\qquad

St George Girls High School

Trial Higher School Certificate Examination

2015

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using blue or black pen.
- Write your student number on each booklet.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.

Total Marks - 70
Section I - Pages 2-5
10 marks

- Attempt Questions 1-10.
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II - Pages 6-11
60 marks

- Attempt Questions 11-14.
- Allow about 1 hour 45 minutes for this section.
- Begin each question in a new booklet.
- Show all necessary working in Questions 11-14.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. In the diagram, $A B$ is a diameter of the circle and $M N$ is tangent to the circle at $C . \angle C A B=35^{\circ}$. What is the size of $\angle M C A$?

2. Which function is graphed below?

(A) $2 \pi \sin 3 x$
(B) $2 \pi \sin ^{-1} \frac{1}{3} x$
(C) $4 \sin ^{-1} 3 x$
(D) $4 \sin ^{-1} \frac{1}{3} x$

Section I (cont'd)

3. Find $f^{-1}(x)$, given $f(x)=\frac{3 x-3}{x-2}$
(A) $f^{-1}(x)=\frac{3 y-3}{x-2}$
(B) $f^{-1}(x)=\frac{2 x-3}{x-3}$
(C) $f^{-1}(x)=\frac{x-2}{3 x-3}$
(D) $f^{-1}(x)=\frac{3-3 x}{2-x}$
4. Which diagram best represents $y=-x(2-x)^{3}(x+1)^{2}$?
(A)

(B)

(C)
(D)

Section I (cont'd)

5. Find k given $x-2$ is a factor of $P(x)=x^{3}-3 x^{2}+k x+12$
(A) $k=-4$
(B) $k=0$
(C) $k=2$
(D) $k=4$
6. The acute angle between $l_{1}: 2 x-y-3$ and $l_{2}: y=3 x+7$ is closest to:
(A) 15°
(B) 8°
(C) 82°
(D) 45°
7. $\int 2 \cos ^{2} x d x$
(A) $\sin x \cos x+x+C$
(B) $-\frac{1}{2} \sin 2 x+x+C$
(C) $\frac{2}{3} \cos ^{3} x+C$
(D) $\frac{-2}{\sqrt{1-x^{2}}}+C$
8. The velocity of a particle at a position x is $\dot{x}=2 e^{-\frac{x}{2}}$ metres per second. Calculate the particle's acceleration when its displacement is -2 metres.
(A) $-e \mathrm{~m} / \mathrm{s}^{2}$
(B) $-\frac{4}{e^{2}} \mathrm{~m} / \mathrm{s}^{2}$
(C) $-2 e^{2} \mathrm{~m} / \mathrm{s}^{2}$
(D) $e^{2} \mathrm{~m} / \mathrm{s}^{2}$

Section I (cont'd)

9. Find the exact value of $\sin 15^{\circ}$
(A) $\frac{1}{3 \sqrt{2}}$
(B) $\frac{2-\sqrt{2}}{2 \sqrt{2}}$
(C) $2(\sqrt{6}-\sqrt{2})$
(D) $\frac{\sqrt{6}-\sqrt{2}}{4}$
10. Given the curve below, Eden intends to use Newtons Method to find an approximation to the root shown. Which initial estimate will not produce a good approximation with this method?

(A) $\quad x_{0}=a$
(B) $\quad x_{0}=b$
(C) $\quad x_{0}=c$
(D) $\quad x_{\circ}=d$

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hours 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
a) Solve the inequality $\frac{1}{|x-1|}>\frac{1}{2}$
b) Sketch the intersection of $y \geq|x|-1$ and $y<1$
c) Given $A(-2,3)$ and $B(10,11)$, find the coordinates of the point P which divides the interval $A B$ in the ratio $3: 1$.
d) You are given 3.6 as an approximate root of the equation $x^{3}-50$.

Use one application of Newton's method to find a better approximation. (to 2 decimal places)
e) If $y=\sin (\ln x)$, find
(i) $\frac{d y}{d x}$
(ii) $\frac{d^{2} y}{d x^{2}}$

Question 11 (continued)

f) $B C$ is tangent to the circle at B. Find the value of x, giving reasons.

