\qquad

St George Girls High School

Trial Higher School Certificate Examination

2019

Mathematics

Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for incomplete or poorly presented solutions.

Section I	$/ 10$
Section II	
Question 11	$/ 10$
Question 12	$/ 10$
Question 13	$/ 10$
Question 14	$/ 10$
Question 15	$/ 10$
Question 16	$/ 10$
Total	$/ 70$

Total Marks - 70

Section 1

Pages 3-6

10 marks

- Attempt Questions 1 - 10.
- Allow about 15 minutes for this section.
- Answer on the multiple choice answer sheet provided at the back of this paper.

Section II Pages 7-13

60 marks

- Attempt Questions 11-16.
- Allow about 1 hour and 45 minutes for this section.
- Begin each question in a new writing booklet.

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1. The line AT is the tangent to the circle at A and the line BT is a secant meeting the circle at B and C, as shown in the diagram.

Given that $\mathrm{AT}=9, \mathrm{BC}=5$ and $\mathrm{CT}=x$, which one of the following equations is correct?
(A) $x^{2}+5 x-81=0$
(B) $x^{2}+5 x+81=0$
(C) $x^{2}-5 x-81=0$
(D) $x^{2}+5 x-9=0$
2. The acute angle between the lines $y=2 x+4$ and $5 x-y+34=0$, to the nearest degree is:
(A) 4°
(B) 7°
(C) 15°
(D) 74°
3. If $t=\tan \frac{\theta}{2}$, what is the correct expression for $\frac{1-\cos \theta}{\sin \theta}$.
(A) $\frac{1}{t}$
(B) t
(C) $2 t$
(D) $\frac{2}{t}$
4. Find the Cartesian equation of the curve defined by the parametric equations:

$$
\begin{aligned}
& x=\sin \theta \\
& y=\cos ^{2} \theta-3 .
\end{aligned}
$$

(A) $y=-3+3 x^{2}$
(B) $y=\sin ^{2} x-3$
(C) $y=-2-x^{2}$
(D) $y=\sin 2 x+3 \cos ^{2} x$
5. What is the value of $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x \cos x}$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
6. Consider the graph below.

Which function best describes this graph?
(A) $y=\cos ^{-1}(x)$
(B) $y=1-\cos ^{-1}(x)$
(C) $y=\cos ^{-1}(x-1)$
(D) $y=\cos ^{-1}(1-x)$
7. $\int 4 \cos ^{2} 4 x d x=$
(A) $\left(2 x+\frac{1}{4} \sin 8 x\right)+C$
(B) $\left(x+\frac{1}{2} \sin 8 x\right)+C$
(C) $\left(x+\frac{1}{2} \cos 8 x\right)+C$
(D) $\left(x+\frac{1}{4} \sin 8 x\right)+C$
8. The velocity of a particle is given by $v=\sqrt{2-x}$, where x is its displacement in metres and velocity (m / s).
Which of the following is a correct expression for the acceleration \ddot{x} ?
(A) $\ddot{x}=\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
(B) $\ddot{x}=\frac{1}{4} \mathrm{~m} / \mathrm{s}^{2}$
(C) $\ddot{x}=-\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}$
(D) $\ddot{x}=-\frac{1}{4} \mathrm{~m} / \mathrm{s}^{2}$
9. Which of the following is a general solution of the equation $\sin \frac{x}{2}=\sin \frac{\pi}{10}$?
(A) $x=n \pi+(-1)^{n} \frac{\pi}{5}$
(B) $x=\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{20}$
(C) $x=2 n \pi+(-1)^{n} \frac{\pi}{10}$
(D) $x=2 n \pi+(-1)^{n} \frac{\pi}{5}$
10. The cubic curve $y=x^{3}+3 a x+b$ has two turning points and crosses the y - axis at ($0,-a$).
Which of the following could be true?
(A) $a<0$ and $b>0$
(B) $a>0$ and $b<0$
(C) $a>0$ and $b>0$
(D) $a<0$ and $b<0$

End of Section I

Section II

60 marks

Attempt Questions 11-16
Allow about 1 hour and 45 minutes for this section
Answer each question in the appropriate writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (10 marks) Use a separate writing booklet

(a) The point $C(x, y)$ divides the interval joining $A(-4,8)$ to $B(6,-12)$ internally in the ratio $2: 3$.

