SYDNEY BOYS’ HIGH SCHOOL

MOORE PARK, SURRY HILLS

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2001

MATHEMATICS

EXTENSION 1

Time allowed: 2 Hours
(plus five minutes reading time)
Examiner:
E.Choy

DIRECTIONS TO CANDIDATES

- $A L L$ questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Start each question on a new answer sheet.
- Additional answer sheets may be obtained from the supervisor upon request.

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Question 1. (12 marks)
(a) Find the acute angle (correct to the nearest minute) between the lines $3 x+2 y=7$ and $4 x-3 y=2$.
(b) Using the expansion of $\tan (\quad)$, or otherwise, show that $\tan \left(-15^{\circ}\right)=\sqrt{3}-2$.
(c) Find $\lim _{x \rightarrow 0}\left(\frac{\sin 4 x+\tan x}{x}\right)$.
(d) Differentiate with respect to x :
(i) $y=\ln (\cos x)$
(ii) $y=\tan ^{-1} 3 x$
(e) Solve $2 \cos ^{2} x+3 \sin x-3=0$, where $0 \leq x \leq 2 \pi$.
(f) Find the co-ordinates of the point P that divides the interval joining the points $A(-3,4)$ and $B(-1,0)$ externally in the ratio $4: 3$.

Question 2. (12 marks)
(a) Find the general solution of $\tan x=\sqrt{3}$. Give your answer in a concise, general form. $\mathbf{2}$
(b) How many different 9-letter "words" can be made from the letters of ISOSCELES?
(c) Find the domain and range of the function $y=\sin ^{-1}(1-\sqrt{x})$.
(d) Evaluate $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{3-x^{2}}}$.
(e) Find all solutions to $\frac{x}{x^{2}-1}>0$.
(f) Given $A B=A C$, and that the tangent at A is parallel to $P Q$.

Prove:
(i) $A P=A Q$
(ii) $B C$ is parallel to the tangent at A.
(iii) $P C B Q$ is a cyclic quadrilateral.

Question 3. (12 marks)
(a) Find the exact area bounded by the curve $y=\sin ^{-1} x$, the x-axis, and the ordinate $x=\frac{1}{2}$ as shown in the diagram.

(b)

The elevation of the top of a hill (B) from a place P due east of it is 43°, and from a place Q, due south of P, it is 22°. The distance from P to Q is 400 m . If h is the height of the hill, show that

$$
h^{2}=\frac{160000}{\cot ^{2} 22-\cot ^{2} 43} .
$$

(c) Find $\int \sec ^{2} x \cdot \tan ^{2} x d x$ using the substitution $u=\tan x$.

Question 4. (12 marks)
(a) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
(i) Find the co-ordinates of A, the point of intersection of the tangents to the parabola at P and Q.
(You may use the fact that equation of the tangent to the parabola $x^{2}=4 a y$ at the point $T\left(2 a t, a t^{2}\right)$ is $y=t x-a t^{2}$.)
(ii) Suppose further that A lies on the line containing the focal chord which is perpendicular to the axis of the parabola.
(α) Show that $p q=1$.
(β) Show that the chord $P Q$ meets the axis of the parabola on the directrix.
(b) If $y=x^{3}-2 x^{2}+3$
(i) find the equation of the tangent to the curve at (2, 3), and
(ii) find the point at which the tangent meets the curve again.

Question 5. (12 marks)
(a) Prove by mathematical induction that for positive integral $n, 3^{3 n}+2^{n+2}$ is divisible by 5.4
(b) By considering the function $f(x)=x^{3}-7$, use one step of Newton's method to find a 3 better approximation to $\sqrt[3]{7}$ than 2. Leave your answer in exact fractional form.
(c) The speed $v \mathrm{~m} / \mathrm{s}$ of a point moving along the x-axis is given by $v^{2}=90-12 x-6 x^{2}$, where $x \mathrm{~m}$ is the displacement of the point from the origin.
(i) Prove that the motion is simple harmonic.
(ii) Find the period, the centre of motion, and the amplitude.
(d) (i) Prove that $\cos 2 \theta=\frac{1-x^{2}}{1+x^{2}}$, where $x=\tan \theta$.
(ii) Use the above result to deduce that $\tan \frac{\pi}{8}=\sqrt{2}-1$.

