\qquad
\qquad

St George Girls High School

Trial Higher School Certificate Examination

2018

Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet is provided.
- In Questions $11-15$, show relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for incomplete or poorly presented solutions.

Section I	$/ 10$
Section II	
Question 11	$/ 12$
Question 12	$/ 12$
Question 13	$/ 12$
Question 14	$/ 12$
Question 15	$/ 12$
Total	$/ 70$

Total Marks - 70

Section 1 Pages 3-6

10 marks

- Attempt Questions 1-10.
- Allow about 15 minutes for this section.
- Answer on the multiple choice answer sheet provided at the back of this paper.

Section II Pages 7-13

60 marks

- Attempt Questions 11-15.
- Allow about 1 hour and 45 minutes for this section.
- Begin each question in a new writing booklet.

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 What is the size of the acute angle between $y=3 x$ and $y=-2 x+1$, correct to the nearest degree?
(A) 36°
(B) 135°
(C) 11°
(D) 45°

2 Simplify $\frac{\cos 3 \alpha}{\sin \alpha}+\frac{\sin 3 \alpha}{\cos \alpha}$.
(A) $\tan 2 \alpha$
(B) $\cot 2 \alpha$
(C) $2 \tan 2 \alpha$
(D) $2 \cot 2 \alpha$

3 What is the maximum value of the function $y=\sin x-\sqrt{3} \cos x+1$.
(A) 1
(B) 2
(C) 3
(D) 4

4 The area of a rectangular bar is $A=50 L-L^{2}$, where L is the length of the bar. The bar is heated and its length increases at the rate of $0.08 \mathrm{~cm} / \mathrm{min}$. At what rate is the area of this bar increasing when $L=15 \mathrm{~cm}$?
(A) $3.6 \mathrm{~cm}^{2} / \mathrm{min}$
(B) $2.4 \mathrm{~cm}^{2} / \mathrm{min}$
(C) $1.6 \mathrm{~cm}^{2} / \mathrm{min}$
(D) $0.8 \mathrm{~cm}^{2} / \mathrm{min}$

5 Find the value of a, if $(x+a)$ is a factor of $P(x)=x^{3}+a x^{2}+2 x+1$.
(A) $-\frac{1}{2}$
(B) ± 1
(C) $\frac{1}{2}$
(D) $\pm \frac{1}{\sqrt{2}}$

6 If $y=\pi^{x}$, find $\frac{d y}{d x}$ when $x=1$.
(A) 1
(B) π
(C) $\pi \ln \pi$
(D) $x \pi-\ln x$

7 What is the exact value of $\int_{0}^{4} \frac{d x}{x^{2}+16}$?
(A) $-\frac{\pi}{4}$
(B) $\frac{\pi}{16}$
(C) $\frac{\pi}{8}$
(D) $\frac{\pi}{4}$

8 Which of the following is the range of the function $=2 \sin ^{-1} x+\frac{\pi}{2}$?
(A) $y \in \mathbb{R}:-\pi \leq y \leq \pi$
(B) $y \in \mathbb{R}:-\pi \leq y \leq \frac{3 \pi}{2}$
(C) $y \in \mathbb{R}:-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) $y \in \mathbb{R}:-\frac{\pi}{2} \leq y \leq \frac{3 \pi}{2}$
$9 \quad A T$ is tangent to the circle at T. $A C$ cuts the circle at B.
$A B=16, B C=9$, and $\angle T B C=90^{\circ}$.

Which is the length of $T C$, correct to the nearest whole number?

(A) 9
(B) 15
(C) 22
(D) 25

10 Which of the following is an expression for $\tan \left(\cos ^{-1} x\right)$?
(A) $\sqrt{1-x^{2}}$
(B) $\frac{\sqrt{1-x^{2}}}{x}$
(C) $\frac{x}{\sqrt{1+x^{2}}}$
(D) $\frac{\sqrt{1+x^{2}}}{x}$

End of Section I

Section II

60 marks

Attempt Questions 11-15
Allow about 1 hour and 45 minutes for this section
Answer each question in the appropriate writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (12 marks) Use a separate writing booklet Marks
(a) Solve $|x-7|<|3-x|$.
(b) Find $\frac{d}{d x}\left(x \sin ^{-1} x\right)$.
(c) The point R divides the interval from $A(-10,8)$ to $B(-5,-1)$
externally in the ratio 1:2.
Find the coordinates of R.
(d) Find $\int \sec ^{2} x \tan x d x$.
(e) Evaluate $\lim _{x \rightarrow 0} \frac{\sin (\pi+x)}{x}$.
(f) The points A, B, C, and D lie on a circle with centre 0 , such that $A D$ is a diameter. The point E lies on the circle so that $O E$ is parallel to CD. $\angle O A E=25^{\circ}$.

