

2011
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time- 5 minutes
- Working Time -2 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value

Total Marks - 84

Attempt Questions 1-7
All Questions are of equal value

QUestion 1 (12 marks) Begin a NEW booklet.
a) Calculate $\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x}$.
b) Solve $\frac{x}{2 x-1} \geq 3$.
c) If α, β, γ are the roots of the equation $4 x^{3}-6 x^{2}-3 x+8=0$, find the value of
(i) $\alpha \beta+\alpha \gamma+\beta \gamma$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
d) If $\log _{5} 10=2 \cdot 48$ find the exact value of $\log _{5} 4$.
e) Use the substitution $u=x^{2}-3$ to evaluate $\int_{2}^{6} \frac{x}{\sqrt{x^{2}-3}} d x$.

Question 2 (12 marks) Begin a NEW booklet.
a) (i) Prove that $\frac{1+\cos 2 \theta}{\sin 2 \theta}=\cot \theta$.
(ii) Hence calculate the exact value of $\cot \frac{\pi}{12}$.
b) A polynomial is given by $\mathrm{P}(x)=x^{3}+a x^{2}+b x+8$.

Determine the values of a and b if $(x+4)$ is a factor of $\mathrm{P}(x)$ and 18 is the remainder when $\mathrm{P}(x)$ is divided by $(x+1)$.
c) Find the exact value of $\int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{6+3 x^{2}}$.
d) In the diagram below A, B and C are points on the circumference of a
circle centre O. If $\angle C A B=40^{\circ}$, find the size of $\angle O B C$ giving reasons for your answer.

a) Use one application of Newton's method to find a second approximation to the root of the equation $3 \sin x-2 x=0$, by taking 1.56 as your first approximation.

Write your answer correct to 2 decimal places.
b) Find the term independent of x in the expansion of

$$
\left(x^{2}-\frac{1}{x^{3}}\right)^{10}
$$

c) Show that the function $f(x)=\frac{e^{x}}{4-e^{x}}$ is monotonically increasing over the domain of x.
d) The graph of $g(x)=x^{2}+4 x-5$ is shown in the diagram.

(i) Sketch the graph of the inverse function of $g(x)=x^{2}+4 x-5$, for $x \geq-2$.
(ii) State the domain of the inverse function $g^{-1}(x)$.
(iii) Find an expression for $y=g^{-1}(x)$ in terms of x.
a) Find $\int \sin \theta \cos ^{2} \theta d \theta$ by using the substitution $u=\cos \theta$.
b) Evaluate $\sin \left[\tan ^{-1}(-\sqrt{3})\right]$.
c) A spherical balloon is inflated at a constant rate of $12 \cdot 6 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the surface area increasing when the radius of the balloon is 12 cm ?
$\mathrm{SA}=4 \pi r^{2}$ and $\mathrm{V}=\frac{4}{3} \pi r^{3}$.
d) $\quad \mathrm{P}\left(2 a p, a p^{2}\right)$ is a point on the parabola $x^{2}=4 a y$ as shown in the diagram drawn below.

The equation of the normal to the curve at P is $x+p y=2 a p+a p^{3}$. DO NOT prove this.
(i) Find the co-ordinates of the point Q where the normal at P meets the y-axis.
(ii) Show that the co-ordinates of the point R , which divides the interval PQ externally in the ratio $1: 2$ are given by $\left(4 a p, a p^{2}-2 a\right)$
(iii) Find the Cartesian equation of the locus of R.
a) Consider the function $y=4 \sin ^{-1}\left(\frac{x}{3}\right)$
(i) State the domain and range of the function.
(ii) Sketch the graph of the function showing all essential features.
(iii) Calculate the gradient of the tangent to the curve at the point where $x=\sqrt{5}$.
b) The area bounded by the curve $y=\sin 2 x$, the x-axis and the line $x=\frac{\pi}{4}$ is rotated about the x-axis.

Calculate the exact volume of the solid of revolution.
c) The rate of growth of bacteria in a culture is given by $\frac{d \mathrm{~N}}{d t}=k(\mathrm{~N}-800)$, where N is the number of bacteria and t is time, in seconds.
(i) Show that $\mathrm{N}=800+\mathrm{A} e^{k t}$ is a solution of this equation.
(ii) Initially there are 1000 bacteria and five seconds later there are 1700 bacteria present in the culture. Calculate the number of bacteria present after ten seconds.

