Class Teacher: _____

St George Girls High School

Trial Higher School Certificate Examination

2019

Mathematics

Extension 1

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black pen.
- Board-approved calculators may be used.
- A reference sheet is provided.
- In Questions 11 16, show relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for incomplete or poorly presented solutions.

Section I	/10
Section II	
Question 11	/10
Question 12	/10
Question 13	/10
Question 14	/10
Question 15	/10
Question 16	/10
Total	/70

Total Marks – 70

Section 1

Pages 3 – 6

10 marks

- Attempt Questions 1 10.
- Allow about 15 minutes for this section.
- Answer on the multiple choice answer sheet provided at the back of this paper.

Section II Pages 7 – 13

60 marks

- Attempt Questions 11 16.
- Allow about 1 hour and 45 minutes for this section.
- Begin each question in a new writing booklet.

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1. The line AT is the tangent to the circle at A and the line BT is a secant meeting the circle at B and C, as shown in the diagram.

Given that AT = 9, BC = 5 and CT = x, which one of the following equations is correct?

- (A) $x^2 + 5x 81 = 0$
- (B) $x^2 + 5x + 81 = 0$
- (C) $x^2 5x 81 = 0$
- (D) $x^2 + 5x 9 = 0$
- 2. The acute angle between the lines y = 2x + 4 and 5x y + 34 = 0, to the nearest degree is:
 - (A) 4°
 - (B) 7°
 - (C) 15°
 - (D) 74°

3. If
$$t = \tan \frac{\theta}{2}$$
, what is the correct expression for $\frac{1 - \cos \theta}{\sin \theta}$.
(A) $\frac{1}{t}$
(B) t
(C) $2t$

- (D) $\frac{2}{t}$
- 4. Find the Cartesian equation of the curve defined by the parametric equations:

$$x = \sin \theta$$

$$y = \cos^2 \theta - 3.$$

- (A) $y = -3 + 3x^2$
- (B) $y = \sin^2 x 3$

(C)
$$y = -2 - x^2$$

- (D) $y = \sin 2x + 3\cos^2 x$
- 5. What is the value of $\lim_{x \to 0} \frac{\sin 2x}{x \cos x}$?
 - (A) 0
 - (B) $\frac{1}{2}$
 - (C) 1
 - (D) 2

6. Consider the graph below.

Which function best describes this graph?

(A)
$$y = \cos^{-1}(x)$$

- (B) $y = 1 \cos^{-1}(x)$
- (C) $y = \cos^{-1}(x 1)$
- (D) $y = \cos^{-1}(1 x)$

$$7. \qquad \int 4\cos^2 4x \, dx =$$

(A)
$$\left(2x + \frac{1}{4}\sin 8x\right) + C$$

(B) $\left(x + \frac{1}{2}\sin 8x\right) + C$
(C) $\left(x + \frac{1}{2}\cos 8x\right) + C$
(D) $\left(x + \frac{1}{4}\sin 8x\right) + C$

- 8. The velocity of a particle is given by $v = \sqrt{2 x}$, where x is its displacement in metres and velocity (m/s). Which of the following is a correct expression for the acceleration \ddot{x} ?
 - (A) $\ddot{x} = \frac{1}{2} \text{ m/s}^2$ (B) $\ddot{x} = \frac{1}{4} \text{ m/s}^2$ (C) $\ddot{x} = -\frac{1}{2} \text{ m/s}^2$ (D) $\ddot{x} = -\frac{1}{4} \text{ m/s}^2$

9. Which of the following is a general solution of the equation $\sin \frac{x}{2} = \sin \frac{\pi}{10}$?

- (A) $x = n\pi + (-1)^n \frac{\pi}{5}$
- (B) $x = \frac{n\pi}{2} + (-1)^n \frac{\pi}{20}$
- (C) $x = 2n\pi + (-1)^n \frac{\pi}{10}$

(D)
$$x = 2n\pi + (-1)^n \frac{\pi}{5}$$

10. The cubic curve $y = x^3 + 3ax + b$ has two turning points and crosses the y – axis at (0, -a).

Which of the following could be true?

- (A) a < 0 and b > 0
 (B) a > 0 and b < 0
 (C) a > 0 and b > 0
- (D) a < 0 and b < 0

End of Section I

Section II

60 marks **Attempt Questions 11 – 16** Allow about 1 hour and 45 minutes for this section Answer each question in the appropriate writing booklet. Your responses should include relevant mathematical reasoning and/or calculations.

(10 marks) Use a separate writing booklet Marks **Question 11**

The point *C* (x, y) divides the interval joining *A* (- 4, 8) to *B* (6, -12) 2 (a) internally in the ratio 2 : 3.

Find the coordinates of *C*.

(b) Solve for
$$x: \frac{x}{1-3x} \ge 1.$$
 3

(c) Show that
$$\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} = 2.$$
 2

(d) Find the exact value of
$$\int_{0}^{\frac{\sqrt{5}}{2}} \frac{dx}{\sqrt{5-4x^2}}$$
. 3

Question 12 (10 marks) Use a separate writing booklet

Marks

(a)		and γ are the roots of the equation $2x^3 + 5x - 3 = 0$, find the value $\gamma^{-1} + \beta^{-1} + \gamma^{-1}$.	2
(b)	Beach 2000.	ate of increase of a population P of sandflies on the track to Culbarra is proportional to the difference between the population, P , and This rate is expressed by the differential equation x(P - 2000), where k is a constant and t represents time in weeks.	
	(i)	Show that $P = 2000 + Ae^{kt}$, where A is a constant, satisfies the differential equation	1
	(ii)	Initially, the population was 2500 and two weeks later it had increased to 5000. Find the value of A and k .	2
	(iii)	After how many weeks will the population of sandflies exceed 10 000?	2

(c) Evaluate
$$\int_{-1}^{2} x\sqrt{3-x} \, dx$$
 using the substitution $u = 3-x, x < 3$. 3

Question 13 (10 marks) Use a separate writing booklet

(a) Consider the continuous function $f(x) = \sec^{-1}x + \sin^{-1}\frac{1}{x}$ for $x \ge 1$.