Find the size of $\angle A B C$, giving reasons.

(a) Solve $\frac{4 x-1}{x+2} \geq 1$.
(b) Use the substitution $u=x+1$ to find the value of

$$
\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x
$$

(c) The velocity $v \mathrm{~m} / \mathrm{s}$ of a particle moving in simple harmonic motion along the x-axis is given by $v^{2}=6+4 x-2 x^{2}$, where x is in metres.
i) Between which two points is the particle oscillating? 1
ii) Find the maximum speed of the particle in exact form. 1
iii) Find the acceleration of the particle in terms of x.
(d) Find the general solution of $2 \sin ^{2} x-1=0$.

Give your answer in radians.

Question 13 (12 marks) Use a separate writing booklet Marks

(a) Two points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ (where $\left.p>q>0\right)$ lie on the parabola $x^{2}=4 a y$.
i) Derive the equation of the tangent to the parabola at P.
ii) Find the coordinates of the point of intersection T of the tangents to the parabola at P and Q.
iii) Show that if the tangents at P and Q intersect at 45°, then
$p-q=1+p q$.
iv) Find the locus of T by evaluating the expression $x^{2}-4 a y$ at T and using the result in part (iii).
(b) Express $2 \sin x-3 \cos x$ in the form $R \cos (x+\alpha)$, where $R>0$
and $0 \leq \alpha \leq 2 \pi$. Give the value for α to 1 decimal place.
(c) At time t years after the start of the year 2000, the number of
individuals in a population is given by $N=80+A e^{0.1 t}$, for some constant $A>0$.

If there were 100 individuals in the population at the start of the year 2000, during which year is the population expected to reach 200?

Question 14 (12 marks) Use a separate writing booklet Marks
(a) i) Use the sum of the terms of an arithmetic series to show that

$$
(1+2+3+\cdots+n)^{2}=\frac{1}{4} n^{2}(n+1)^{2} .
$$

$$
(1+2+3+\cdots+n)^{2}=\frac{1}{4} n^{2}(n+1)^{2} .
$$

ii) Prove the following expression by mathematical induction: $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$ for all integers $n \geq 1$.
(b) i) Divide the polynomial $f(x)=2 x^{4}-10 x^{3}+12 x^{2}+2 x-3$ by $g(x)=x^{2}-3 x+1$.
ii) Hence express $f(x)$ in the form $f(x)=g(x) q(x)+r(x)$, where $q(x)$ and $r(x)$ are polynomials, and $r(x)$ has degree less than 2.
iii) Hence show that $f(x)$ and $g(x)$ have no zeroes in common.

Question 14 continued

(c) Coal is poured at a constant rate of 1.5 cubic metres per second from a ship onto a conical pile on a dock.
The angle at the apex of the cone is a constant $\frac{\pi}{3}$ radians.
At time t seconds the height of the cone is h metres and the radius of the base is r metres.

(i) Show that $r=\frac{h}{\sqrt{3}}$.
(ii) Show that the volume of the pile, $V \mathrm{~m}^{3}$, is given by

$$
V=\frac{\pi h^{3}}{9}
$$

(iii) Hence find the exact rate at which the height of the pile is increasing when the height of the pile is 6 metres.

Question 15 (12 marks) Use a separate writing booklet
(a) Use the substitution $t=\tan \frac{x}{2}$ to show that

$$
\frac{\cos x}{1-\sin x}=\tan \left(45^{\circ}+\frac{x}{2}\right) .
$$

(b) A firework is launched from a point $(0,0)$ with a velocity of $V \mathrm{~m} / \mathrm{s}$ at an angle of θ to the horizontal.
This firework explodes when it reaches its maximum height.

