z		method were generally
$NB \approx \pm 1.$	2 mK.	successful, although
Methodi: x == 1		some lost marks for
2 7 1 - 1		not stating z = 1.
		••••••••••••••••••••••••••••••••••••••
	· · · · ·	a mar an
= 1 (x z = 1	··	· · · · · · · · · · · · · · · · · · ·
OR	на страна 1993 г. – Прила Страна 1993 г. – Прила Страна (1994)	Mernodz (Cases)
Methodz	·	Students tried to multiply
26 4 1		by (x-1) ² on both sides
nc<1) is negative	if x-1 is positive x71	as we generally do with Inequalities of the form
$\frac{1}{ \mathbf{x}-\mathbf{y} } > \frac{1}{2}$	$\frac{1}{ x-1 } > \frac{1}{2}$	$\frac{1}{5c-1}$ 7 $\frac{1}{2}$
$-\frac{1}{(\pi -1)} \frac{1}{2}$	$\frac{1}{2\epsilon-1}$ $\frac{1}{2}$	Many Found it difficult dealing with (x-1)2 and
	2 7 x - 1	looking at cases
$1-\chi/2$	3.7x	although some did this
2 71-2 (1-270)	76 < 3	success fully.
	1. x >1 and XL	3
JC71 endx 20 < 1	1 < 2 < 3	and a second
$-1 < \times < 1$		Method3
Combining get		if taking reciprocals,
$- <\chi< $	1<2<3	If a7b70 then acto
	···· · · · · · · · · · · · · · · · · ·	NB inequalities are
$(M_0 H_{0.0} I_2 I_1 I_1 I_2 I_2 I_2 I_2 I_1 I_1 I_2 I_2 I_2 I_2 I_2 I_2 I_2 I_2 I_2 I_2$		Ceversed.
-2 < x - 1 < 2	taking recipiocals	
-14x 43 out 1	• • • •	
Method 4: Graphical method - n	nally extension 2	students.

(e)
$$y = \sin \ln(x)$$

(i) $\frac{dy}{dz} = \frac{\cos(\ln x) \cdot \frac{1}{3\ell}}{2\ell}$ (Insite Well done
(i) $\frac{d^2y}{dz^2} = \frac{\sqrt{u^4 - u^{\sqrt{4}}}}{\sqrt{2}}$ $u = \cos(\ln x)$
 $u = \cos(\ln x)$
 $u = \cos(\ln x)$
 $u' = -\frac{\sin(\ln x)}{2\ell}$ $v' = 1$
 $= -\frac{\sin(\ln x) - \cos(\ln x)}{2\ell}$ (i) $v' = 1$
 $= -\frac{\sin(\ln x) - \cos(\ln x)}{2\ell}$ (j) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (j) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k) $\sigma t \text{ Simplified}$
 $= -\frac{5\sin(\ln x) + \cos(\ln x)}{2\ell^2}$ (k)

Method 1: ZEBC = ZEAB angle in the alternate segment. IC+40° = 100° DL = 60° Method 2:

LBED = LCBD angle in the alternate segment. LBED = 40° LEDB + LBAE = 180° opposite angles of a cyclic quadrilateral are supplementary LEDB + 100 = 180° LEDB + 80°

76 + 40 + 80°= 180° angle sum of ABED ()

76=60

Question 13

Solution	Comment
a) $\int x^3 \sqrt{2t^4 + 1} dx$	
\checkmark 8	
$ a = a^{4} + a $	
Let $u = \pi^{3} dx$	
$du = \chi^3 dx$	an a
4	
when $n=1$, $u=2$	
x=0, u=1	
<u> </u>	• 1 mark for correct
$\int_{0}^{0} \pi^{2} \sqrt{\pi^{4} + 1} dx = \int_{0}^{-1} \sqrt{\alpha} \cdot \frac{1}{4} du$	substitution and
	change of limits
$=\frac{1}{4}\int_{-\infty}^{\infty}u^{2}du$	
$1 \int 2^{\frac{3}{2}} 7^2$	= 1 and a second
$=\frac{1}{4}\begin{bmatrix}\frac{1}{3}&1\\\frac{1}{3}\end{bmatrix}$	interration
$-1 \int 2^{\frac{3}{2}} - 1 \int 2^{\frac{3}{2}}$	
6]	
$= \frac{1}{2} \left(2 \sqrt{2} - 1 \right)$	
6 \	{.1 mark for answer
$=\frac{12}{3}-\frac{1}{6}$	
· · · · · · · · · · · · · · · · · · ·	$\left[\begin{array}{c} \\ 1 \end{array} \right]$
······································	(
· · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
···· ··· ··· ··· ··· ··· ··· ···	· · · · · · · · · · · · · · · · · · ·