Question 12 (15 marks) Use a SEPARATE writing booklet
a) Solve $3 \sin x+4 \cos x=2.5,0 \leq x \leq 2 \pi$
b)

The tangents from Q touch the circle at A and $B . P C$ and $P Q$ are straight lines $\angle B A Q=\alpha$.
(i) Copy or trace the diagram into your writing booklet.
(ii) Given $P D=5 \mathrm{~cm}$ and $D C=7 \mathrm{~cm}$, calculate the exact length of $A P$.
(iii) Show that $\angle B C D=2 \alpha$.
(iv) Show that $P Q B C$ is a cyclic quadrilateral.

Question 12 (continued)

c) The rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed by the differential equation

$$
\frac{d T}{d t}=k(T-A)
$$

where t is time in minutes and k is constant.
(i) Show that $T=A+C e^{k t}$ where C is a constant, is a solution of the differential equation.
(ii) A glass of milk warms from $4^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ in 15 minutes. The air temperature is $25^{\circ} \mathrm{C}$. Find the temperature of the glass of milk after a further 45 minutes, correct to the nearest degree.
(iii) With reference to the equation for T, explain the behaviour of T as t becomes very large.

Question 13 (15 marks) Use a SEPARATE writing booklet
a) Evaluate $\int_{0}^{1} x^{3}\left(\sqrt{x^{4}+1}\right) d x \quad$ using the substitution $u=x^{4}+1$.
b) (i) By considering its second derivative, show that $y=e^{x}-4 x$ is always concave up.
(ii) Use the trapezoidal rule with 3 function values to find an approximation to $\int_{3}^{5}\left(e^{\boldsymbol{x}}-4 x\right) d x, \quad$ correct to 4 significant figures.
(iii) Is this approximation too large or too small? Justify your answer?

A projectile is launched from the top of a 50 m high building with an initial speed of $40 \mathrm{~m} / \mathrm{s}$. It is launched at an angle of α° above the horizontal, as in the diagram. Acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Given that $\frac{d^{2} x}{d t^{2}}=0$ and $\frac{d^{2} y}{d t^{2}}=-10$, show that $x=40 t \cos \alpha$ and $y=-5 t^{2}+40 t \sin \alpha+50$ where x and y are the horizontal and vertical displacements of the projectile in metres from 0 at time t seconds after launching.
(ii) The projectile lands on the ground 200 metres from the base of the building. Find the two possible values of α. Give your answers to the nearest degree.

Question 14 (15 marks) Use a SEPARATE writing booklet
a) $\quad P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$. If $p+q=4$, find the locus of M, the mid point of $P Q$.
b) Given that x is a positive integer, prove by the method of mathematical induction that $(1+x)^{n}-1$ is divisible by x for all positive integers $n \geq 1$.
c) The velocity $v \mathrm{~ms}^{-1}$ of a particle moving on a horizontal line is given by

$$
v^{2}=252+216 x-36 x^{2}
$$

(i) Show that the particle is performing simple harmonic motion.
(ii) Find the centre of the motion.
(ii) Find the amplitude of the motion.
(iv) Find the period of the motion.
(v) Find the maximum speed of the particle.
(vi) Initially the particle is at one of the extreme points of the motion.

Where will it be when $t=\frac{13 \pi}{12}$ seconds.
(vii) Find its average speed during the first $\frac{13 \pi}{12}$ seconds.

$$
\begin{gathered}
\angle M C A=55^{\circ} \\
\underline{C}
\end{gathered}
$$

2)

$$
\begin{array}{rr}
y=\sin ^{-1} x & \text { For given graph. } \\
-1 \leqslant x \leq 1 & -3 \leq x \leq 3 \\
-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} & -2 \pi \leq y \leq+2 \pi \\
& \text { So }-1 \leq \frac{x}{3} \leq 1 \\
-\frac{\pi}{2} \leq \frac{y}{4} \leq \frac{\pi}{2} \\
\frac{y}{4}=\sin ^{-1} \frac{x}{3} \\
\therefore & D
\end{array}
$$