Find the coordinates of C.
(b) Solve for x : $\frac{x}{1-3 x} \geq 1$.
(c) Show that $\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x}=2$.
(d) Find the exact value of $\int_{0}^{\frac{\sqrt{5}}{2}} \frac{d x}{\sqrt{5-4 x^{2}}}$.

Question 12 (10 marks) Use a separate writing booklet Marks
(a) If α, β and γ are the roots of the equation $2 x^{3}+5 x-3=0$, find the value

2 of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
(b) The rate of increase of a population P of sandflies on the track to Culbarra Beach is proportional to the difference between the population, P, and 2000. This rate is expressed by the differential equation $\frac{d P}{d t}=k(P-2000)$, where k is a constant and t represents time in weeks.
(i) Show that $P=2000+A e^{k t}$, where A is a constant, satisfies the differential equation
(ii) Initially, the population was 2500 and two weeks later it had increased to 5000. Find the value of A and k.
(iii) After how many weeks will the population of sandflies exceed 10000 ?
(c) Evaluate $\int_{-1}^{2} x \sqrt{3-x} d x$ using the substitution $u=3-x, x<3$.

Question 13 (10 marks) Use a separate writing booklet

(a) Consider the continuous function $f(x)=\sec ^{-1} x+\sin ^{-1} \frac{1}{x}$ for $x \geq 1$.
(i) Show that $\sec ^{-1} x=\cos ^{-1} \frac{1}{x}$.
(ii) Hence, show that $f^{\prime}(x)=0$.
(iii) Hence, or otherwise, prove that

$$
\begin{equation*}
\sec ^{-1} x+\sin ^{-1} \frac{1}{x}=\frac{\pi}{2} \text { for } x \geq 1 \tag{2}
\end{equation*}
$$

(b) The point $A\left(2 a p, a p^{2}\right)$ lies on the parabola $x^{2}=4 a y$.

The tangent at A intersects the y-axis at B.
The line $y=p x$ crosses the parabola at the origin and at the point C. Let D be the midpoint of $O C$.

(i) Show that the coordinates of D is $\left(2 a p, 2 a p^{2}\right)$.
(ii) Show that the coordinates of B is $\left(0,-a p^{2}\right)$.
(iii) Show that $O D A B$ is a parallelogram.

Question 14 (10 marks) Use a separate writing booklet

(a) Consider the function $f(x)=3 \sin 2 x-x$.
(i) Show that $f(x)=0$ has a root α such that $1.33<\alpha<1.34$.
(ii) Starting with $\alpha=1.33$, use one application of Newton's Method to find a better approximation for this root, giving your answer to 4 decimal places.
(b)

In the diagram, $A B C$ is a triangle inscribed in the circle. The tangent to the circle at A meets $B C$ produced to D. E is the point on $A C$ produced such that $D A=D E$.

Copy the diagram into your booklet.

Prove that $A B E D$ is a cyclic quadrilateral.
(c) Use mathematical induction to prove that $4^{n}+6 n-1$ is divisible by 9 for integers $n \geq 1$.

Question 15 (10 marks) Use a separate writing booklet Marks

(a) A particle is moving so that its distance x centimetres from a fixed point O at time t seconds is $x=6 \sin 2 t$.
(i) Show that the particle is moving in simple harmonic motion. to the right of the origin.
(b) The diagram shows a ladder $P Q, 2$ metres in length, leaning against a wall such that the top of the ladder, Q, initially reaches 1.8 metres up the wall. The base of the ladder, P, is x metres from the base of the wall, B.