(i) Show that
$$\sec^{-1} x = \cos^{-1} \frac{1}{x}$$
. 1

(ii) Hence, show that
$$f'(x) = 0$$
.

(iii) Hence, or otherwise, prove that

$$\sec^{-1}x + \sin^{-1}\frac{1}{x} = \frac{\pi}{2}$$
 for $x \ge 1$.

(b) The point $A(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$. The tangent at A intersects the y –axis at B.

> The line y = px crosses the parabola at the origin and at the point *C*. Let *D* be the midpoint of *OC*.

(i) Show that the coordinates of D is
$$(2ap, 2ap^2)$$
.1(ii) Show that the coordinates of B is $(0, -ap^2)$.2

(iii) Show that *ODAB* is a parallelogram.

2

Question 14 (10 marks) Use a separate writing booklet Marks

(a) Consider the function $f(x) = 3 \sin 2x - x$.

- (i) Show that f(x) = 0 has a root α such that $1.33 < \alpha < 1.34$.
- (ii) Starting with $\alpha = 1.33$, use one application of Newton's Method to 2 find a better approximation for this root, giving your answer to 4 decimal places.

(b)

In the diagram, *ABC* is a triangle inscribed in the circle. The tangent to the circle at *A* meets *BC* produced to *D*. *E* is the point on *AC* produced such that DA = DE.

3

Page 10

Copy the diagram into your booklet.

Prove that *ABED* is a cyclic quadrilateral.

(c) Use mathematical induction to prove that $4^n + 6n - 1$ is divisible by 9 for 3 integers $n \ge 1$.

Question 15(10 marks)Use a separate writing bookletMarks

- (a) A particle is moving so that its distance x centimetres from a fixed point O at time t seconds is $x = 6 \sin 2t$.
 - (i) Show that the particle is moving in simple harmonic motion.
 - (ii) Find the period of the motion.
 - (iii) Find the velocity of the particle when it first reaches 3 centimetres 2 to the right of the origin.
- (b) The diagram shows a ladder *PQ*, 2 metres in length, leaning against a wall such that the top of the ladder, *Q*, initially reaches 1.8 metres up the wall. The base of the ladder, *P*, is *x* metres from the base of the wall, *B*.

The ladder begins to slide down the wall at the rate of 0.5 metres per minute such that the top of the ladder is h metres below its original position after t minutes.

(i) Show that *t* minutes after the ladder begins to slide down the wall,

$$h = 1.8 - \sqrt{4 - x^2}.$$
 2

(ii) Tom is standing on the ground 1.6 metres from the base of the wall in a direct line with the ladder. At what rate does base of the ladder hit Tom?

3

Page 11

2

(10 marks) Use a separate writing booklet **Question 16**

A method to score a home run in a baseball game is to hit the ball over the (a) boundary fence on the full.

A ball is hit at 50 m/s The fence, 200 metres away, is 2 metres high. You may neglect air resistance and acceleration due to gravity can be taken as 10 m/s^2 . You may assume the following equations of motion:

$$x = 50t \cos \theta$$
 and $y = 50t \sin \theta - 5t^2$
DO NOT PROVE
THESE EQUATIONS

(i) Show that the Cartesian equation of motion is given by 2

$$y = x \tan \theta - \frac{x^2}{500} (\sec^2 \theta)$$
, where θ is the angle of projection.

(ii) Show that if the ball just clears the 2 metre boundary fence then,

$$40\tan^2\theta - 100\tan\theta + 41 = 0.$$

In what range of values must θ lie to score a home run by this method? 2 (iii)

Marks

(b)

y = 1 y = 1 y = 1 k y = -1

The curve shows the graph of the function

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

where $y = \pm 1$ are the horizontal asymptotes.

(i) If *k* is a positive constant, show that the area in the first quadrant enclosed by the above curve, the lines y = 1, x = 0 and x = k is given by:

$$A = k - \ln(e^k + e^{-k}) + \ln 2$$

(ii) By considering the area in (i), prove that for all positive values of k, the area is always less than ln 2.

END OF PAPER

13

2

Year 12 Ext 1 Trial HSC	_ 2	019_Solutions	
MATHEMATICS EXTENSION 1 - QUESTION Multiple Choice			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
$1, 9^2 = \chi (\chi + 5)$			
$81 = n^2 + 5n$		ann gen fan fan fan de skrieder	
$\chi^2 + 5\chi - 81 = 0$	A	949 MILLIN & AND	
	F &		
2 For $y = 2n + 4$ m = 2	A		
2. For $y = 2n+4$, $m_1 = 2$ $5n-y+34=0$, $m_2=5$			
	F 1. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20		
$tan \Theta = \begin{bmatrix} m_1 - m_2 \\ 1 + m_1 m_2 \end{bmatrix}$	*****		
$= \frac{1-5}{1+2(5)}$	- <u>1999</u>		
$\frac{11+2(s)}{1}$			
= 3			
$= \frac{3}{11}$	11 an	AN PARSA ANA ANA ANA ANA ANA ANA ANA ANA ANA A	
Q = 15°			
	<u> </u>		
$3. \ 1 - \cos \theta = 1 - \frac{1 - t^2}{1 + t^2} \times 1 + t^2$	······································		
Sino 1+t-			
$\frac{5100}{1+t^2} \xrightarrow{2t} \times 11t^2$			
$= 1 + t^2 - (1 - t^2)$	a fan annage fan gestaan gesta fan gestaan gestaan gestaan staar de gestaan staar staar staar staar staar staar		
2_t			
$= \frac{1+t^2-1+t^2}{2}$	մեցնությունը ենքեն այն են են ցույլու է ենքերությունը ենքերությունը ենքերությունը ենքերությունը ենքերությունը ենքերությունը ենքե		
24	·····	аналан калан алтан алтан алтан алтан алтан алтан алтан алтан артан алтан алтан алтан алтан алтан алтан алтан ал	
$= \frac{2t^2}{2t}$			
= 1	B		
	P		