3) If $y=\frac{3 x-3}{x-2}$
inverse function is $\quad x=\frac{3 y-3}{y-2}$

$$
\begin{aligned}
x y-2 x & =3 y-3 \\
y(x-3) & =2 x-3 \\
y & =\frac{2 x-3}{x-3}
\end{aligned}
$$

So for $f(x)=\frac{3 x-3}{x-2}$

$$
f^{-1}(x)=\frac{x-2}{2 x-3} x \quad \therefore \quad \beta
$$

Trons
4) $y=-x(2-x)^{3}(x+1)^{-2}$
Single zero at $x=0 \quad$ ALL
Double were at $x=-1 \quad A$,
Triple zero at $x=2 \quad A$,

$\therefore \quad A$
5).

$$
\begin{aligned}
& P(2)=0 \\
& 2^{3}-3(2)^{2}+k(2)+12=0 \\
& 8-12+2 k+12=0 \\
& 2 k=-8 \\
& k=-4
\end{aligned}
$$

$$
A
$$

6)

$$
\begin{array}{rlr}
\tan \theta & =\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} & m_{1}=2 \\
& =\frac{3-2}{1+3 \times 2} & \\
& =\frac{1}{7}=3 \\
& \therefore B
\end{array}
$$

7)

$$
\begin{aligned}
& 2 \int \cos ^{2} x d x \\
= & 2 \int\left[\frac{1}{2}(1+\cos 2 x)\right] d x \\
= & \int(1+\cos 2 x) d x \\
= & x+\frac{1}{2} \sin 2 x+c \\
= & x+\sin x \cos x+c
\end{aligned}
$$

A

8)

$$
\begin{aligned}
\dot{x} & =2 e^{-x / 2} \\
\ddot{x} & =\frac{d\left(\frac{1}{2} v^{2}\right)}{d x} \\
& =\frac{d\left(\frac{1}{2} \cdot 4 e^{-x}\right)}{d x} \\
& =-2 e^{-x}
\end{aligned}
$$

at $x=-2$

$$
\ddot{x}=-2 e^{2}
$$

$$
\therefore C
$$

a)

$$
\begin{aligned}
\sin 15^{\circ} & =\sin \left(45^{\circ}-30^{\circ}\right) \\
& =\sin 45^{\circ} \cos 30^{\circ}-\sin 30^{\circ} \cos 45^{\circ} \\
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned} \quad \therefore D
$$

10) $x_{0}=a$ as tangent nowhere near $x=c$

Question II
$x 1$ trial 2015 Question 11 (15 maik)
Method
a) $\frac{1}{|x-1|}>\frac{1}{z}$

NB $\quad x \neq 1$.
Method 1: $\quad x \neq 1$
Since $|x-1|$ is positive

$$
\begin{aligned}
& 2>|x-1| \\
& |x-1|<2 \\
& -2<x-1<2 \quad x \neq 1 \\
& -1<x<3 \quad x \neq 1 \\
& O R
\end{aligned}
$$

Method 2

$$
x \neq 1
$$

If $x-1\}$ is negative

$$
x<1
$$

$$
\frac{1}{|x-1|}>\frac{1}{2}
$$

$$
-\frac{1}{-(x-1)}>\frac{1}{2}
$$

$$
\frac{1}{1-x}>\frac{1}{2}
$$

$2>1-x \quad(1-x>0)$
$x 701$
$\therefore \quad x>-1$ and $x \quad x<1$

$$
\therefore \quad-1<x<1
$$

Combining get

$$
-1<x<1 \text { or } 1<x<3
$$

$$
O R
$$

$$
-1<x<3 \quad x \neq 1
$$

Method 3 $\quad|x-1|<2 \quad x \neq 1 \quad$ taking

$$
\begin{aligned}
& -2<x-1<2 \\
& -1<x<3 \quad x \neq 1
\end{aligned}
$$

Methods
students using this method were generally success (al), although. some lost marks for not stating $x \neq 1$.