QUESTION 6 (12 MARKS) Begin a NEW booklet.
a) (i) Express $\sqrt{3} \sin \theta-\cos \theta$ in the form $\mathrm{R} \sin (\theta-\alpha)$ where R is positive and α is acute.
(ii) Hence solve $\sqrt{3} \sin \theta-\cos \theta=-1$ for $0 \leq \theta \leq 2 \pi$.
b) Write the binomial expansion of $(3 a-2 b)^{4}$ in simplified form.
c) Use the table of standard integrals to show that $\int_{6}^{10} \frac{d x}{\sqrt{x^{2}-36}}=\log _{e} 3$.
d) Use the principle of Mathematical Induction to prove that for all positive integers
$\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$.

Question 7 (12 marks) Begin a NEW booklet.

a) The acceleration of a particle P is given by $\ddot{x}=4 x\left(x^{2}-1\right)$,
where x is the displacement of the particle from the origin, in metres, after t seconds. Initially the particle is at the origin, moving to the right with a velocity of $\sqrt{2} \mathrm{~m} / \mathrm{s}$.

Prove that the velocity of the particle is $v=-\sqrt{2}\left(x^{2}-1\right)$.
b) Consider the expansion of $\left(x+\frac{3}{x^{2}}\right)^{8}$ with the general term T_{k+1}.
(i) Show that $\frac{\mathrm{T}_{k+1}}{\mathrm{~T}_{k}}=\frac{9-k}{k} \times \frac{3}{x^{3}}$
(ii) Hence calculate the greatest co-efficient in the expansion.
c) A particle is moving in simple harmonic motion about a fixed point, with a velocity measured in metres/second, given by $v^{2}=21+4 x-x^{2}$.
(i) Between what two points is the particle oscillating?
(ii) What is the centre of the motion?
(iii) Write the amplitude of the motion.
(iv) Calculate the particle's maximum speed.

2011 TRIAL HSC EXT 1 MATHEMATICS - SOLUTIONS
QUESTION 1.

$$
\text { a) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x} & =\frac{3}{2} \lim _{x \rightarrow 0} \frac{\tan 3 x}{3 x} \\
& =\frac{3}{2} \times 1 \\
& =\frac{3}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) } \frac{x}{2 x-1} \geqslant 3 & x \neq \frac{1}{2} \\
x(2 x-1) \geqslant 3(2 x-1)^{2} & \\
3(2 x-1)^{2}-x(2 x-1) \leqslant 0 & \\
(2 x-1)(6 x-3-x) \leqslant 0 & 10 \\
(2 x-1)(5 x-3) \leqslant 0 & \frac{1}{2} \quad \frac{1}{2}
\end{array}
$$

c) (i)

$$
\begin{aligned}
\alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a} \\
& =-\frac{3}{4}
\end{aligned}
$$

(II)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} & =\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}
\end{aligned}=\frac{-\alpha}{a}-2 \gamma \quad=-2 .
$$

d)

$$
\begin{aligned}
& \log _{5} 10^{\circ}=2.48 \\
& \log _{5}(2 \times 5)=2.48 \\
& \log _{5} 2+ \log _{5} 5=2.48 \\
& \log _{5} 2=1.48 \\
& 2 \log _{5} 2=2.96 \\
& \therefore \log _{5} 4=2.96
\end{aligned}
$$

\qquad

$$
\sqrt{33}-1
$$

QUESTITN 2
c)

$$
\text { (i) } \begin{aligned}
\text { LHS } & =\frac{1+\cos 2 \theta}{\sin 2 \theta} \\
& =\frac{1+2 \cos ^{2} \theta-1}{2 \sin \theta \cos \theta} \\
& =\frac{2 \cos 2 \theta}{2 \sin \theta \cos \theta} \\
& =\frac{\cos \theta}{\sin \theta} \\
& =\cot \theta \\
& =\text { RHS }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\cot \theta & =(1+\cos 2 \theta) \div \sin 2 \theta \\
\cot \frac{\pi}{12} & =\left(1+\cos \frac{\pi}{6}\right) \div \sin \frac{\pi}{6} \\
& =\left(1+\frac{\sqrt{3}}{2}\right) \div \frac{1}{2} \\
& =2+\sqrt{3}
\end{aligned}
$$

b)

$$
\begin{align*}
P(-4)=0 \quad 1 e-64+16 a-4 b+8 & =0 \\
16 a-4 b & =56 \\
4 a-b & =14 \tag{1}
\end{align*}
$$

$$
\begin{align*}
P(-1)=18 \quad \text { ie } \quad-1+a-b+8 & =18 \\
a-b & =11 \tag{2}
\end{align*}
$$