NOT TO
SCALE

The ladder begins to slide down the wall at the rate of 0.5 metres per minute such that the top of the ladder is h metres below its original position after t minutes.
(i) Show that t minutes after the ladder begins to slide down the wall,

$$
\begin{equation*}
h=1.8-\sqrt{4-x^{2}} \tag{2}
\end{equation*}
$$

(ii) Tom is standing on the ground 1.6 metres from the base of the wall in a direct line with the ladder. At what rate does base of the ladder hit Tom?

Question 16 (10 marks) Use a separate writing booklet

(a) A method to score a home run in a baseball game is to hit the ball over the boundary fence on the full.

A ball is hit at $50 \mathrm{~m} / \mathrm{s}$ The fence, 200 metres away, is 2 metres high. You may neglect air resistance and acceleration due to gravity can be taken as $10 \mathrm{~m} / \mathrm{s}^{2}$. You may assume the following equations of motion:

$$
x=50 t \cos \theta \quad \text { and } y=50 t \sin \theta-5 t^{2}
$$

(i) Show that the Cartesian equation of motion is given by

$$
y=x \tan \theta-\frac{x^{2}}{500}\left(\sec ^{2} \theta\right), \quad \text { where } \theta \text { is the angle of projection. }
$$

(ii) Show that if the ball just clears the 2 metre boundary fence then,

$$
40 \tan ^{2} \theta-100 \tan \theta+41=0
$$

(iii) In what range of values must θ lie to score a home run by this method?
(b)

The curve shows the graph of the function

$$
f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

where $y= \pm 1$ are the horizontal asymptotes.
(i) If k is a positive constant, show that the area in the first quadrant enclosed by the above curve, the lines $y=1, x=0$ and $x=k$ is given by:

$$
A=k-\ln \left(e^{k}+e^{-k}\right)+\ln 2
$$

(ii) By considering the area in (i), prove that for all positive values of k, the area is always less than $\ln 2$.

Year 12 Ext 1 Trial HSC - 2019 Solutions
MATHEMATICS EXTENSION 1-QUESTION Multiple Choice
SUGGESTED SO

1. $\quad 9^{2}=x(x+5)$
$81=x^{2}+5 x$
$x^{2}+5 x-81=0$
2. For $y=2 x+4, \quad m_{1}=2$

$$
5 x-y+34=0 \quad, \quad m_{2}=5
$$

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
=\left|\frac{1-5}{1+2(5)}\right|
$$

$$
=\frac{3}{11}
$$

$$
\theta \div 15^{\circ}
$$

3. $\frac{1-\cos \theta}{\sin \theta}=\frac{1-\frac{1-t^{2}}{1+t^{2}}}{\frac{2 t}{1+t^{2}}} \times 1+t^{2}$

$$
\begin{aligned}
& =\frac{1+t^{2}-\left(1-t^{2}\right)}{2 t} \\
& =\frac{1+t^{2}-1+t^{2}}{2 t} \\
& =\frac{2 t^{2}}{2 t} \\
& =1
\end{aligned}
$$

$$
B
$$

MATHEMATICS EXTENSION 1 - QUESTION MC
SUGGESTED SOLUTIONS
4

$$
\begin{aligned}
& x=\sin \theta \\
& y=\cos ^{2} \theta-3
\end{aligned}
$$

C

5. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x \cos x}=\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{x \cos x}$

$$
=2 \lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

$$
=2 \times 1
$$

$$
=2
$$

6.

$$
\begin{aligned}
& y=\cos ^{-1} x \\
& y=\cos ^{-1}(-x) \\
& y=\cos ^{-1}(-x+1) \\
& y=\cos ^{-1}(1-x)
\end{aligned}
$$

7.