Method (Cases)
Students tried to multiply by $(x-1)^{2}$ on bath sides
If $x-1$ is positive as we generally do with inequalities of the form
many found it difficult dealing with $\frac{(x-1)^{2}}{|x-1|}$ and looking at cases although some did this

$$
\begin{aligned}
\therefore & x>1 \text { and } x<3 \\
\therefore & 1<x<3
\end{aligned}
$$

Method
if taking reciprocals, If $a>b>0$ then $\frac{1}{a}<\frac{1}{b}$ $N B$ inequalities are reversed.
$x>1$

$$
\frac{1}{|x-1|}>\frac{1}{2} \quad \frac{1}{x-1}>\frac{1}{2}
$$ success fully.

ink.
-

$$
\frac{1}{x-1}>\frac{1}{2}
$$

$2>x-1$
$3>x$
$x<3$

Comments res ed

Method 4: Graphical method-mainlu extension 2 students.

3 in arks
generally well done in any students did NOT clearly mark the poons $(-2,1)$ and $(2,1)$ with open circles and lost macks. $\left(\frac{i}{2}\right)$

2 marks.

- generally well done
- Girudents who lost marks didn't correctly state ocapply the formula
eg x_{2} and x_{1} were reversed $k: \ell$

$$
\left(\begin{array}{cc}
\frac{k x_{2}+l z_{1}}{k+l} & \frac{k y_{2}+l y_{1}}{k+l}
\end{array}\right)
$$

(1) mise.

2marks.

- generally well done
- Some forgot the formula many
$=3.6-\frac{3 \cdot 6^{3}-50}{3 \cdot(3 \cdot)^{2}}$ (1) reversed the
numerator s denciainato, $=3.69(2 \mathrm{efo})$ (i) in the formula.
(e)

$$
y=\sin \ln (x)
$$

(i) $\frac{d y}{d x}=\cos (\ln x) \cdot \frac{1}{x}$
(1) nat
bel done
(ii)

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{v u^{\prime}-u v^{3}}{v^{2}} \\
& =\frac{-\sin (\ln x)-\cos (\ln x)}{3 c^{2}} \\
& =-\left[\frac{\sin (\ln x)+\cos (\ln x)]}{o c^{2}}\right.
\end{aligned}
$$

$$
u=\cos (\operatorname{in} x)
$$

$$
\begin{aligned}
& u=\cos (\ln x) \\
& u^{\prime}=-\frac{\sin (\ln x)}{x}
\end{aligned} \times \begin{aligned}
& v=x \\
& v^{\prime}=1
\end{aligned}
$$

(i) $\}$

2 marks.

- most mistakes confused u\&V of simplified incorrectly.
(f)

Well done Most used method 2

Method I:
$\angle E B C=\angle E A B$ angle in the alternate segment.

$$
\begin{gathered}
x+40^{\circ}=100^{\circ} \\
x=60^{\circ}
\end{gathered}
$$

Method 2:
$\angle B E D=\angle C B D$ angle in the alternate segment.

$$
\angle B E D=40^{\circ}
$$

$\angle E D B+\angle B A E=180^{\circ}$ opposite angles of a cyclic quadrilateral are supplementary

$$
\begin{aligned}
\angle E D B+100 & =180^{\circ} \\
\angle E D B & =80^{\circ} \\
x+40 & +80^{\circ}=180^{\circ} \text { angie sun of } \triangle B E D \\
x & =60^{\circ}
\end{aligned}
$$

Question 13

$$
\begin{aligned}
\text { Let } u & =x^{4}+1 \\
d u & =4 x^{3} d x . \\
\frac{1}{4} d u & =x^{3} d x
\end{aligned}
$$

when $x=1, u=2$

$$
\begin{aligned}
x=0, u & =1 \\
\int_{1}^{0} x^{3} \sqrt{x^{4}+1} d x & =\int_{1}^{2} \sqrt{u} \cdot \frac{1}{4} d u \\
& =\frac{1}{4} \int_{1}^{2} u^{1 / 2} d u \\
& =\frac{1}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{2} \\
& =\frac{1}{6}\left[2^{3 / 2}-1\right] \\
& =\frac{1}{6}(2 \sqrt{2}-1) \\
& =\frac{\sqrt{2}}{3}-\frac{1}{6}
\end{aligned}
$$

a) $\int_{0}^{1} x^{3} \sqrt{x^{4}+1} d x$

Comment

- 1 mark for correct substitution and change of limits
- 1 man -correct. integration
$\int .1$ mark for answer