Use the axes as shown, assume that there is no air resistance, and that the position of the firework t seconds after being launched is given by the equations:
$x=V t \cos \theta$ and
$y=V t \sin \theta-\frac{1}{2} g t^{2}$
(Do NOT prove these results)

i) Show that the maximum height reached where the firework explodes is given by

$$
y=\frac{V^{2} \sin ^{2} \theta}{2 g} .
$$

ii) A second firework is launched from a point $(0,0)$ with a velocity of $\frac{7 V}{10} \mathrm{~m} / \mathrm{s}$ at an angle of 2θ to the horizontal and also explodes when it reaches its maximum height.
Given that the two fireworks reach the same maximum height:
$\alpha)$ Show that $\cos \theta=\frac{5}{7}$.
β) If $v^{2}=98 g$, find the maximum height reached by the two fireworks.

Question 15 continues on next page

Question 15 continued

(c) The region enclosed by the semicircle $y=\sqrt{1-x^{2}}$ and the x-axis is to be divided into two pieces by the line $x=h$, where $0 \leq h<1$.

The two pieces are rotated about the x-axis to form solids of revolution. The value of h is chosen so that the volume of the solids are in the ratio 3:2.
i) Given that the volumes are in the ratio 3:2, show that

$$
5 h^{3}-15 h+2=0
$$

ii) Given $h_{1}=0$ as the first approximation for h, use one application of Newton's Method to find a second approximation for h.

End of examination

2018 Mathematics Extension I Trial HSC
MATHEMATICS EXTENSION I -MULTIPLE CHOICE

$$
\begin{align*}
& \text { SUGGESTED SOLUTIONS } \\
& \text { (1) } y=3 x \Rightarrow m_{1}=3 \quad y^{2-2 x+1 \Rightarrow m_{2}=-2} \\
& \tan \theta=\left|\frac{3--2}{1+3(-2)}\right| \\
&=\left|\frac{5}{-5}\right| \\
&=1 \tag{D}\\
& \therefore \theta=45^{\circ}
\end{align*}
$$

(2)

$$
\begin{align*}
\frac{\cos 3 \alpha}{\sin \alpha}+\frac{\sin 3 \alpha}{\cos \alpha} & =\frac{\cos 3 \alpha \cos \alpha+\sin 3 \alpha \sin \alpha}{\sin \alpha \cos \alpha} \\
& =\frac{\cos (3 \alpha-\alpha)}{\frac{1}{2} \sin 2 \alpha} \\
& =\frac{2 \cos 2 \alpha}{\sin 2 \alpha} \\
& =2 \cot 2 \alpha \tag{D}
\end{align*}
$$

(3)
$\sin x-\sqrt{3} \cos x$ can be expressed in the form $R \sin (x+\alpha)$, where $R=\sqrt{1^{2}+(-\sqrt{3})^{2}}$

$$
=2
$$

$$
\therefore y=2 \sin (x+\alpha)+1
$$

\therefore maximum value is 3

$$
\text { (4) } \begin{align*}
& A=50 L-L^{2} \\
& \frac{d A}{d L}=50-2 L \quad \text { when } L=15, \frac{d A}{d L}=20 \\
& \text { Also } \frac{d L}{d t}=0.08 \\
& \frac{d A}{d t}=\frac{d A}{d L} \times \frac{d L}{d t} \\
&=20 \times 0.08 \tag{c}\\
&=1.6 \mathrm{~cm}^{2} / \mathrm{min}
\end{align*}
$$

MATHEMATICS EXTENSION I - MUL IIPLE CHOICE
SUGGESTED SOLUTIONS
(5) If $(x+a)$ is a factor, $P(-a)=0$
i.e. $-a^{3}+a^{3}-2 a+1=0$
$2 a=1$
$a=\frac{1}{2}$
(6)

$$
\begin{aligned}
y & =\pi^{x} \\
& =\left(e^{\ln \pi}\right)^{x} \\
& =e^{\ln \pi x} \\
\frac{d y}{d x} & =\ln \pi x e^{\ln \pi x} \\
& =\ln \pi \times \pi^{x}
\end{aligned}
$$

when $x=1$,

$$
\begin{aligned}
\frac{d y}{d x} & =\ln \pi \times \pi \\
& =\pi \ln \pi
\end{aligned}
$$