MATHEMATICS EXTENSION 1 - QUESTION MC SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** 4. R=sint $\frac{y}{\theta} = \cos^2 \theta - 3 = -\frac{1}{2}$ From (2) $y = (1 - \sin^2 \theta) - 3$ $= - \sin^2 \theta - 2$ C $= -\chi^2 - 2$ from (i) $\lim_{x \to 0} \frac{\sin 2x}{x \cos x} = \lim_{x \to 0} \frac{2\sin x \cos x}{x \cos x}$ 5 =2/im Sinx X>0 X. $= \frac{2 \times 1}{2 \times 1}$ D = 2 $y = \cos^{-1} x$ $y = \cos^{-1} (-\pi)$ $y = \cos^{-1} (-\pi)$ $y = \cos^{-1} (-\pi)$ $y = \cos^{-1} (1 - \pi)$ D $7. \int 4\cos^2 4x \, dx$ $= 4 \int \cos^2 4x \, dx$ $\frac{\int (\cos 8x + i) dx}{\int \frac{\sin 8n}{8} + x} + c$ $= 2n + \frac{1}{4} \sin 8x + c$

MATHEMATICS EXTENSION 1 – QUESTION MC		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
8. $v = \sqrt{2-\chi}$		
$\gamma^2 = 2 - n$		
$\mathcal{I} = d\left(\frac{1}{2}v^2\right)$		
dri		
-d(l(a, x))	an a	
$= cl\left(\frac{l}{2}\left(2-\chi\right)\right)$		
= d(1 - n)	******	
d ri		
$= -\frac{1}{2} m/s^2$		
	jaganga merupakan kerupakan dalam kang dari dapat dari bergang se	
$\frac{9}{2} = \frac{\sin \pi}{10}$		
$\frac{n}{2} = \sin^{-1}\left(\sin\frac{\pi}{10}\right)$		
$\frac{2L}{2} = \frac{\pi}{10}$		
$\frac{\overline{2} - \overline{10}}{2}$ $\frac{\chi - n\tau + (-1)^n \alpha}{2}$ $\frac{\chi - n\tau + (-1)^n \tau}{10}$		
$\frac{2}{n-n\pi+(-1)^{2}\pi}$		
$\chi = 2 n \pi + (-1)^n \pi$	D	
10. $y' = 3x^2 + 3a$		
$F_{0} + p_{1} y' = 0$		
$3x^{2}+3a=0$ $x^{2}+a=0$		
Two real colutions of a 20. As corve passes		
Through $(0, -a)$ then $y = -a$ and $x = 0$.		
$\frac{1000000}{50} - a = 0 + b$		
b = - a Soa < o then b>o	A	

MATHEMATICS EXTENSION I – QUESTION //	/8 /	
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
A(-4,8) = B(6,-12)		
	and the second of the for the second second second	
2:3 M:n		
	-	2 marks
$\chi = \Lambda \chi_1 + M \chi_2$ $y = \Lambda y_1 + M y_2$	n	for both
$\frac{1}{m+h} \qquad \begin{array}{c} y = \underline{ny}, \pm \underline{my}_2 \\ m+h \\ m+h \\ \end{array}$		values of
= 3(-4) + 2(6) = 3(8) + 2(-12) $2+3 = 2+3$		x and y
		1.e c(0,0)
= -12 + 12 = 24 - 24 5 5		A ()
		1 mark for
=0 $=0$	************************************	either x or y correctly found
c is (0,0)	k o lýti i elmandropod i borova fyrafanti gerna a vise fara b	correctly tourd
b γ z z z ± 1		
$\begin{array}{c c} b \\ \hline & \chi \\ \hline & 1 - 3\pi \end{array} \end{array} \xrightarrow{\chi \neq \frac{1}{3}}$	u	
Multiplying both sider by (-32)2		
$(1-3\pi)^2$, $\pi > 1\times ((-3\pi)^2$		
$(1-3\pi)$		
$(1-3\pi)\pi > (1-3\pi)^2$		
x(1-3x) - (1-3x) > 0	[[
$(1-3n)[n-(1-3n)] \ge 0$		
$(1-3\pi)(4\pi-1) \ge 0(\#)$	1	
		Many students had
		probleme drawing
/4 /3		the quadratic.
0		Either the concavity
$\frac{1}{2} \leq n < \frac{1}{2}$	1	was incorrect or
4 - 11 - 3		the x-intercopts were not
		labelled correctly
		in a correctly

MATHEMATICS EXTENSION I - QUESTION 11 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** Furthermore for Q11(6) some students included 1 in their solution and gave 1/4 en el/ => 21 marks were awarded · Many students used the incorrect sign to the quadratic inequality and therefore the solution obtained 2 marks Was $\chi \leq \frac{1}{4}$ or $\chi \geq \frac{1}{3}$ scre awarded $\Pi(c)$ $LHS = Sin 3x \cos 3x$ sinn cosn = cos x sin 3x - sin x ros 3x sin x cos x 1/2 1 mark = Sin 3x cosn - cos 311 SINK SINKCOSN = sin (32-22) Sinx cosx 1 mark. = sin 2n SINTLOST - 2 sinx cos x Sin n corr =) = RMS