Q13
b)

$$
\text { i) } \begin{aligned}
y & =e^{x}-4 x \\
y^{\prime} & =e^{x}-4 \\
y^{\prime \prime} & =e^{x}
\end{aligned}
$$

as $e^{x}>0$ for all values of x
$\therefore y^{\prime \prime}>0$ for all x
So the curve is always concave up.
ii)

$$
\begin{aligned}
\int_{3}^{5} e^{x}-4 x d x & =\frac{1}{2}\left\{y_{0}+2 x y_{1}+y_{2}\right\} \\
& \left.=\frac{1}{2}\left\{e^{3}-12+2\left(e^{4}-16\right)+e^{r}-20\right)\right\} \\
& =\frac{1}{2}\{8.0855+2(38.598)+128.413\} \\
& =106.8 \quad \text { (to } 4 \text { sig figs) }
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& \int_{3}^{5}\left(e^{x}-4 x\right) d x \\
= & \frac{4-3}{2}\left(e^{4}-16+e^{3}-12\right)+\frac{5-4}{2}\left(e^{5}-20+e^{4}-16\right) \\
= & \frac{1}{2}\left(e^{4}+e^{3}-28\right)+\frac{1}{2}\left(e^{5}+e^{4}-36\right) \\
= & 106.8
\end{aligned}
$$

This was ansuered well.
a 1 mark for derivatives

- 1 mark for stating $e^{x}>0$ and $y^{\prime \prime}>0$ (2)
- 1 nark for finduy h correctly
$\left\{\begin{array}{l}1 \text { makk for correctly } \\ \text { using trapegoidal rule. }\end{array}\right.$
- 1 markfor answer
1
1
- … - -

Q13
b) III) It is too large as the trapezium area is larger than the area under the curve as the
function concaves up for all x and $f(3)<f(5)$ so the function has
shape

Note: For those students who only said it was too large without a reason, I awarded only $1 / 2$ mat.

Examines comment for 13 b II) The approximation found two ways

Method 1 using the formula for the trapezoidal rule for n-equal subintervall

$$
\frac{h}{2}\left\{y_{0}+2 y_{1}+y_{2}\right\}
$$

and
Method 2: Using one application of trapezoidal rule twice.

Some Students wo used Method, did not find h correctly and confused the rule by multiply y_{2} by 2 instead of y_{1}.

Q13
c) i) Initial conditions, $t=0$

Horizontal component

$$
\ddot{x}=0
$$

$$
\dot{x}=c .
$$

when $t=0, \dot{x}=4 \cos \alpha$

$$
\begin{gathered}
\therefore c=40 \cos \alpha \\
\therefore \dot{x}=40 \cos \alpha \\
x=40 t \cos \alpha+c
\end{gathered}
$$

when $t=0, x=0$,

$$
\begin{aligned}
& \therefore c=0 \\
& \therefore x=40 t \cos \alpha
\end{aligned}
$$

Vertical

$$
\begin{aligned}
& \ddot{y}=-10 \\
& \dot{y}=-10 t+6 .
\end{aligned}
$$

when $t=0, \dot{y}=40 \sin \alpha$ $\therefore c=40 \sin \alpha$

$$
\therefore \dot{y}=-10 t+40 \sin \alpha
$$

$$
y=-5 t^{2}+40 t \sin \alpha+c
$$

when $t=0, y=50$

$$
50=c
$$

$\therefore y=-5 t^{2}+40 t \sin \alpha+50$
$=1$ for Initial conditions

- Students were penalised for not finding c.
- 1 for $\dot{x}=\dot{y}$
$\left\{\begin{array}{l}1 \text { to find. } \\ c \text { for } x \text { and }\end{array}\right.$ c for x and
ii) When $x=200, y=0$
using $x=40 t \cos \alpha$

$$
\begin{aligned}
200 & =40 t \cos \alpha \\
t & =\frac{5}{\cos \alpha}
\end{aligned}
$$

sub in t and $y=0 \operatorname{in}(z)$

$$
\begin{aligned}
0 & =-5\left(\frac{5}{\cos \alpha}\right)^{2}+40\left(\frac{5}{\cos \alpha}\right) \sin \alpha+50 \\
& =-125 \sec ^{2} \alpha+200 \tan \alpha+50 \\
& =-125\left(1+\tan ^{2} \alpha\right)+200 \tan \alpha+50 \\
& =-125-125 \tan ^{2} \alpha+200 \tan \alpha+50 \\
& =5 \tan ^{2} \alpha-8 \tan \alpha+3 \\
& =(5 \tan \alpha-3)(\tan \alpha-1)
\end{aligned}
$$