(1) $-(2)$

$$
\begin{aligned}
3 a & =3 \\
\therefore \quad a & =1, \quad b=-10
\end{aligned}
$$

$$
\begin{aligned}
\int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{6+3 x^{2}} & =\frac{1}{3} \int_{\sqrt{2}}^{\sqrt{6}} \frac{d x}{2+x^{2}} \quad a^{2}=2 \\
& =\frac{1}{3} \cdot \frac{1}{\sqrt{2}}\left[\tan ^{-1} \frac{x}{\sqrt{2}}\right]_{\sqrt{2}}^{\sqrt{6}} \\
& =\frac{1}{3 \sqrt{2}}\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right) \\
& =\frac{1}{3 \sqrt{2}}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\frac{\pi}{36 \sqrt{2}}
\end{aligned}
$$

d) $L C O B=80^{\circ}$ (angle at the centre is twice the angle at the circumference, subtended by the same are)
$\triangle O C B$ is isosceles as $O C=O B$ (radii)
$\therefore \quad \angle O B C=50^{\circ}$ (base angle in isosceles triangle)

QUESTION 3
a) Let

$$
\begin{aligned}
f(x) & =3 \sin x-2 x \quad x_{1}=1.56 \\
f^{\prime}(x) & =3 \cos x-2 \\
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =1.56-\left(\frac{3 \sin 1.56-2 \times 1.56}{3 \cos 1.56-2}\right) \\
& \doteqdot 1.4989 \ldots .
\end{aligned}
$$

\therefore a second approx ${ }^{n}$ to the root is 1.50 , to 2 dee. pl.
b) $T_{k+1}={ }^{n} C_{k} a^{n-k} \cdot b^{k}$

$$
={ }^{10} C_{k}\left(x^{2}\right)^{10-k} \cdot(-1)^{k} \cdot\left(x^{-3}\right)^{k}
$$

$$
20-2 R-3 R=0
$$

$$
k=4
$$

$$
T_{k+1}={ }^{10} C_{4}(-1)^{4}
$$

\therefore the independent term is 210
c) If $f(x)$ is monotonically increasing for all x, then $f^{\prime}(x)>0$ for all values of x

$$
\begin{array}{rlrl}
f(x) & =\frac{e^{x}}{4-e^{x}} & \mu=e^{x} & v=4-e^{x} \\
f^{\prime}(x) & =\frac{\left(4-e^{x}\right) e^{x}+e^{x} \cdot e^{x}}{\left(4-e^{x}\right)^{2}} & u^{\prime}=e^{x} & \\
& =\frac{4 e^{x}}{\left(4-e^{x}\right)^{2}} &
\end{array}
$$

cont.

Since $e^{x}>0$ for all x
and $\left(4-e^{x}\right)^{2}>0$ for all x
then $f^{\prime}(x)>0$
and the function is increasing over the domairof x
d) (i)

(ii) $x \geqslant-9$
(iii) $\quad x=y^{2}+4 y-5$

$$
\begin{aligned}
x+5 & =y^{2}+4 y \\
x+5+4 & =y^{2}+4 y+4 \\
x+9 & =(y+2)^{2} \\
y+2 & = \pm \sqrt{(x+9)}
\end{aligned}
$$

$\therefore \quad y=-2+\sqrt{x+9}$ is the inverse f_{n}

QUESTION 4
a) $\int \sin \theta \cos ^{2} \theta d \theta$

$$
\begin{aligned}
\mu & =\cos \theta \\
d \mu & =-\sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =-\int \mu^{2} d u \\
& =-\frac{1}{3} \mu^{3}+c \\
& =-\frac{1}{3} \cos ^{3} \theta+c
\end{aligned}
$$

b) $\sin \left[\tan ^{-1}(-\sqrt{3})\right]=\sin \left(-\frac{\pi}{3}\right)$

$$
=-\frac{\sqrt{3}}{2}
$$

c)

$$
\begin{array}{rlr}
\frac{d V}{d t} & =\frac{d V}{d r} \times \frac{d r}{d t} & V=\frac{4}{3} \pi r^{3} \\
12.6 & =4 \pi \times 12^{2} \times \frac{d r}{d t} & \frac{d V}{d r}=4 \pi r^{2} \\
\frac{d t}{d t} & =\frac{12.6}{4 \pi \times 12^{2}} & \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} & A=4 \pi r^{2} \\
& =8 \pi \times 12 \times \frac{12.6}{4 \pi \times 12^{2}} & \frac{d A}{d r}=8 \pi r
\end{array}
$$