MATHEMATICS EXTENSION I – QUESTION // SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS NOTE: Many students thought that they could factorise, COSXSIN 3x - Sin x cos3x as cosxsinx (sin2x-cosx) This is quite concerning and cave needs to be taken. Please revise compound angles. Alternative solution (by many students) (but not preferred) LHS = sin 3x - cos 3xCOSA Sinn = sin(2x+x) - cos(2x+x)SINN COSX = $\sin 2\kappa \cos n + \cos 2\kappa \sin n = \cos 2\pi \cos n + \sin 2\pi \sin n = \frac{1}{1}$ Sinal Cosil = Sin 2x cosu + cos2n sign - cos2x cos + sin2nsini SINIL Sinx Com (OIN 1/2 $= \frac{2 \sin n \cos n \cos n}{\sin n} + \frac{2 \sin n \cos n \sin n}{\cos n}$ $= \frac{2 \cos^2 n}{\cos^2 n} + \frac{2 \sin^2 n}{\cos^2 n}$ $= 2 (\cos^2 x + \sin^2 x)$ = 2 = RHS

MATHEMATICS EXTENSION I – QUESTION / (
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
15		
d) $\int^2 dx$		
0 15-4x2		
$=\int \frac{1}{2} \frac{dx}{dx}$		
$\int \sqrt{\frac{4(5-\chi^2)}{4}}$	-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2	Many students took
$= \frac{1}{2} \int \frac{\sqrt{5}}{\sqrt{5}} \frac{dx}{\sqrt{5}} = x^2} $ Many structure $\frac{1}{2} \int \sqrt{\frac{5}{4}} - x^2 + \frac{1}{2} \int \frac{1}{\sqrt{5}} \frac{dx}{\sqrt{5}} + \frac{1}{\sqrt{5}} \frac{dx}{\sqrt{5}} + \frac{1}{\sqrt{5}} \frac{dx}{\sqrt{5}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}} \frac{dx}{\sqrt{5}} + \frac{1}{\sqrt{5}} +$	ents	2 out of the integra
	ř.	instead of 1/2.
	\$	2', 2'2 marks awarded if
$=\frac{1}{2}\int \frac{1}{2} \frac{dy}{\sqrt{(\frac{y}{2})^2 - y^2}} \frac{y_2}{2}$	1/2	
	lo :	Similarly if nothing
$=\frac{1}{2}\left[\begin{array}{cc} \sin^{-1} \chi \\ \sqrt{5}\end{array}\right] \sqrt{5}$		was taken out,
2 L 15] . (21/2 marks were
	1	awarded if the
$= \frac{1}{2} \int \frac{\sin^{-1} 2\pi}{1} \int \frac{15}{2}$	an e - shuis lai i (a a meli pel i si (^{ca} n penna i strone	remaining colution
		was correct.
$= (\Gamma_{c} - 1_{2} \Gamma_{c} - 1_{0})$	1/2	
$= \frac{1}{2} \left[\frac{\sin^{-1} 2.5}{52} \frac{\sin^{-1} 0}{5} \right]$	-2-	
$= \frac{1}{2} s_{10} - \frac{1}{1}$		
2		
$=\frac{1}{2}\times\frac{T}{2}$		
2 12		
$= \frac{\pi}{4}$	1/2	
Τ		
Note: Some students did not find the	ens ens	
definite integral and just integrated to give is sin 211 + c =		rack awarded
$\frac{1}{2} \frac{1}{5} \frac{1}$		where a ward to

MATHEMATICS EXTENSION 1 – QUESTION 12 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** * Many students missed this a) 223 +5x-3=0 a22 620 connection and over complicated d = -3the question. $\frac{1}{a} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{z\beta + d\gamma + \beta\gamma}{z\beta\gamma}$ c/a -d/a 5/2 for either 5/2 or 3/2 = 5 Note: an answer of -5 was awarded Tzmarks = k (2000 + Aekt - 2000) $= k \left(P - 2000 \right)$ so it satisfies the differential equation Note: In a "show" question, you must show every step. Do not expect the examinen to join the dots for you. Many students left out crucial steps or substitutions, and only equined Manks

MATHEMATICS EXTENSION 1 - QUESTION 12 (continued) SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** * crucial step b i - Alternative solution 18 P=2000 + Aekt, then Aekt = P-2000* () AP = kAekt -1 mark = k(P-2000) (from 0) so it satisfies the differential equation ji when t= 0 p= 2500 : 2500 = 2000 + Ae =2000 +A : A= 500 1 when t=2, P=5000 : 5000 = 2000 + 500 e2k $\frac{500 e^{2k} = 3000}{e^{2k} = 6}$ 2K = ln6 K= 12 ln 6 20.895879 ... = 0.896 (3 d.p.) iii Population will reach 10000 when 10000 = 2000 + 500 ekt Sovekt = 8000 ekt = 16 kt = ln16

MATHEMATICS EXTENSION 1 – QUESTION 12 (continued) SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS t= 1/6 but k= 2ln6 = 2h16 = 3.0948224 the population will exceed 10000 during the 4th week. $\frac{u=3-x}{du} = \frac{3-u}{dx}$ e) [x J3-xdx dr = - du when x = -1, u = 4then x = 2, u = 1Candidates uto mistakenly made the integration = ((3-4)Ju (-du) easier could = { 3Ju - uJu du not earn the 3rd Mark. $= \left[2u^{2} - 2u^{2} \right]^{4}$ $=\frac{16}{5}-\frac{8}{5}$ = 8