$\tan \alpha=\frac{3}{5}$ or $\tan \alpha=1$
$\alpha=31^{\circ}$ (nearest $\begin{gathered}\text { degree) }\end{gathered} \quad \alpha=45^{\circ}$

1
$s b x=200$ in (1)

1 sub. $y=0$ and t in (i)

1 for correct angles

Alternative solution to
C) 11

From (1)

$$
t=\frac{x}{40 \cos \alpha}
$$

sub in (2)

$$
\begin{aligned}
y & =-5\left(\frac{x}{40 \cos \alpha}\right)^{2}+40\left(\frac{x}{40 \cos \alpha}\right) \sin \alpha+50 \\
& =\frac{-5 x^{2}}{1600 \cos ^{2} \alpha}+x \tan \alpha+50 \\
& =\frac{-x^{2} \sec ^{2} \alpha}{320}+x \tan \alpha+50 \\
& \left.-\frac{-x^{2}\left(1+\tan ^{2} \alpha\right.}{320}\right)+x \tan \alpha+50
\end{aligned}
$$

when $y=0$

$$
\begin{aligned}
& 0=-x^{2}-x^{2} \tan ^{2} \alpha+320 x \tan \alpha+16000 \\
& 0=x^{2}+x^{2} \tan ^{2} \alpha-320 x \tan \alpha-16000
\end{aligned}
$$

$$
0=x^{2} \tan ^{2} \alpha-320 x \tan \alpha+x^{2}-16000
$$

but $x=200$

$$
\begin{aligned}
0 & =40000 \tan ^{2} \alpha-64000 \tan \alpha+24000 \\
& =5 \tan ^{2} \alpha-8 \tan \alpha-3
\end{aligned}
$$

Then as per method I

This method was not the optimal method. It allowed for more errors

1 mark was a warder here, when

$$
t=\pi / 40 \cos \alpha \text { was }
$$

schstituded in (I).

1 mark was was auvaded when $y=0, x=200$ was subst.
(No marks were awarded when students took

$$
y=-50)
$$

1 mark for correct angles.

QUESTION 12

SOLUTION
(a) Let $R \sin (x+\alpha)=3 \sin x+4 \cos x$
$\therefore R \sin x \cos \alpha+R \cos x \sin \alpha$
$=3 \sin x+4 \cos x$.

$$
\begin{aligned}
\therefore R \cos \alpha & =3 \\
R \sin \alpha & =4 \\
\therefore \tan \alpha & =\frac{4}{3} \\
\alpha & =\tan ^{-1}\left(\frac{4}{3}\right) \\
\therefore R \times \frac{3}{5} & =3 \\
R & =5
\end{aligned}
$$

(1)

$$
\begin{aligned}
\Rightarrow 5 \sin (x+\alpha)= & 2.5 \\
\sin (x+\alpha)= & 0.5 \\
\therefore x+\alpha= & \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \ldots \\
\therefore x= & \frac{\pi}{6}-\tan ^{-1}\left(\frac{4}{3}\right), \frac{5 \pi}{6}-\tan ^{-1}\left(\frac{4}{3}\right) \\
& \frac{13 \pi}{6}-\tan ^{-1} \frac{4}{3}, \ldots \\
= & -0.41,1.69,5.88, \ldots
\end{aligned}
$$