(7) $\int_{0}^{4} \frac{d x}{x^{2}+16}=\int_{0}^{4} \frac{d x}{x^{2}+4^{2}}$

$$
\begin{align*}
& =\left[\frac{1}{4} \tan ^{-1} \frac{x}{4}\right]_{0}^{4} \\
& =\frac{1}{4}\left(\tan ^{-1} 1-\tan ^{-1} 0\right) \\
& =\frac{1}{4}\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi}{16} \tag{B}
\end{align*}
$$

(8)

$$
\begin{align*}
& -\frac{\pi}{2} \leqslant \sin ^{-1} x \leqslant \frac{\pi}{2} \\
& -\pi \leqslant 2 \sin ^{-1} x \leqslant \pi \\
& -\frac{\pi}{2} \leqslant 2 \sin ^{-1} x+\frac{\pi}{2} \leqslant \frac{3 \pi}{2} \tag{D}
\end{align*}
$$

MATHEMATICS EXTENSION I - MULTIPLE CHOICE

MATHEMATICS EXTENSION I - QUESTION 11
SUGGESTED SOLUTIONS
a) $|x-7|<|3-x|$
ie. distance from 7
$\therefore x>5$
b)
let $u=x$
$v=\sin ^{-1} x$

$$
u^{\prime}=1 \quad v^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\frac{d}{d x}\left(x \sin ^{-1} x\right)=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}
$$

c)

$$
\begin{aligned}
R & =\left(\frac{2(-10)-1(-5)}{2-1}, \frac{2(8)-1(-1)}{2-1}\right) \\
& =(-15,17)
\end{aligned}
$$

d) $\int \sec ^{2} x \tan x d x=\frac{1}{2} \tan ^{2} x+C$
e)
f)
$\begin{aligned} \angle E O D & =2 \times \angle E A O\binom{\text { angle at centre twice }}{\text { angle at circumbence }} \\ & =50^{\circ}\end{aligned}$
$\angle A B C+\angle C D O=180^{\circ}$ opposite angles of cyclic
quadrilateral are supple

$$
\begin{aligned}
\angle A B C & =180^{\circ}-50^{\circ} \\
& =130^{\circ}
\end{aligned}
$$

MATHEMATICS EXTENSION 1 TRIAL HSC 2018 - QUESTION 12

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { (a) } \\
& (x+2)^{2} \times \frac{4 x-1}{x+2} \geqslant 1 \times(x+2)^{2} \\
& (x+2)(4 x-1) \geqslant(x+2)^{2} \\
& (x+2)(4 x-1)-(x+2)^{2} \geqslant 0 \\
& x+2[4 x-1-(x+2)] \geqslant 0 \\
& x+2[4 x-1-x-2] \geqslant 0 \\
& (x+2)(3 x-3) \geqslant 0 \\
& 3(x+2)(x-1) \geqslant 0
\end{aligned}
$$

$\therefore x<-2$ OR $x \geqslant 1$
(i)
(1)

MARKS MARKER'S COMMENTS

- this question
was mostly
well done.
- be careful
with algebra!
- make the statement about the denominator $x \neq-2!!!$
Hence $x<-2$ is the solution not $x \leqslant-2$.
(1). Ar progress to answer
- be careful how you draw your parabola ie when its Cor \cap depending on your working.
(3) provides correct solution with working
(2) correctly provides $x \leqslant-2$ or $x \geqslant 1$ with working
(1) demonstrates some progress

MATHEMATICS EXTENSION 1 TRIAl_ HOC 2018 - QUESTION 12

MATHEMATICS EXTENSION 1 TRIAL HSC 2018 - QUESTION 12

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(c) $v^{2}=6+4 x-2 x^{2}$		

(i) two extremes occur when $V=0$:

$$
\begin{aligned}
&-2 x^{2}+4 x+6=0 \\
&-2\left(x^{2}-2 x-3\right)=0 \\
&(x-3)(x+1)=0 \\
& \therefore x=3 \text { or } x=-1
\end{aligned}
$$

\therefore particle oscillates between
-1 and 3.
(ii) maximum speed occurs of the centre of motion ie when $x=1$

$$
\begin{aligned}
v^{2} & =6++(1)-2(1)^{2} \\
& =6+4-2 \\
& =8
\end{aligned}
$$

$$
\max \cdot \text { speed }=|v|=\sqrt{8}
$$

$=2 \sqrt{2} \mathrm{~m} / \mathrm{s}$-(1) provides correct answer

$$
\begin{aligned}
& v^{2}=8 \\
& \therefore \text { max.specd }
\end{aligned}=\mid \sqrt{ } 1
$$