$$
\begin{aligned}
& \int 4 \cos ^{2} 4 x d x \\
= & 4 \int \cos ^{2} 4 x d x \\
= & 4 \int \frac{1}{2}(\cos 8 x+1) d x \\
= & 2\left[\frac{\sin 8 x}{8}+x\right)+c \\
= & 2 x+\frac{1}{4} \sin 8 x+c
\end{aligned}
$$

MATHEMATICS EXTENSION 1 -QUESTION MC

MATHEMATICS EXTENSION I - QUESTION //

$\therefore c$ is $(0,0)$
b) $\frac{x}{1-3 x} \geqslant 1, x \neq \frac{1}{3}$

Multiplying both sides by $(-3 x)^{2}$

$$
\begin{gather*}
(1-3 x)^{2} \frac{x}{(1-3 x)} \geqslant 1 \times(1-3 x)^{2} \\
(1-3 x) x \geqslant(1-3 x)^{2} \\
x(1-3 x)-(1-3 x) \geqslant 0 \\
(1-3 x)[x-(1-3 x)] \geqslant 0 \tag{1*}\\
(1-3 x)(4 x-1) \geqslant 0
\end{gather*}
$$

$$
\frac{1}{4} \leqslant x<\frac{1}{3}
$$

2 marks for both values of x and y ie $c(0,0)$ 1 mark for ether x or y correctly found
\square
\qquad
\square
 was incorrect or the x-intercepts were not labelled correctly

MAATHEMATICS EXTENSION I-QUESTION ||

MATHEMATICS EXTENSION I - QUESTION

SUGGESTED SOLUTIONS	
NOTE:	MA
Many students thought that they	
could factorise,	
$\cos x \sin 3 x-\sin x \cos 3 x$ as $\cos x \sin x(\sin 2 x-\cos x)$	

This is quite concerning and cave needs to be taken.
please revise compound angles.

- Alternative solution (by many students)
(bot not preferred)

$$
\begin{aligned}
& \text { LbS }=\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x} \\
& =\frac{\sin (2 x+x)}{\sin x}-\frac{\cos (2 x+x)}{\cos x} \\
& =\frac{\sin 2 x \cos x+\cos 2 x \sin x}{\sin x}-\frac{\cos 2 x \cos x-\sin 2 x \sin x}{\cos x} \quad 1 / 2 \\
& =\frac{\sin 2 x \cos x}{\sin x}+\frac{\cos 2 x \sin x}{\sin x}-\frac{\cos 2 x \cos x}{\cos x}+\frac{\sin 2 x \sin x}{\cos x}-1 / 2 \\
& =\frac{2 \sin x \cos x \cos x}{\sin x}+\frac{2 \sin x \cos x \sin x}{\cos x} \\
& =2 \cos ^{2} x+2 \sin ^{2} x \\
& =2\left(\cos ^{2} x+\sin ^{2} x\right) \\
& =2 \\
& =\text { RHo }
\end{aligned}
$$

MATHEMATICS EXTENSION I - QUESTION

MATHEMATICS EXTENSION 1 - QUESTION 12

\[

\]

Note: an answer of $\frac{-5}{3}$ was awarded Tizmarks.
b) i if $P=2000+A e^{k t}$
then $\frac{d P}{d t}=k A e^{k t}$

$$
\begin{aligned}
& =k\left(2000+A e^{k t}-2000\right) \\
& =k(P-2000)
\end{aligned}
$$

so it satisfies the differential equation
Note: In a "show" question, you must show every step Do not expect the examiner to join the dots for you. Many students left out crucial steps or substitutions, and only earned half monks.