(correct to 2 dec. peaces)
BUT $0 \leqslant x \leqslant 2 \pi \Rightarrow x=1.69,5.88$.
OR Mooing t-substitution

$$
\begin{aligned}
3 \sin x+4 \cos x & =2.5 \\
\Rightarrow 3 \cdot \frac{2 t}{1+t^{2}}+4 \cdot \frac{1-t^{2}}{1+t^{2}} & =2.5 \\
\Rightarrow \quad 6 t+4-4 t^{2} & =2.5+2.5 \tau^{2} \\
0 & =6.5 t^{2}-6 t-1.5 \\
i e 13 t^{2}-12 t-3 & =0 \\
\therefore t & =\frac{12 \pm \sqrt{144+156}}{26} \\
& =\frac{12 \pm 10 \sqrt{3}}{26} \\
& =\frac{6 \pm 5 \sqrt{3}}{15}
\end{aligned}
$$

COMMENTS

- Acme students squared both sides but did not check Their solutions.
- 1 MARK for $5 \sin \left(x+\tan ^{-1} \frac{4}{3}\right)=2 \cdot 5$
- Some students. made no mention of radians.
- Laving students missed the solution $x=\frac{13 \pi}{6}-\tan ^{-1}\left(\frac{4}{3}\right)$ and did notrealise that $x=\frac{\pi}{6}-\tan ^{-1}\left(\frac{4}{3}\right)$ was outside the domain . (2 MARKS)

(c) $\frac{d T}{d t}=k(T-A)$
(i) \&f $T=A+C e^{k t}$

Then $\frac{d T}{d t}=c k e^{\text {st }}$

$$
\begin{aligned}
& =k \cdot C e^{k t} \\
& =k(T-A) \text { from }()
\end{aligned}
$$

(ii) $T=A+C e^{k t} \quad A=25$
at $t=0, T=4$

$$
\begin{align*}
& \therefore 4=25+c e^{0} \\
& \therefore c=-21 \\
& \therefore T=25-21 e^{k t} \\
& t=153 \Rightarrow 8=25-21 e^{15 k} \\
&T=8\} \Rightarrow e^{15 k}=\frac{17}{21} \\
& \Rightarrow k=\frac{\ln \left(\frac{17}{21}\right)}{15} \tag{LI 2}
\end{align*}
$$

at $t=60 \quad T=25-21 e^{60 k}$

$$
=15.98^{\circ} \mathrm{C}(2 \text { dec.pe })
$$

$$
=16^{\circ} \mathrm{C} \text { to nearest degree }
$$

$=16^{\circ} \mathrm{C}$ to rearrest degree
(iii) $T=25-21 e^{\text {kt }}$

From (2) $k<0$
Hence af $t \rightarrow T \rightarrow 25$ as $e^{k t} \rightarrow 0$

- Kenewally well done - no need to DERIVE The result by integration.
- Some students were unable to begin this question, others were confused, thought that $t=15$ when $T=4$
- Find C correctly I MARK
- Find k correctly 1 MARK
- Use of $t=45$ scored no mark.
- Some students thought that $T \rightarrow \infty$ as $t \rightarrow \infty$ because They failed to me that $k<0$.

Question IT
a)

$$
\begin{aligned}
\therefore x & =\frac{2 a p+2 a q}{2} \\
& =a(p+q) \\
& =4 a
\end{aligned} \quad \begin{aligned}
& \text { lanark for correctly } \\
& \text { using } p+q=4
\end{aligned}
$$

\therefore The locus of M is the vertical line $x=4 a$
b) Prove true for $n=1$ when $n=1$,

$$
\begin{aligned}
(1+x)^{\prime}-1 & =1+x-1 \\
& =x
\end{aligned}
$$

which is divisible by x
Assume true for $n=k$
That is,

$$
(1+x)^{K}-1=M_{x}
$$

where Misan integer

I mark for correctly proving true for $n=1$ and making the assumption

Trove True tor $n=k+1$
That is
$(1+x)^{k+1}-1$ is divisible by x

$$
\begin{aligned}
(1+x)^{k+1}-1 & =(1+x)^{k}(1+x)-1 \\
& =(1+x)^{k}+x(1+x)^{k}-1 \\
& =x(1+x)^{k}+(1+x)^{k}-1 \\
& =x(1+x)^{k}+M x
\end{aligned}
$$

$$
\begin{array}{ll}
c(1+x)+M x & \text { using your } \\
\text { by assumption assumption. }
\end{array}
$$

$$
=x\left((1+x)^{k}+M\right)
$$

which is divisible by x.
\therefore the statement is true for $n=k+1$ if it is tree for $n=k$.
It is true for 1 , so it is true for 2, and therefore true for all n.