Q13 b) i) $y = e^{x} - 4\pi$ This was answered well. $y' = e^{\chi} - 4$ re 1 mark for derivatives y" = e x as ex > 0 for all values of n • 1 mark for stating e^x >0 and y[#]>0 (2) : y" > o for all 21 So the curve is always concave up. • 1 mark for finding h correctly $\int_{3}^{5} e^{x} - 4x \, dx \doteq \frac{1}{2} \begin{cases} y_{0} + 2xy_{1} + y_{2} \\ y_{0} + 2xy_{1} + y_{2} \end{cases}$ $= \frac{1}{2} \left\{ e^{-12} + 2(e^{4} - 16) + e^{5} - 20 \right\}$ { 1 mark for correctly using trapegoidal rule $=\frac{1}{2}\left\{\frac{8.0855}{2}+2(38.598)+128.413\right\}$ • 1 mark for answer 3 = 106.8 (to 4 sig figs) Method 2 $\int_{3}^{5/(e^{x}-4x)} dx$ $\frac{2}{2}\frac{4-3}{2}(e^{4}-16+e^{3}-12)+\frac{5-4}{2}(e^{5}-20+e^{4}-16)$ $= \frac{1}{2} \left(e^{4} + e^{3} - 28 \right) + \frac{1}{2} \left(e^{5} + e^{4} - 36 \right)$ = 106.8

Q13 b) ui) It is too large as the trapezium area is larger than the area under the curve as the function concaves up for all \mathcal{X} and f(3) < f(5) so the function has H 1 mark shape For those students who only said it was too large without a reason, I awarded only 1/2 math. Note: Examiners comment for 13 b 11) The approximation cabe found two ways? Method I Using the formula for the trapezoidal rule for n-equal submitervals $\frac{h}{2} \{ y_0 + 2y_1 + y_2 \}$ yo yi y2 Method 2: Using one application of trapezoidal rule twice Some Students who used Method I, did not find h concert correctly and confused the rule by multiply y2 by 2 justicad of y1.

Alternative solution to This method was c) u)From (1) $t = -\frac{\chi}{40\cos \alpha}$ not the optimal method. It allowed for more errors Sub in (2) $y = -5\left(\frac{\chi}{40\cos\alpha}\right)^{2} + 40\left(\frac{\chi}{40\cos\alpha}\right)\sin\alpha + 50$ $= -5\pi^{2} + \chi + 50$ $1600\cos^{2}\alpha$ 1 mark was awarded here, when $t = \frac{x}{40\cos x}$ was $= -x^2 \sec^2 \alpha + x \tan \alpha + 50$ 320substituded in (1) $\frac{-2\chi^{2}(1+\tan^{2}x)+\chi\tan x+50}{320}$ when y = 0 1 mark was $0 = -\pi^2 - \pi^2 + 4\pi^2 \chi + 320\pi + 4\pi \chi + 16000$ was awarded when y=0, x=200was subst $0 = \chi^{2} + \chi^{2} \tan^{2} \chi - 320 \pi \tan 4 - 16000$ (No norths were $0 = \chi^{2} + \tan^{2} d = 320 \times \tan d + \chi^{2} - 16000$ but $\chi = 200$ awarded when students took $0 = 40000 \tan^2 \alpha - 64000 \tan \alpha + 24000$ = 5 \tan^2 \alpha - 8 \tan \alpha - 3 y = -50). Then as per method ! 1 mark for correct angles