\therefore surface area is increasing at the rate of $2.1 \mathrm{~cm}^{2} / \mathrm{s}$
d) over page
d) (i) when $x=0, \quad p y=2 a p+a p^{3}$

$$
y=2 a+a p^{2}
$$

$\therefore Q$ is the point $\left(0,2 a+a p^{2}\right)$
(ii) $P\left(2 a p, a p^{x_{1}}\right) \quad Q\left(x^{x_{2}}, 2 a+a p^{2}\right) \quad-1: n$

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)=\left(\frac{0+4 a p}{1}, \frac{-2 a-a p^{2}+2 a p^{2}}{1},\right.
$$

$\therefore R$ is the point (Hap, $a p^{2}-2 a$)
(iii)

$$
\begin{align*}
& x=4 a p \tag{1}\\
& y=a p^{2}-2 a \tag{2}
\end{align*}
$$

from (1) $\quad p=\frac{x}{4 a}$
sub in (2) $\quad y=\frac{a \cdot x^{2}}{16 a^{2}}-2 a$

$$
y+2 a=\frac{x^{2}}{16 a}
$$

$\therefore x^{2}=16 a(y+2 a)$ is the eqn of the locus off

QUESTION 5
a) (i) domain is $-3 \leqslant x \leqslant 3$
range is $-2 \pi \leqslant y \leqslant 2 \pi$
(ii)

(iii)

$$
\begin{aligned}
y & =4 \sin ^{-1}\left(\frac{x}{3}\right) \\
\frac{d y}{d x} & =4 \cdot \frac{1}{\sqrt{9-x^{2}}}
\end{aligned}
$$

when $x=\sqrt{5}, \quad \frac{d y}{d x}=4 \cdot \frac{1}{\sqrt{9-5}}$
\therefore gradient of the tangent is 2
b) $V=\pi \int^{\pi / 4} \sin ^{2} 2 x d x$

$$
=\frac{\pi}{2} \int_{0}^{\pi / 4}(1-\cos 4 x) d x
$$

$$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& \sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \\
& \sin ^{2} 2 x=\frac{1}{2}(1-\cos 4 x
\end{aligned}
$$

$$
=\frac{\pi}{2}\left[x-\frac{1}{4} \sin 4 x\right]_{0}^{\pi / 4}
$$

$$
=\frac{\pi}{2}\left[\frac{\pi}{4}-\frac{1}{4} \sin \pi-(0-0)\right]
$$

\therefore the volume is $\frac{\pi^{2}}{8}$ cubic units
e)

$$
\begin{aligned}
N & =800+A e \\
\frac{d N}{d t} & =R \cdot A e^{R t}
\end{aligned}
$$

le/ $\quad \frac{d N}{d t}=R(N-800)$
(ii) $\quad N=800+A e^{k t}$

$$
\begin{aligned}
t=0, N=1000 \text { so } \quad 1000 & =800+A \\
A & =200 \\
N & =800+200 \mathrm{e}
\end{aligned}
$$

$$
t=5, N=1700 \quad 1700=800+200 e^{5 k}
$$

$$
5 k=\log _{e} 4 \cdot 5
$$

$$
R=\frac{1}{5} \log _{e} 4 \cdot 5
$$

when $t=10$

$$
\begin{aligned}
N & =800+200 e^{\sum \log e 4} \\
& =800+200(4.5)^{2} \\
& =4850
\end{aligned}
$$

\therefore there are 4850 bacteria after 105.

QUESTION 6
a)
(i) $\sqrt{3} \sin \theta-\cos \theta=R \sin \theta \cos \alpha-R \cos \theta \sin \alpha$

$$
\begin{align*}
& R \cos \alpha=\sqrt{3} \\
& R \sin \alpha=1 \tag{2}
\end{align*}
$$

(2) \div (1) $\quad \tan \alpha=1 / \sqrt{3}$

$$
\alpha=\pi / 6
$$

$(1)^{2}+(2)^{2}$

$$
R^{2}=4
$$

$$
R=2
$$

$$
\therefore \quad \sqrt{3} \sin \theta-\cos \theta=2 \sin \left(\theta-\frac{\pi}{6}\right)
$$