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$a)(i)$ let $d = \sec^{-i} x$	ummu	
$Secd = \infty$	restantine and a start second	Poorly attempted
$\frac{\sec \alpha = x}{\cos \alpha = 5c}$	\bigcirc	NOTE ; sec ⁻¹ x = (sec x)
$d = cos^{-1} \frac{1}{5c}$		sec⁻'x ≠(sec x)
= RHS	10 M 1000 M 100	
OR LHS= cos-32	2011 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
$let \propto = \cos^{-1} \frac{1}{2c}$	مەر مەر مەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب	angan bagan su gan s
$\cos \alpha = \frac{1}{3c}$		
$Sec \alpha = \mathcal{X}$		
· · · · · · · · · · · · · · · · · · ·		
(ii) $f(x) = \sec^{-1} \operatorname{sec}^{-1} \operatorname{sin}^{-1} \operatorname{sin}^{-1} \operatorname{sin}^{-1}$	97 dia manjara ang kang kang kang kang kang kang kang	
$\frac{(ii)}{(ii)} f(x) = \sec^{-1} cc + \sin^{-1} \frac{1}{cc}$ $= \cos^{-1} \frac{1}{cc} + \sin^{-1} \frac{1}{cc} \qquad from (i)$	an alam na an an tao an an ann an ann an an an an an an an a	
$\frac{\text{lonsider } d\left(\sin^{-1}\overline{x}\right) \text{let } u = \overline{x}}{\text{dsc}}$ $\frac{d}{d} \left(\sin^{-1}u\right) \qquad \frac{du}{dx} = -\overline{x}^{-1}$ $= \overline{d} \left(\sin^{-1}u\right) \qquad \frac{du}{dx} = -\overline{x}^{-2}$		
d_{3c} $u = x^{-1}$		
$= \frac{di}{dsc} \left(\frac{sint}{s} \right) \qquad \frac{du}{dsc} = -\frac{s}{s} \frac{du}{dsc}$		
$= \sqrt{1-u^2}$		
dy <u>1 x - 1</u>		
$\frac{1}{\sqrt{1-u^2}} = \sqrt{1-u^2} \qquad xc^2$		
$= \frac{1}{x^2 \sqrt{1 - (\frac{1}{2})^2}}$		-
$z = \chi^{-} (1 - (\frac{1}{2c})^{2}$		
$= xc^2 \sqrt{\frac{2c^2 - 1}{2c^2}}$	-1. yr ywr a cafraf yw ar af a san y farai a rannau a rannau rannau ran a gar y gar	
Je 2 Je 2 Je 2		
$= \frac{3c^2}{3c} \sqrt{x^2 - 1}$		
	$\neg \neg$	
t jx ? ~)		

MATHEMATICS EXTENSION I - QUESTION MARKS **MARKER'S COMMENTS** SUGGESTED SOLUTIONS Similarly $\frac{d}{dx} \left(\cos^{-\frac{1}{2c}} \right)$ = $-\left(\frac{-1}{x \sqrt{x^2 - 1}} \right)$ $= \frac{1}{2 \sqrt{x^2 - 1}}$ (1) $f(x) = \cos^{-1}(\frac{1}{x}) + \sin^{-1}(\frac{1}{x})$ $F'(x) = x\sqrt{x^2 - 1} + x\sqrt{x^2 - 1}$ f'(x) = 0(iii) Since the gradient is always zero for $x \ge 1$ (if f'(x) = 0 for $x \ge 1$) for f(x)then f(x) must be a horizontal line for $x \ge 1$ (if f(x) must be a constant in (1) the domain $x \ge 1$) . You can sub any x-value, $x \ge 1$ to Find f(x). $f(1) = sec^{-1}(1) + sin^{-1}(\frac{1}{r})$ $= \cos^{-1}(\frac{1}{2}) + \sin^{-1}(1)$ $= cas^{-1}(1) + sin^{-1}(1)$ $(\Gamma$ $= 0 + \frac{1}{7}$ = 7 Hence $f(x) = \sec^{-1} \frac{1}{5c} + \sin^{-1} \frac{1}{5c}$ = $\frac{\pi}{2}$

MATHEMATICS EXTENSION I – QUESTION / 3 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** or $f(x) = sec^{-1}x + sin^{-1}\frac{1}{x}$ $f(x) = \cos^{-1} + \sin^{-1} \frac{1}{x}$ $\beta = sih^{-1} \frac{1}{2c}$ $sin\beta = \frac{1}{2c}$ $let = cos^{-1} \frac{1}{z}$ $cos d = \frac{1}{z}$ Using one triangle to represent the information X Using < sum A of a triangle $\alpha + \beta = \pi - \frac{\pi}{2}$ to prove identify X+B=7 or $f(x) = \sec^{-1} x + \sin^{-1} \frac{1}{2c}$ $f(x) = \cos^{-1} \frac{1}{x} + \sin \frac{1}{2c}$ To prove $\cos^{-1}\frac{1}{5c} + \sin^{-1}\frac{1}{5c} = \frac{\pi}{2}$ $\sin(\cos^{-1}\frac{1}{5c} + \sin^{-1}\frac{1}{5c}) = \sin\frac{\pi}{2} = 1$ Using SIN $LHS = sin \left[cas^{-1} \frac{1}{2c} + sin^{-1} \frac{1}{2c} \right] \quad \text{let } d = cas^{-1} \frac{1}{2c} \quad x \text{ A } \frac{1}{12c^{-1}} \\ cas \alpha = \frac{1}{2c} \quad \alpha = \frac{$ correctly $= \frac{\sqrt{x + \beta}}{\sqrt{x^2 - 1}} \qquad \beta = \frac{\sqrt{x} - \frac{1}{x}}{\sqrt{x}}$ $= \frac{\sqrt{x^2 - 1}}{\sqrt{x}} \times \frac{\sqrt{x^2 - 1}}{\sqrt{x}} + \frac{1}{\sqrt{x}} \times \frac{1}{\sqrt{x}}$ $\frac{x}{x^{2}-1}$ $= \frac{x^{2}-1}{1}$ $= \frac{1}{x^{2}}$ $= \frac{1}{x^{2}}$ correct application and similarly using cas or = RHS.