MATHEMATICS EXTENSION 1 TRIAL HSC 2018 - QUESTION 12

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { (iii) } a=\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
&=\frac{d}{d x}\left(3+2 x-x^{2}\right) \\
& \therefore a=2-2 x
\end{aligned}
$$

- (1) provides correct answer
- this question was well done
- watch calculations
- no half marks!
(d) $2 \sin ^{2} x-1=0$

$$
\begin{aligned}
2 \sin ^{2} x & =1 \\
\sin ^{2} x & =\frac{1}{2} \\
\sin x & = \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

- mostly well done!
- use reference sheet
- don't beget where $n \in Z$ or where n is an integer. - no $\frac{1}{2}$ marks.

For $\sin x=\frac{1}{\sqrt{2}}$:

$$
\begin{equation*}
x=n \pi+(-1)^{n} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \tag{1}
\end{equation*}
$$

$x=n \pi+(-1)^{n} \frac{\pi}{4}$ where n is an integer.
For $\sin x=-\frac{1}{\sqrt{2}}$:
$x=n \pi+(-1)^{n} \sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
, (1) mark
$x=n \pi+(-1)^{n}\left(-\frac{\pi}{4}\right)$ whore n is an integer.
or $x=n \pi-(-1)^{n} \frac{\pi}{4}$

MATHEMATICS EXTENSION 1 TRIAL HSC 2018 - QUESTION 12

MATHEMATICS EXTENSION 1 TRIAL HSC 2018 - QUESTION 12

$$
\begin{aligned}
& \text { SUGGESTED SOLUTION } \\
& \text { OR The really long way !!!! } \\
& 2 \sin ^{2} x-1=0 \\
& 2 \sin ^{2} x=1 \\
& \sin ^{2} x=\frac{1}{2} \\
& \sin x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

FOR $\sin x=+\frac{1}{\sqrt{2}}$:

$$
\begin{aligned}
x=\left(\sin ^{-1} \frac{1}{\sqrt{2}}\right)+2 n \pi \text { OR } x & =\left(\pi-\sin ^{-1} \frac{1}{\sqrt{2}}\right)+2 n \pi \\
x=\frac{\pi}{4}+2 n \pi & x=\left(\pi-\frac{\pi}{4}\right)+2 n \pi \\
\text { mark } & x=\frac{3 \pi}{4}+2 n \pi
\end{aligned}
$$

For $\sin x=\frac{-1}{\sqrt{2}}$:

$$
\begin{aligned}
x=\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)+2 n \pi \quad \text { OR } x & =\pi-\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)+2 n \pi \\
x=-\frac{\pi}{4}+2 n \pi & =\pi-\frac{\pi}{4}+2 n \pi \\
\text { (1) mark } x & =\frac{5 \pi}{4}+2 n \pi
\end{aligned}
$$

where n is an integer!

MATHEMATICS EXTENSIONI-QUESTION 13

SUGGESTED SOLUTIONS
a)
Q $\left(2 a q, a q^{\prime}\right)$ MARSS

(ii) Similarly $y=q x-a q^{2} \quad$.. (2)

Solve (1) and (2) simultancourly

$$
\begin{aligned}
p x-a p^{2} & =q x-a q^{2} \\
p x-q x & =a p^{2}-a q^{2} \\
(p-q) x & =a\left(p^{2}-q^{2}\right) \\
x & =\frac{a(p-q)(p+q)}{(p-q)} \\
x & =a(p+q)
\end{aligned}
$$

MATHEMATICS EXTENSION I - QUESTION $/ 3$

MATHEMATICS EXTENSIONI-QUESTION 13
SUGGESTED SOLUTIONS

Note The question actually guided you:

$$
\begin{align*}
& x=a(p+q) \quad x_{y}=a p q \\
& x^{2}=a^{2}(p+q)^{2} \cdots(1) \quad 4 a y=4 a^{2} p q \\
& \text { (1)-(2) } \tag{2}\\
& x^{2}-4 a y=a^{2}(p+q)^{2}-4 a^{2} p q
\end{align*}
$$