MATHEMATICS EXTENSION 1 - QUESTION 12 (continued)

so it satisfies the differatial equation

$$
\begin{aligned}
& \text { ii when } t=0, P=2500 \\
& \begin{aligned}
\therefore 2500 & =2000+A e^{0 k} \\
& =2000+A \\
\therefore A & =500
\end{aligned}
\end{aligned}
$$

when $t=2, \quad P=5000$

$$
\begin{aligned}
\therefore 5000 & =2000+500 e^{2 k} \\
500 e^{2 k} & =3000 \\
e^{2 k} & =6 \\
2 k & =\ln 6 \\
k & =\frac{1}{2} \ln 6 \\
& =0.895879 \ldots \\
& \div 0.896 \text { (3 d.p.) }
\end{aligned}
$$

iii Population will reach 10000 when

$$
\begin{aligned}
10000 & =2000+500 e^{k t} \\
500 e^{k t} & =8000 \\
e^{k t} & =16 \\
k t & =\ln 16
\end{aligned}
$$

MATHEMATICS EXTENSION 1 - QUESTION 12 (continued)

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
t	$=\frac{\ln 16}{k} \quad$ but $k=\frac{1}{2} \ln 6$		
	$=\frac{\ln 16}{\frac{1}{2} \ln 6}$		
	$=\frac{2 \ln 16}{\ln 6}$		
	$=3.0948224 \ldots$	1	

\therefore He population will exceed 10000 during the 4 th week.
c)

$$
\begin{aligned}
& \int_{-1}^{2} x \sqrt{3-x} d x \\
&= \int_{4}^{1}(3-u) \sqrt{u}(-d u) \\
& \text { when } \\
&= \int_{1}^{4} 3 \sqrt{u}-u \sqrt{u} d u \\
&= {\left[2 u^{\frac{3}{2}}-\frac{2 u^{\frac{5}{2}}}{5}\right]_{1}^{4} } \\
&= \frac{16}{5}-\frac{8}{5} \\
&= \frac{8}{5}
\end{aligned}
$$

$$
u=3-x \Rightarrow x=3-u
$$

$$
\frac{d u}{d x}=-1
$$

$$
d x=-d u
$$

$$
\text { when } x=-1, u=4
$$

$$
\text { chen } x=2, u=1
$$

Candidates who mistakenly made the integration easier could not earn the Ind mark.

MATHEMATICS EXTENSION I - QUESTION 13

a) (i) let $\alpha=\sec ^{-1} x \quad$| $\sec \alpha$ | $=x$ |
| ---: | :--- |
| $\cos \alpha$ | $=\frac{1}{x}$ |
| $\therefore \quad \alpha$ | $=\cos ^{-1} \frac{1}{x}$ |
| | $=$ RUS |

OR $\quad \angle H S=\cos ^{-1} x$

$$
\begin{aligned}
\operatorname{let} \alpha & =\cos ^{-1} \frac{1}{x} \\
\cos \alpha & =\frac{1}{x} \\
\sec \alpha & =x \\
\therefore \quad \alpha & =\sec ^{11} x
\end{aligned}
$$

(ii)

$$
f(x)=\sec ^{-1} x+\sin ^{-1} \frac{1}{x}
$$

$$
=\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x} \quad \text { from (i) }
$$

Consider $\frac{d}{d x}\left(\sin ^{-1} x\right) \quad$ let $u=\frac{1}{x}$

$$
\begin{array}{rlrl}
& \frac{d x}{d x}\left(\sin ^{-1} u\right) & \frac{u}{}=x^{-1} \\
= & \frac{d u}{d x} & =-x^{-2} \\
& =-\frac{1}{x^{2}} \\
= &
\end{array}
$$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{1}{\sqrt{1-u^{2}}} \times-\frac{1}{x^{2}} \\
& =\frac{-1}{x^{2} \sqrt{1-\left(\frac{1}{x}\right)^{2}}} \\
& =\frac{-1}{x^{2} \sqrt{x^{2}-1}} \\
& =\frac{-1}{x^{2} \sqrt{x^{2}-1}} \\
& =\frac{-1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