MATHEMATICS EXTENSION I – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) $x^2 = 4ay$ $y = px$		
Solve simultaneously	an fashasa amufuma basana basanda ar mum	
$\alpha^2 = 4\alpha(px)$		
$\pi^2 = 4apx$		
$x^2 - 4apx = 0$	المكار بالقواف فيهادا بواره المادا المادية العربية المراجع والواد والو	Make sure
x(x-4ap)=p		You do not
oc=o or oc=4ap	an arfellan artes ata an	: by or . (not penalised)
sub sc= 4ap into y=px		
0(0,0) =p(40p) FT		- Show substitution
= 4ap' /	(1/2)	(not penalisted)
: c(4ap, 4ap2)	fra namben at leite bekannt an mar ann aine	
$\frac{c(4ap, 4ap^2)}{Midpoint oc = \frac{0+4ap}{2} \frac{y=-\frac{1}{2}}{y=-\frac{1}{2}}$ $\frac{y=-\frac{1}{2}}{y=-\frac{1}{2}}$ $\frac{y=-\frac{1}{2}}{y=-\frac{1}{2}}$		
$\frac{111901}{2} = \frac{1}{2} = \frac{1}{2}$	and a second and a second a set of south the structure of a struc-	
$y = 2qp \qquad y = 2qp^2$	430 - Angeralden and Marin and Add Mall Marine - Son Bruker, 1914	
	(1/2)	
$\frac{\partial}{\partial \partial p} = \frac{\partial}{\partial p} \left(\frac{2\alpha p^2}{2\alpha p^2} \right)$		
(ii) $x^2 = 4ay$ [OR] $x = 2ap$ $y = gr$	1	
(ii) $x = 4ay$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$ $y = \frac{1}{2}x^2$	20	
$\frac{dy}{dx} = \frac{2}{4a} \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx}$	(1/2)	
$= \frac{x}{2a} \text{at } x = 2ap = 4ap \times \frac{1}{2a}$		
$m = 2a\rho$		
la e		
= p		
$y - ap^2 = p(2 - 2ap)$	(1/2)	
$y = p - \alpha p^2$		
when $3c=0$ $y=p(0)-ap^2$	$\left \widehat{\Omega} \right $	
$\frac{y^2 - ap^2}{2}$		
$B(o, -op^2)$		

MATHEMATICS EXTENSION I – QUESTION 1/3 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS (iii) m = m (0 and B share the same x-ordinate :: Vertical line) (D and A share x-ordinate One pair sides vertical = and // $\frac{d_{0g} = \left|-ap^{2}\right\rangle}{= ap^{2}} \frac{d_{0g} = 2ap^{2} - ap^{2}}{= ap^{2}}$ $\frac{d_{0g} = ap^{2}}{= ap^{2}}$ $\frac{d_{0g} = d_{0A}}{= ap^{2}}$ (2)Both pairs sides OR all sider = dpa = / (2010-201)2 + (ap2-241)2 $= \sqrt{-qp^2}$ $= \sqrt{a^2p^9}$ $d_{13} = \sqrt{(0-0)^2 + (0+0p^2)^2}$ = Varpy $d_{00} = \sqrt{(2ap-0)^2 + (2ap^2 - 0)^2} \quad d_{n0} = 2ap \sqrt{1+p^2}$ $= \sqrt{40^2 p^2 + 40^2 p^4}$ = 20p /1+p $\widehat{}$ ODAB //gm as app sides =

ATHEMATICS EXTENSION I – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$m_{idp} + oA = ap = \frac{qp}{2}$	Ũ	diagonal, bisect eachath
$midpt DB x = ap y = ap^{2}$	Ø	
ODAB is a flgim as diagonals bisect each other		

MATHEMATICS EXTENSION I – QUESTION 14 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) f(1.33) = 3=in(2x 1.33) - 1.33 1/2 Quite Well = 0.0596 (4 dp) attempted. f(1.34) = 3517 (2× 1.34) - 1.34 However, some 1/2 = - 0.00.39 (4dp) students feiled to 1/2 leave their Since f(x) is a continuous function and f(1.33) >0 and f(1.34) <0, 1/2 calculator in then a root, a, exists such that radian mode. The majority 1-33 / ~ ~ 1.34 of students lost Kmark for not writin down that the function is continuous ii) $x_1 = x_0 - f(x_0)$ $f(x) = 3 = 1 \rightarrow 2 \rightarrow 2 \rightarrow - x$ 1/2 f'(x6) f(x) = 6ces 2x-1 A few students $= \frac{1\cdot33}{6} - \frac{3}{6} = \frac{1\cdot33}{6} - \frac{1\cdot33}{6} - \frac{1\cdot33}{6} - 1$ need to re-visit = 1.3394 (44p)1/2 differentiation of Students need to realise that when trigosometric solving problems involving the Bisection Method and Newton's Method with functions respect to trigonometric functions, the calculators should be placed in radian mode. (Degree mode - answer would have been 1.568462878) Which is not correct.

MATHEMATICS EXTENSION I – QUESTION 14 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** ተ Angles had AD = ED : LDEA = LDAE to be (equal angles opposite equal sides of identified an isoscelles triangle (A'ADE ļ and labelled LDAC = LCBA (angle between correctly a tangest and a chordthrough the point together with of contact is equal to the angle in the reasoning the alternate segment) Л otherwise : LABD = LAED lack : ABED is a cyclic quadrilateral of understanding (angles in the same segment are equal) or angles attack circumference standing on the same are are equal). Some students wrote down reasons of the Circle Geometry Theorems is displayed. such a " LEAD = LDBE = a (anglessubtended ED by the same arc reasoning is based on This the assumption that ABED a cyclic quadrilateral. Students were required to prove that ABED is a cyclic quadrilatoral. Note: spelling of isosceles triangle!