This is also the substitution the guestroom asked for
solution

$$
\begin{aligned}
x^{2}-4 a y & =\left[a(p+q]^{2}-4 a(a p q)\right. \\
& =a^{2}(p+q)^{2}-4 a^{2} p q \\
& =a^{2}\left(p^{2}+2 p q+q^{2}\right)-4 a^{2} p q \\
& =a^{2}\left(p^{2}+2 p q+q^{2}-4 p q\right) \\
& =a^{2}\left(p^{2}-2 p q+q^{2}\right) \\
& =a^{2}(p-q)^{2}
\end{aligned}
$$

From (iii) $p-q=1+p q$

$$
\begin{array}{rlr}
& =a^{2}(1+p q)^{2} \quad \text { Now } y=a p q \tag{1}\\
& =a^{2}\left(1+\frac{y}{a}\right)^{2} \quad \text { pq }=\frac{y}{a} \\
x^{2}-4 a y & =a^{2}\left(1+\frac{2 y}{a}+\frac{y^{2}}{a^{2}}\right) &
\end{array}
$$

You must do the substitution to gain All marks. (1)/2 if correct solution without substitution.
Note - only V_{2} if they
had $=0$ and zen
if eliminated a^{2}.
using identity (iii)
subbing in

$$
p q=\frac{y}{a}
$$

MATHEMATICS EXTENSION I - QUESTION 13
SUGGESTED SOLUTIONS
$x^{2}-4 a y=a^{2}+2 a y+y^{2}$
$x^{2}-y^{2}-a^{2}+6 a y$
b) $2 \sin x-3 \cos x=R \cos (x+\alpha)$
$2 \sin x-3 \cos x=R \cos x \cos \alpha-R \sin x+2 x$
b)

$$
\begin{aligned}
& 2 \sin x-3 \cos x=R \cos (x+\alpha) \\
& 2 \sin x-3 \cos x=R \cos x \cos \alpha-R \sin x \cdot 2 \\
& 2=-R \sin \alpha \\
& R \sin \alpha=-2 \text { (1/2 } \quad-3=R \cos \alpha \\
&
\end{aligned}
$$

Overlap quad 3

$$
\begin{aligned}
R^{2} \sin ^{2} \alpha+R^{2} \cos ^{2} \alpha & =4+9 \\
R^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) & =13 \\
R^{2} & =13 \quad R>0 \\
R & =\sqrt{13} \quad
\end{aligned}
$$

$$
\frac{R \sin \alpha}{R \cos \alpha}=\frac{-2}{-3}
$$

$$
\tan \alpha=\frac{2}{3} \quad * \text { QUAD } 3 *
$$

$$
\begin{aligned}
& \alpha= 0.588 \ldots \\
& \alpha= \pi+0.588 \\
& \alpha= 3.73 \\
& \quad \sqrt{13} \cos (x+3.7)
\end{aligned}
$$

 remember) - Many forgo s to write this

MATHEMATICS EXTENSION I -QUESTION

MATHEMATICS EXTENSION I - QUESTION 14 TRIAL 2018
gl.

SUGGESTED SOLUTIONS
(i) Use the sum of the terms of an Arithuatic sequence to show that $(1 r 2+3 r \cdots+n)^{2}=\frac{1}{4} n^{2}(n+1)^{2}$

$$
[i+2+s+\cdots+n]
$$

is an A.S with $a=1 \quad d=1 \quad n=n \quad L=n$

$$
\begin{align*}
S_{n} & =\frac{n}{2}[a+L] \quad O R \quad \begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[1+n] \\
& =\frac{n}{2}[n+1][2 \times 1+(n-1) \times 1] \\
& =\frac{n}{2}[2+n-1] \\
& =\frac{n}{2}[1+n] \\
& =\frac{n}{2}[n+1]
\end{aligned}
\end{align*}
$$

substituting 0 in

$$
\begin{aligned}
&(1+2+3+\cdots+n)^{2}=\left[\frac{n}{2}(n+1)\right]^{2} \\
&=\frac{n^{2}}{4}(n+1)^{2} \\
&=\frac{1}{4}\left(n^{2}\right)(n+1)^{2} \\
& \therefore(1+2+3+\ldots+n)^{2}=\frac{1}{4}\left(n^{2}\right)(n+1)^{2} \text { as requited }
\end{aligned}
$$

(ii) Prove by induction

$$
1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2} \text { for all integers } n \geqslant 1
$$

(ste pl) Show the result is true when $n=1$.
when $n=1 \quad L H S=1^{3}$

$$
\text { RHS }=1^{2}
$$

\therefore the result is true when $n=1$.