MATHEMATICS EXTENSION I - QUESTION 13

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { Similarly } \frac{d}{d x}\left(\cos ^{-1} \frac{1}{x}\right) \\
&=-\left(\frac{-1}{x \sqrt{x^{2}-1}}\right) \\
&=\frac{1}{x \sqrt{x^{2}-1}} \\
& \\
& \therefore \quad f^{\prime}(x)=\cos ^{-1}\left(\frac{1}{x}\right)+\sin ^{-1}\left(\frac{1}{x}\right) \\
& \hline f^{\prime}(x)=\frac{1}{x \sqrt{x^{2}-1}}+\frac{1}{x \sqrt{x^{2}-1}} \\
& \hline
\end{aligned}
$$

(iii) Since the gradient is always zero For $x \geq 1\left(i{ }^{\prime} f^{\prime}(x)=0\right.$ for $\left.x \geqslant 1\right)$ for $f(x)$, then $f(x)$ must be a horizontal line for $x \geqslant 1$ (ie $f(x)$ must be a constant in the domain $x \geqslant 1$)
\therefore You can sub any x-value, $x \geqslant 1$ to find $f(x)$.

$$
\begin{aligned}
f(1) & =\sec ^{-1}(1)+\sin ^{-1}\left(\frac{1}{1}\right) \\
& =\cos ^{-1}\left(\frac{1}{1}\right)+\sin ^{-1}(1) \\
& =\cos ^{-1}(1)+\sin ^{-1}(1) \\
& =0+\frac{\pi}{2} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Hence $\quad f(x)=\sec ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}$

$$
=\frac{\pi}{2}
$$

MATHEMATICS EXTENSION I - QUESTION $/ 3$

SUGGESTED SOLUTIONS
D $\quad f(x)=\sec ^{-1} x+\sin ^{-1} \frac{1}{x}$
$f(x)=\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}$

$\operatorname{let} \alpha=\cos ^{-1} \frac{1}{x}$
$\beta=\sin ^{-3} \frac{1}{x}$

$$
\sin \beta=\frac{1}{x}
$$

0

$$
\begin{aligned}
& f(x)=\sec ^{-1} x+\sin ^{-1} \frac{1}{x} \\
& f(x)=\cos ^{-1} \frac{1}{x}+\sin \frac{1}{x}
\end{aligned}
$$

To Prove $\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}=\frac{\pi}{2}$

$$
\sin \left(\cos ^{-1} \frac{1}{x}+\sin ^{-1} \frac{1}{x}\right)^{2}-\sin \frac{1}{2}=1
$$

$$
=\frac{x^{2}}{x^{2}}
$$

=RHS and similany using cos of

Using one triage to represent the information.

Using < sum a of a triangle to prove identity,

$$
=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

$$
=\frac{\sqrt{x^{2}-1}}{x} \times \frac{\sqrt{x^{2}-1}}{x}+\frac{1}{x} \times \frac{1}{x}
$$

Using \sin correctly

$$
=\frac{x^{2}-1}{x^{2}}+\frac{1}{x^{2}}
$$

$$
-1
$$

MATHEMATICS EXTENSION I -QUESTION 13

	SUGGESTED SO
b) $x^{2}=4 a y$	$y=p x$

Solve simultaneously

$$
\begin{gathered}
x^{2}=4 a(p x) \\
x^{2}=4 a p x \\
x^{2}-4 a p x=0 \\
x(x-4 a p)=0
\end{gathered}
$$

$$
x=0 \quad \text { or } \quad x=4 \text { ap }
$$

MATHEMATICS EXTENSION I - QUESTION / 3

MATHEMATICS EXTENSION I-QUESTION 13

MATHEMATICS EXTENSION I -QUESTION 14

MATHEMATICS EXTENSIONI-QUESTION 14

MATHEMATICS EXTENSION I - QUESTION 14

SUGGESTED SOLUTIONS	
c) $4^{n}+6 n-1$ is divisible by 9	
That is, $4^{n}+6 n-1=9 M$	
Step 1 Prove true for $n=1$	
LiS	$=4^{n}+6 n-1$
	$=4^{1}+6(1)-1$
	$=9$ which is divisible by 9.