QUESTION 12

$$\frac{SOLUTION}{(2) \text{ let } R \sin(k+4) = 3 \sin(k+4 \cos k - -(1))} \cdot done students}$$

$$R \sin(k+4) = 3 \sin(k+4 \cos k) \cdot (1 + 4 \cos k$$

	COMMENTS.
(c) $\frac{dT}{dt} = k(T-A)$	
(i) $S_{f}T = A + Ce^{kt}$ () then $\frac{dT}{dt} = Cke^{kt}$ $= k \cdot Ce^{kt}$ = k (T-A) from ()	• Generally well done - no need to DERIVE The result by integration.
(ii) $T = A + Ce^{kt}$ $A = 25$ at t=0, T = 4 $\therefore 4 = 25 + Ce^{\circ}$ $\therefore C = -21$ $\therefore T = 25 - 2ie^{kt}$ $t=157 \Rightarrow 8 = 25 - 2ie^{15k}$ $= e^{15k} = \frac{17}{21}$	 Some students were unable to begin This question, others were confused, thought that t = 15 when T=4 Find C correctly IMARK Find k correctly I MARK
$\therefore k = \frac{ln(\overline{ai})}{15} - 2$ at t=60 T = 25 - 21e ^{60k} = 15.98°C (2 dec.pl) = 16°C to reasest degree	. Use of t = 45 scored no mark.
(iii) $T = 25 - 21e^{kt}$ From (2) $k < 0$ Hence at $t \rightarrow T \rightarrow 25$ as $e^{kt} \rightarrow 0$	• Some students thought that $T \rightarrow \infty$ as $t \rightarrow \infty$ because they failed to see that $k < 0$.

Westion 14
a)
$$M = \left(\frac{2ap+2aq}{2}, \frac{ap^2+aq^2}{2}\right)^{1} mark$$

 $\therefore x = 2ap+2aq$
 $= a(p+q)$
 $= 4q$
 \therefore The lacus of M is
the vertical line x=4q
b) Prove true for n=1
 $(1+x)^{1} - 1 = 1 + x - 1$
 $= x$
 $which is divisible$
 $fx = true for n=k$
That is,
 $(1+x)^{K} - 1 = Mx$,
 $where Misan$
integer
 $M = \frac{2ap+2aq}{2}$
 $mark for correctly
 $y = a(p+q)$
 $y = a(p+q)$$

frove true Tor N=K+1 That is $(|-x)^{k-1} - |$ is divisible by x $\left(\left|\tau x\right)^{k+1}$ $-\left(-\right) = \left(\left(+x\right)^{k}\left(1+x\right) - \left(1+x\right)^{k}\right)$ $= \left(1 - 7C\right)^{K} + 7C\left(1 + 7C\right)^{K} - 1$ $= \infty \left(1 + 3 c \right)^{K} - \left(\left(+ x \right)^{K} - 1 \right)$ I mark for correctly $= \chi (1+\chi)^{k} + M_{\lambda}c$ using your assumption. by assumption $= x \left(\left(\left(+ x \right)^{k} + M \right) \right)$ which is divisible by ... the statement is thre for n=k+1 if it is thre for I mark for reducing n=kto something obviously divisible by x, and It is true for 1, so it is true for 2, and therefore for concluding with true for all n. an appropriate statement.

11)
$$x = sm$$

11) Extremes when $v=0$
 $36x^2 - 216x - 252 = 0$
 $x^2 - 6x - 7 = 0$
 $(x-7)(x+1) = 0$
 $\therefore x=7 \text{ or } x=-1$
 $4/40 \text{ plitude} = \frac{7--1}{2}$
 $= 4\pi$
 $= \frac{2}{10}$
 $= \frac{2}{10}$
 $\frac{-2\pi}{6}$
 $= \frac{2\pi}{3} \text{ s}$
 1 mark
 2 mark
 3 mark

when
$$t = \frac{12}{12}$$
,
 $x = 3 + 4\cos\left(6x\frac{13\pi}{12}\right)$
 $= 3 + 4\cos\left(\frac{13\pi}{2}\right)$
 $\frac{13\pi}{12} - \frac{\pi}{3} = \frac{12}{4}$
The particle has completed of periodicity -
 $= 3\frac{1}{4}$
The particle has completed speech without
 $3\frac{1}{5}$ oscillations
 $1 \text{ oscillation is } 4 \times \text{ amplitude}$
 $= 16m$
 $\therefore \text{ total clistance } = 3\frac{1}{5} \times 16$
 $= 52m$ I mark
Avorage speed $= \frac{\text{clistance}}{\pi me}$
 $= \frac{52}{13\pi}$
 $= \frac{48}{\pi} \text{ ms}^{-1}$ I mark