MATHEMATICS EXTENSION I – QUESTION 14 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** c) 4" + 6n -1 is divisible by 9 That is, 4 + 6, -1 = 9M Step 1 Prove true for n= 1 $LHS = 4^{7} + 6_{7} - 1$ $= 4^{1} + 6(i) - 1$ = 9 which is divisible by 9. - true for n=1 Imk Jimk for Step 2 Assume true for n=k Step 1,2 T_{bet} is, $4^{k} + 6k - 1 = 9Q$, and the con clusion. Where Q is any integer Students $4^{k} = qQ - 6k + 1$ should be encouraged to step 3 Prove true for n=k+1 write where Prove 4 K+1 + 6 (K+1) - 1 a is any integer (not restricte $= 4^{k}(4) + 6k + 6 - 1$ Substritution $= 4(9\alpha-6k+1)+6k+6-1$ 1 = 36 Q - 24k + 4 + 6k + 6 - 1 the assumption = 360 - 10k + 9appropriately = 9(4a-2k+1)into step 3 I. = 9 P, where P = 4Q-2K+1 Appropriate - divisible by 9. simplification Conclusion It is true for n=k+1 if it is true The conclusion was written for n=k. Since it is true for n=1. then it is true for n=2, and hence down very it is true for n=3, and so on. poorly. Hence, by the Brinciple of Mathematical Induction it holds true for all in >

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 – QUESTION 15 (10 marks)		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
General comments The instructions indicate that relevant mathematical reasoning and/o included in the responses for Questions 11–14. Candidates are remin question is worth several marks, full marks may not be awarded for answer given is correct, if no working is shown. This is because mathematical communication and reasoning are incoment and outcomes assessed by the examination. Candidates are advised to show all their working so that marks can correct steps towards their answer. A simple example is when candid answer to a certain degree of accuracy. Candidates should always we display before rounding their answer. They should only round their working, not in an earlier step. Markers can then see that candidates even if the answer is not correct.	nded that w an answer, luded in the be awarded dates have rite their ca answer in t	where a even if the e objectives for some to round their alculator he last step of
Areas for students to improve include:		
 recognising that the solution is a length and needs to 	o be positi	ve.
 paying attention to the mark value of the question an guide to the complexity of solution required. "Show that" or "Prove" questions: avoiding the omis many steps of the proof and communicating clearly a went from one step to the next. avoiding the omission of too many lines in the algebra manipulation in an attempt to show the given result. question it must be clear how one line is obtained from the step for the step in the step in the step for the step in the step in	ssion of to bout how raic In a 'show	oo they ,
 showing appropriate working and not give an unsupport 	ported ans	wer.
 (a) (i) A particle is said to move with simple harmonic monotomic acceleration of the particle about a fixed-point is provide the provided of the provided of the particle about a fixed-point is provided of the provided of the particle about a fixed-point is provided of the provided of the particle about a fixed-point is provided of the provided of the particle about a fixed-point is provided of the particle about a fixed-point is provided of the provided of the particle about a fixed-point is provided of the particle about a fixed o	otion whe roportion	n the al to its
Hence, when the displacement is positive the accele vice versa.	eration is	negative and
When asked to prove that, or show that a particle n harmonic motion, you simply show that the particle	noves wit e satisfies	h simple the equation
$a = \ddot{x} = -n^2 x$		
where x is the displacement of the particle about a and n is a positive constant $(n > 0)$.	fixed-poir	nt O at time t

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks) MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS (a)(i) In this question, students needed to show that x = 6sin2t is a solution to the differential equation $\ddot{x} = -n^2 x$. x = b sin 2t $\frac{dx}{dt} = \frac{b\cos 2t \times 2}{12\cos 2t}$ $\frac{d}{dt^2} = -12 \sin 2t \times 2$ = - 24 sin 2t -1) for finding adceleration = - 4 x 6 sinat D for wrect form = -4x $= -(2)^{2} \propto$ since x = - 4x is in the form x = -n²x where n=2, the particle is moving in simple harmonic motion. (ii) Period = 2TT = 277 2 - TT - () provides whereast solution

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 - QUESTION 15 (10 marks) MARKER'S COMMENTS MARKS SUGGESTED SOLUTIONS (iii) when x=3: $6 \sin at = 3$ 1) for correct. sin 2t = + $2t = II, 5II, \dots$ value of t. t= TT when it first reaches x=3 When t= II: i = 12 105 (2×II) = 12 ws II $= 12 \times \sqrt{3}$ = 6,3 cm 5 - (1 corr = 10.39230485 cm/5 velocity. · students who used an incorrect answer Br t and who demonstrated the relevant skills were not further penalised if they arrived at a correct solution for is for their incorrect t-value. [] mark - CFPA (it pays to show working and Substitutions). OR Students who found V2 from integration where awarded full marks as long as their solution was correct.

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 – QU	JESTION	15 (10 marks)
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	-	
$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = -4x$ $\frac{1}{2}v^{2} = -4x^{2} + C$		
$\frac{1}{2}v^{2} = -4x^{2} + C$		
when t=0, v=2 = 12 105 2 (0)		
$\chi = 0 = \lambda$		
$\frac{1}{2}(12)^2 = 0 + C$	 A 1997 Marcine and Annual State Sta	
C = 72		
$\frac{1}{2}v^{2} = -2x^{2} + 72$		
$v^2 = -4x^2 + 144$	any symmetry same and the state of the	
when $\chi = 3$: $V^2 = -4(3)^2 + 144$		
= 108		
$V = \pm \sqrt{108}$		
$=\pm 613$		
. : V = + 653 cm 5 w	ith no	reference
to why they chose the positive	value	over the
negative value were awarded	17	marks.
· some students backed up th	eir ar	iower for
V=+653 by sketching X&V	and	showing that
at x=3, t= II and hence v is	positi	ive at this
time were awarded 2 marks.		