Step 2 Assume the result is true for some integer k.
ie Assume $1^{3}+2^{3}+3^{3}+\ldots k^{3}=(1+2+3+\cdots+k)^{2}$
\qquad

$$
\text { LHS }=\text { RHS }=1
$$ (where $k \geqslant 1$)

$$
\begin{aligned}
& =1 \quad=1
\end{aligned}
$$

MARKER'S COMMENTS
Generally well done
(no $\frac{1}{2}$ marks)
\qquad
some students used part (1) at This stage. justifying and replacing $(1+2+3+\ldots k)^{2} b y$
$\frac{1}{4} k^{2}(k+1)^{2}$

MATHEMATICS EXTENSION I - QUESTION 14 TRIAL 2018

pg 2	SUGGESTED SOLUTIONS
step 33 Prove the result is true for $n=k+1$	

assuming it is true for $n=k$.
ie Prove

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+\ldots(k+1)^{3}=[1+2+3+\cdots(k+1)]^{2} \\
& L H s=1^{3}+2^{3}+3^{3}+\cdots(k+1)^{3} \\
& \quad=\underbrace{}_{5 k+2^{3}+3^{3}+\ldots(k)^{3}+(k+1)^{3}} \quad=\underbrace{5}+k^{2}+1 \\
& \quad=\frac{1}{4}(k+1)^{2}+(k+1)^{3}\left\{\begin{array}{l}
\text { using } p a r+(1) \\
1+2+3+\cdots+k^{2}=\frac{1}{4}\left(k^{2}\right)(k+k)^{2}
\end{array}\right. \\
& \quad=\frac{(k+1)^{2}}{4}\left[k^{2}+4(k+1)\right]
\end{aligned}
$$

$$
=\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right]
$$

$$
=\frac{1}{4}(k+1)^{2}(k+2)^{2}
$$

$$
=[1+2+3+\cdots(k+1)]^{2}
$$

$$
=R H S
$$

$$
\text { since } \frac{1}{4}\left(k^{2}\right)(k+1)^{2}=1+2+\cdots k^{2}
$$

\therefore the result is true when $n=k$ if it is true
when $n=k+1$.
step y: If the statement is true for $n=k$, then it is true for $n=k .1$. Since the result is true for $n=1+1=2$ and for $n=2+1=3$. and so on for all positive integers 0 .

MATHEMATICS EXTENSION I - QUESTION 14 TRIAL 2018
pg 3

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { (b) } \begin{array}{r}
\frac { 2 x ^ { 2 } - 4 x - 2 } { 2 } - 3 x + 1 \longdiv { 2 x ^ { 4 } - 1 0 x ^ { 3 } + 1 2 x ^ { 2 } + 2 x - 3 } \\
2 x^{4}-6 x^{3}+2 x^{2}
\end{array} \\
& \frac{-4 x^{3}+10 x^{2}+2 x-3}{} \\
& -4 x^{3}+12 x^{2}-4 x \\
& -2 x^{2}+6 x-3 \\
& -2 x^{2}+6 x-2
\end{aligned}
$$

(ii)

$$
\text { (ii) } \begin{aligned}
& 2 x^{4}-10 x^{3}+12 x^{2}+2 x-3 . \\
&=\left(x^{2}-3 x+1\right)\left(2 x^{2}-4 x-2\right)-1 \\
& O R=\left(x^{2}-3 x+1\left(\left[2\left(x^{2}-2 x-1\right)\right]-1\right.\right.
\end{aligned}
$$

(iii)

$$
\begin{align*}
& f(x)=2 x^{4}-10 x^{3}+12 x^{2}+2 x-3 \\
& g(x)=x^{2}-3 x+1 \tag{ii}
\end{align*}
$$

from

$$
f(x)=g(x) q(x)-1
$$

let k be a zero of $g(x)$
then $g(k)=k^{2}-3 k+1$.
and $k^{2}-2 k+1=0$.

$$
\begin{aligned}
& \therefore g(k)= g(k)=0 \\
&\left\{\begin{aligned}
\operatorname{sub} 0 \text { in } & =0 q(k)-1 \\
(a) & =0(k)-1 \\
& =0-1 \\
& =-1
\end{aligned}\right.
\end{aligned}
$$

$\therefore k$ is not a zero of $f(x)$ since

$$
f(k)=-1
$$

.. $f(x)$ and $g(x)$ have no zeros in common.