I mark for reducing to something obviash. divisible by x, and for concluding with an appropriate statement.
c)

$$
\text { 1) } \begin{aligned}
v^{2} & =252+216 x-36 x^{2} \\
\frac{1}{2} v^{2} & =126+108 x-18 x^{2} \\
\ddot{x} & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(126+108 x-18 x^{2}\right) \\
& =108-36 x \\
& =-36(x-3)
\end{aligned}
$$

which is of the form

$$
\ddot{x}=-n^{2}\left(x-x_{0}\right)
$$

\therefore the particle is in simple question, and there harmonic motion

OR

$$
\begin{aligned}
v^{2} & =252+216 x-36 x^{2} \\
& =36\left(7+6 x-x^{2}\right) \\
& =36\left(7+9-9+6 x-x^{2}\right) \\
& =36\left[16-\left(x^{2}-6 x+9\right)\right] \\
& =36\left[16-(x-3)^{2}\right]
\end{aligned}
$$

is very little flexibly in the form your answer must take

$$
\left[\begin{array}{l}
36(3-x) \\
\text { worth half monks }
\end{array}\right]
$$

which is of the form

$$
n^{2}\left(a^{2}-\left(x-x_{6}\right)^{2}\right)
$$

\therefore simple harmonic motion
II) $x=s m$
iii) Extremes when $v=0$

$$
\begin{aligned}
& 36 x^{2}-216 x-252=0 \\
& x^{2}-6 x-7=0 \\
&(x-7)(x+1)=0 \\
& \therefore x=7 \text { or } x=-1
\end{aligned}
$$

AMplitude $=\frac{7--1}{2}$

$$
=4 \mathrm{~m}
$$

I mark
iv)

$$
\begin{aligned}
n^{2}=36 & \text { so } n=6 \\
\text { Period } & =\frac{2 \pi}{n} \\
& =\frac{2 \pi}{6} \\
& =\frac{\pi}{3} \mathrm{~s}
\end{aligned}
$$

I mark
v) Maximum speed at centre ie when $x=3$

$$
\begin{aligned}
v^{2} & =252+648-324 \\
& =576
\end{aligned}
$$

The question asks for speed, so dort give $\left|V_{\text {max }}\right|$ or similar.
$v= \pm 24$ but speed 70
\therefore maximum speed is $24 \mathrm{~ms}^{-1} 1 \mathrm{mark}$
vi) Motion of the form

$$
\begin{aligned}
x & =x_{0}+a \cos (n t) \\
& =3+4 \cos 6 t \quad \mid \operatorname{mark}
\end{aligned}
$$

when $t=\frac{\pi}{12}$,

$$
\begin{aligned}
x & =3+4 \cos \left(6 \times \frac{13 \pi}{12}\right) \\
& =3+4 \cos \frac{13 \pi}{2} \\
& =3+4 \times 0 \\
& =3 \mathrm{~m}
\end{aligned}
$$

VII) As period is $\frac{\pi}{3}$.

$$
\begin{aligned}
\frac{13 \pi}{12} \div \frac{\pi}{3} & =\frac{13}{4} \\
& =3 \frac{1}{4}
\end{aligned}
$$

The particle has completed $3 \frac{1}{4}$ oscillations
1 oscillation is $4 \times$ amplitude

$$
=16 \mathrm{~m}
$$

$$
\begin{aligned}
\therefore \text { total distance } & =3 \frac{1}{4} \times 16 \\
& =52 \mathrm{~m} \quad 1 \text { mark }
\end{aligned}
$$

$$
\begin{aligned}
\text { Average speed } & =\frac{\text { distance }}{\text { time }} \\
& =\frac{52}{13 \pi / 12} \\
& =\frac{48}{\pi} \mathrm{~ms}^{-1} \quad \text { I mark }
\end{aligned}
$$