MATHEMATICS EXTENSION 1 TRIAL HSC 2019 – QUESTION 15 (10 marks) **MARKER'S COMMENTS** SUGGESTED SOLUTIONS MARKS (b)(ii)using (i · many errors made when differentiating h= 1.8- $-(4-x^2)^{\frac{1}{2}}$ · (some integrated and h = 1.8still wrote their answer as <u>alh</u> answer as <u>ah</u> $\frac{dh}{dx} = -\pm (4 - x^2)^{-\pm} \times -2x$ (-1) for D for correct dh $= \chi - \sqrt{1 - \frac{1}{2}}$ this. $\frac{dh}{dt} = 0.5$ $\frac{dx}{dh} = \sqrt{4 - x^2}$ SOTE: dh = 0.5 m/min not 1.6 Using chain rule: $dx = dx \times dh$ dt dh dt· showing all working with substitutions made marking = V-1-X² × 0.5 this guestion casier as I when x=1.6: Louid check answers using $dx = \sqrt{4 - 1.6^2} \times 0.5 = 0$ my calculator CFPA. · Bald answers equivalent vere not merit awarded any = 11.44 × 0.5 marks l . all these lines were not necessary, · many students I have put them $= \frac{1\cdot 2}{1\cdot 5} \times 0\cdot 5$ in as my way of Brgot to their dh (-1) Orecking steps & = 0.75 × 0.5 calculations. 0.375 m/min/Ofor 3 leading to an answer of $\frac{2}{5}$ $=\frac{3}{2}$ m/min • students who used dh = -0.5 and showed all working, arrived at -0.375 mini-

MATHEMATICS EXTENSION 1 – QUESTION 16		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) (i) 50t = x sec 0	1001 1 - 1002 201 ANNO 201 6-1 - 200 - 201	
$t = x \sec \theta$	<u> </u>	I mark for making
$y = 50x \sec\theta \sin\theta - 5(x \sec\theta)^2$		t the subject and
30 00	18921 - MIRELINA BERKALAMAN AND AND AND AND AND AND AND AND AND A	I mark for comet
$\frac{=2.5.7\theta}{.05\theta} - \frac{5.2^2 \sec^2 \theta}{2500}$		substitution into y
$= x \tan \theta - \frac{x^2}{500} \sec^2 \theta$		
(ii) When x = 200 y = 2		
$2 = 200 \tan \theta - 200^2 \sec^2 \theta$		1 mark for substitu
$= 200 \tan \theta - 80 \sec^2 \theta$ $= 200 \tan \theta - 80 (\tan^2 \theta + 1)$	L	I mapk for using
= 200 fun 0 - 80 tun 20 - 80		5ec 20 = tam 20 + 1
$82 = 200 \tan \theta - 80 \tan^2 \theta$		
$41 = 100 \tan \theta - 40 \tan^2 \theta$		
$\Rightarrow 40 \tan^2 \theta - 100 \tan \theta + 41 = 0$		
(iii) Let A = tan B		
$40A^2 - 100A + 41 = 0$		
$A = \frac{100 \pm \sqrt{100^2 - 4 \times 40 \times 41}}{80}$	-	
$= 100 \pm \sqrt{3440}$		
$= \frac{25 \pm \sqrt{215}}{20}$ $\frac{25 - \sqrt{215}}{20} \leq A \leq \frac{25 \pm \sqrt{215}}{20}$		
$\frac{25 - \sqrt{215}}{20} \le \frac{1}{400} = \frac{25 + \sqrt{215}}{20}$		
$27^{\circ} \leq \Theta \leq 63^{\circ}$ to the rearest degra	<u>ee 1</u>	

MATHEMATICS EXTENSION 1 – QUESTION 16		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) (i) Aren of rectangle 1× k = k	a and a second and a second	
Area enclosed = $k - \int_{0}^{k} \frac{e^{2k} - e^{-2k}}{e^{2k}} dk$	1	1 much for setting
$If f(z) = e^{2} + e^{-2}$		up the integral
$f(x) = e^{x} - e^{-x}$.799.94.499.64.40.00.01.01.01.01.01.01.01.01.01.01.01.01	•
using $\int_{0}^{k} f'(x) dy = \left[ln \left(f(x) \right) \right]_{0}^{k}$		
Aren enclosed = $k - \left[\ln \left[e^{ik} + e^{-ik} \right] \right]^{k}$	•	
<u>e^k+e^{-k}>0</u>	1-10-10-10-10-10-10-10-10-10-10-10-10-10	
= k - $(ln(e^{k}+e^{-k}) - ln(e^{0}+e^{-0}))$		I musk for funding
$= k - (ln(e^{k} + e^{-k}) - ln 2)$		the integral
$= k - l_1(e^k + e^{-k}) + l_2$		
$(i) Since (e^{k} + e^{-k}) > e^{k} (e^{-k} > o)$		
$\ln\left(e^{k}+e^{-k}\right)>\ln e^{k}$		I maple for setting
$-\ln(e^{k}+e^{-k}) < -\ln e^{k}$		this up
$k - \ln(e^{k} + e^{-k}) < k - \ln e^{k}$	169939411079741165414104141041410414104141	.
$k - \ln(e^{k} + e^{-k}) < k - k$	1	I much for completing
$k - \ln(e^{k} + e^{-k}) < 0$	fundfall fundfalla fikum (filakum filakum filakum fi	the proof
$k - ln(e^{k} + e^{-k}) + ln 2 \leq ln 2$		
: A < In 2 for all k>0	r,,	
All sections of Q16 were done well		
except for b) (ii) which was poorly done	/N//	