MATHEMATICS EXTENSION I - QUESTION 14 TRIAL 2018

	SUGGESTED SOLUTIONS	MARKS	MARKERS COMMENTS
(c) (1) $h\left(\frac{\pi}{6}\right.$	$\frac{\pi}{3} \div 2$		

most students that had difficulty didn't get the angle, $\frac{\pi}{6}$, correct.
(ii) Show $r=\frac{\pi h^{3}}{9}$

$$
\begin{equation*}
V_{\text {cone }}=\frac{1}{3} \pi r^{2} h \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\text { pub(oin (2) } & =\frac{1}{3} \times \pi \times\left(\frac{h}{\sqrt{3}}\right)^{2} h \\
& =\frac{1}{3} \times \pi \times \frac{h^{2}}{3} \times h \\
\therefore \quad V & =\frac{\pi h^{3}}{9} \quad \text { as required. }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { iii) } \frac{d v}{d t}=1.5 \mathrm{~m}^{3} / \mathrm{s} \cdot \quad \frac{d h}{d t}=\text { ? } \\
& \frac{d v}{d t}=\frac{d v}{d h} \cdot \frac{d h}{d t} \\
& r=\frac{\pi h^{3}}{9} \\
& \frac{d v}{d h}=\frac{3 \pi h^{2}}{9} \\
& \frac{d v}{d h}=\frac{\pi h^{2}}{3}
\end{aligned}
$$

MAFHEMATICS EX FENSION I - QUESTION 14 TRIAL 2018

MATHEMATICS EXTENSION I-QUESTION 15

MA sCHEMATICS EXTENSION I - QUESTION 15

MATHEMATICS EXTENSION I -QUESTION 15

MATHEMATICS EXTENSION I - QUESTION 15

MATHEMATICS EXTENSION I - QUESTION 15

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { c) 1) Cont id } \\
& 2\left(h-\frac{h}{3}+\frac{2}{3}\right)=3\left(\frac{2}{3}-h+\frac{h^{3}}{3}\right) \\
& 2 h-\frac{2 h^{3}}{3}+\frac{4}{3}=2-3 h+h^{3} \\
& 6 h-2 h^{3}+4=6-9 h+3 h^{3} \\
& 5 h^{3}-15 h+2=0
\end{aligned}
$$

$1 / 2$ mark for correct simplification to establish. answer.

Method 2

$$
\begin{aligned}
V_{1} & =\pi \int_{h}^{1} 1-x^{2} d x \\
& =\pi\left(\frac{2}{3}-h+\frac{h^{3}}{3}\right)
\end{aligned}
$$

This volume is $2 / 5$ of the volume of the sphere.
ie $V=\frac{2}{5} \times \frac{4}{3} \pi r^{3}$

$$
=\frac{8}{15} \pi
$$

So $\quad V=V_{1}$

$$
\begin{aligned}
& \frac{8}{15} \pi=\pi\left(\frac{2}{3}-h+\frac{h^{3}}{3}\right) \\
& 8 \pi=10-15 h+5 h^{3} \\
& 5 h^{3}-15 h+2=0
\end{aligned}
$$

MATHEMATICS EXTENSION I - QUESTION 15
Si) Let $f(x)=5 h^{3}-15 h+2$

$$
f^{\prime}(x)=15 h^{2}-15
$$

Taking $h_{1}=0$

$$
\begin{aligned}
h_{2} & =h_{1}-\frac{f^{\prime}\left(h_{1}\right)}{f^{\prime}\left(h_{1}\right)} \\
& =0-\frac{f^{\prime}(0)}{f^{\prime}(0)} \\
& =0-\frac{2}{-15} \\
& =\frac{2}{15}
\end{aligned}
$$