(ii) $2 \sin \left(\theta-\frac{\pi}{6}\right)=-1$ for $-\frac{\pi}{6} \leqslant \theta-\frac{\pi}{6} \leqslant 2 \pi-\frac{\pi}{6}$

$$
\begin{array}{rlr|r}
\sin \left(\theta-\frac{\pi}{6}\right) & =-\frac{1}{2} & \frac{s}{T} & A \\
\theta-\frac{\pi}{6} & =-\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} & \\
\therefore \quad \theta & =0, \frac{4 \pi}{3}, 2 \pi &
\end{array}
$$

b)

$$
\begin{aligned}
& (3 a-2 b)^{4} \\
= & (3 a)^{4}+4(3 a)^{3}(-2 b)+6(3 a)^{2}(-2 b)^{2}+4(3 a)(-2 b)^{3}+(-2 b)^{4} 1_{2}^{1} 2^{1} \\
= & 81 a^{4}-216 a^{3} b+216 a^{2} b^{2}-96 a b^{3}+16 b^{4}
\end{aligned}
$$

c) $\int_{6}^{10} \frac{d x}{\sqrt{x^{2}-36}}=\left[\ln \left(x+\sqrt{x^{2}-36}\right)\right]_{6}^{10}$

$$
=\ln (10+\sqrt{100-36})-\ln 6
$$

$$
\begin{aligned}
& =\ln 18-\ln 6 \\
& =\ln (18 / 6) \\
& =\ln 3
\end{aligned}
$$

d) Step Prove true when $n=1$

$$
\begin{aligned}
\text { LHS } & =\frac{1}{1 \times 3} & \text { RUS } & =\frac{1}{2+1} \\
& =\frac{1}{3} & & =\frac{1}{3}
\end{aligned}
$$

\therefore result is true when $n=1$

Step 2 Assume true when $n=R$

$$
\text { ie/ } \quad S_{R}=\frac{R}{2 R+1}
$$

Prove true when $n=k+1$
e/ $S_{k+1}=\frac{k+1}{2 k+3}$
Proof: $\quad S_{k+1}=S_{k}+T_{k+1}$

$$
\begin{aligned}
& =\frac{k}{(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} \\
\therefore S_{k+1} & =\frac{k+1}{2 k+3}
\end{aligned}
$$

Step 3 Since the result is true when $n=1$, it is also true when $n=1+1$ le $n=2$

Since result is true when $n=2$, it is also true when $n=2+1$ ie $n=3$ etc
\therefore result is true for all positive integers.

QUESTION 7
a)

$$
x=0, v=\sqrt{2}
$$

$$
\begin{aligned}
\ddot{x} & =4 x\left(x^{2}-1\right) \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =4 x^{3}-4 x \\
\frac{1}{2} v^{2} & =x^{4}-2 x^{2}+c \\
\frac{1}{2} \cdot 2 & =4-2 \cdot 2+c \quad \Rightarrow c=1 \\
\frac{1}{2} v^{2} & =x^{4}-2 x^{2}+1 \\
\frac{1}{2} v^{2} & =\left(x^{2}-1\right)^{2} \\
v^{2} & =2\left(x^{2}-1\right)^{2} \\
v & = \pm \sqrt{2}\left(x^{2}-1\right)
\end{aligned}
$$

when $x=0, v=\sqrt{2}$

$$
\therefore v=-\sqrt{2}\left(x^{2}-1\right)
$$

b) (i) $\frac{T_{k+1}}{T_{k}}=\binom{8}{k} x^{8-k} \cdot 3^{k} x^{-2 k} \div\left[\binom{8}{k-1} x^{4-k} \cdot 3^{k-1} \cdot x^{-2 k+2}\right]$

$$
=\frac{8!}{k!(8-k)!} \times \frac{(k-1)!(9-k)!}{8!} \times 3 \times x^{-3}
$$

$$
=\frac{9-k}{k} \cdot \frac{3}{x^{3}}
$$

(ii)

$$
\text { 1) } \begin{aligned}
& \frac{T_{k+1}}{T_{k}}>1 \\
& \frac{3(9-k)}{k}>1 \\
& 27-3 k>k \\
& 4 k<27 \\
& k<6^{2 / 4} \\
& \therefore k=6 \\
& \text { co-efficient }=\binom{8}{6} .3^{6}
\end{aligned}
$$

\therefore greatest co-efficient is 20412 .
c) (i) $w=0$ at the end points of the motion

$$
\begin{array}{r}
x^{2}-4 x-21=0 \\
(x-7)(x+3)=0 \\
x=7,-3
\end{array}
$$

\therefore particle is oscillating between $x=-3$ and $x=7$
(ii) Centre is at $x=2$

(iii) Amplitude is 5 m
(iv) Max speed occurs at the centre of the motion
when $x=2, \quad v^{2}=21+8-4$

$$
v^{2}=25
$$

\therefore max speed is $5 \mathrm{~m} / \mathrm{s}$