\therefore true for $n=1$

Step 2 Assume true for $n=k$
That is, $4^{k}+6 k-1=9 Q$,
where Q is any integer

$$
4^{k}=9 Q-6 k+1
$$

Step 3 Prove true for $n=k+1$
Prove $4^{k+1}+6(k+1)-1$

$$
\begin{aligned}
& =4^{k}(4)+6 k+6-1 \\
& =4(9 Q-6 k+1)+6 k+6-1 \\
& =36 Q-24 k+4+6 k+6-1 \\
& =36 Q-18 k+9 \\
& =9(4 Q-2 k+1) \\
& =9 P, \text { where } P=4 Q-2 k+1
\end{aligned}
$$

$\therefore \quad$ divisible by 9 .
Conclusion
It is true for $n=k+1$ if it is true for $n=k$. Since it is true for $n=1$, then it is true for $n=2$, and hence it is true for $n=3$, and so on. Hence, by the principle of Mathematical Induction it holds true for all in $\geqslant 1$

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)
SUGGESTED SOLUTIONS \quad MARKS \quad MARKER'S COMMENTS

General comments

The instructions indicate that relevant mathematical reasoning and/or calculations should be included in the responses for Questions 11-14. Candidates are reminded that where a question is worth several marks, full marks may not be awarded for an answer, even if the answer given is correct, if no working is shown.
This is because mathematical communication and reasoning are included in the objectives and outcomes assessed by the examination.
Candidates are advised to show all their working so that marks can be awarded for some correct steps towards their answer. A simple example is when candidates have to round their answer to a certain degree of accuracy. Candidates should always write their calculator display before rounding their answer. They should only round their answer in the last step of working, not in an earlier step. Markers can then see that candidates have rounded correctly, even if the answer is not correct.

Areas for students to improve include:

- recognising that the solution is a length and needs to be positive.
- paying attention to the mark value of the question and using it as a guide to the complexity of solution required.
- "Show that" or "Prove" questions: avoiding the omission of too many steps of the proof and communicating clearly about how they went from one step to the next.
- avoiding the omission of too many lines in the algebraic manipulation in an attempt to show the given result. In a 'show' question it must be clear how one line is obtained from another.
- showing appropriate working and not give an unsupported answer. \square

A particle is said to move with simple harmonic motion when the acceleration of the particle about a fixed-point is proportional to its displacement but opposite in direction.

Hence, when the displacement is positive the acceleration is negative and vice versa.

When asked to prove that, or show that a particle moves with simple harmonic motion, you simply show that the particle satisfies the equation

$$
a=\ddot{x}=-n^{2} x
$$

where x is the displacement of the particle about a fixed-point 0 at time t and n is a positive constant $(n>0)$.

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

to why they chose the positive value over the negative value were awarded $1 \frac{1}{2}$ marks.

- some students backed up their answer for $V=+6 \sqrt{3}$ by sketching $x \& v$ and showing that at $x=3, t=\frac{\pi}{12}$ and hence v is positive at this time were awarded 2 marks.

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

Using Pythagoras' Theorem for $\triangle P Q B$:

$$
\begin{array}{c|c}
P Q^{2}=B Q^{2}+P B^{2} & \\
2^{2}=(1.8-h)^{2}+x^{2} & \\
4-x^{2}=(1.8-h)^{2} & \\
\sqrt{4-x^{2}}=1.8-h & (\text { since } x>0) \\
\sqrt{4-x^{2}}+h=1.8 & \\
\therefore h=1.8-\sqrt{4-x^{2}} & \begin{array}{l}
\text { (2) provides } \\
\text { correct } \\
\text { solution }
\end{array} \\
\hline & \text { soling }
\end{array}
$$

- majority of the students used this method and were more successful with their setting out.

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks)

MATHEMATICS EXTENSION 1 - QUESTION /6

MATHEMATICS EXTENSION 1 - QUESTION $/ 6$