Question 6. (12 marks)
(a) Given $y=\sin ^{-1}(\cos x)$:
(i) Find $\frac{d y}{d x}$.
(ii) Evaluate $y=\sin ^{-1}(\cos x)$ if $x=\pi$.
(iii) Sketch $y=\sin ^{-1}(\cos x)$ for $-\pi \leq x \leq \pi$.
(b) Whilst playing tennis, Eric serves a ball from a height of 1.8 metres. If he hits the ball in a horizontal direction at a speed of $35 \mathrm{~m} / \mathrm{s}$, find (using $g=10 \mathrm{~ms}^{-2}$):
(i) How long before the ball hits the ground.
(ii) How far the ball will travel before bouncing.
(iii) By how much the ball clears the net, which is 0.95 m high and 14 metres distant.
(c) (i) \quad Find $\frac{d}{d x}\left(x e^{x}\right)$.
(ii) Use the result in Part (i) to evaluate $\int_{0}^{1} x e^{x} d x$

Question 7. (12 marks)
(a) A street lamp is 8 m high. A small object 2 m away from the lamp falls vertically downward.
(i) Show that when the object has fallen y metres, the shadow it casts on the horizontal ground is $\frac{16}{y}$ metres from the base of the lamp.
(ii) When the object has fallen 6 m , it is travelling at $10 \mathrm{~m} / \mathrm{s}$. At what speed is its shadow moving?
(iii) At what height does the object
 have the same speed as its shadow?
(b) A function $f(x)$ is defined by the rule $f(x)=\left(e^{x}-1\right) \ln x$ for $0<x \leq 1$.
(i) Evaluate $f^{\prime}(1)$.
(ii) Using the fact that $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$, show that $f^{\prime}(x) \rightarrow-\infty$ as $x \rightarrow 0$.
(iii) Hence or otherwise show that $f(x)$ has a stationary value, and determine its nature.

STANDARD INTEGRALS

$\int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0$, if $n<0$
$\int \frac{1}{x} d x=\ln x, x>0$
$\int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0$
$\int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0$
$\int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0$
$\int \sec ^{2} a x d x=\frac{1}{a} \tan a x$,
$\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
NOTE $\ln x=\log _{e} x, x>0$

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2001

Mathematics Extension 1

Sample Solutions

Q1a)

$$
\tan Q=\left|\frac{m_{1}-m_{2}}{1+m_{2} m_{2}}\right|
$$

(e)

$$
\begin{aligned}
& 2(1-\sin x)+3 \sin x-3=0 \\
& 2-2 \sin ^{2} x+3 \sin ^{2} x-3=0
\end{aligned}
$$

(2)

$$
\text { Grashents } \mu_{1}=-\frac{2}{2}, m_{2}=4 / 3
$$

$$
\begin{align*}
\tan Q & =\frac{-\pi / 2-4 / 3}{1+-1 / 2+4} \\
& =1 / / \tag{2}\\
Q & =70^{\circ} 34^{\circ}
\end{align*}
$$

$$
2 \sin ^{2} x-3 \sin x+1-0
$$

$$
\begin{aligned}
& (2 \sin x-1)(\sin x-1)-0 \\
& \sin x=\frac{i}{2} \quad \sin x-1
\end{aligned}
$$

$$
x=\pi / 6,5 \pi / 6 \sigma \pi
$$

(b) $\quad \tan (30-45)=\frac{\tan 30-\tan 45}{1+\tan 30 \tan 45}$

2

$$
\begin{align*}
& =\frac{\sqrt{1 / 3}-1}{1+\sqrt{3} \times 1}=\frac{\sqrt{3}-3}{3+73} \quad(f) \quad k-4, \quad l=-3 \\
& =\frac{6 \sqrt{3-12}}{6}=\sqrt{3}-2
\end{align*}
$$

(c) $\quad \lim _{x \rightarrow 0} \frac{f_{i+x}}{x}+\lim _{x \rightarrow \infty} \frac{\operatorname{locx}}{x}$
(2) $\quad \begin{aligned} & x \rightarrow \\ & =5\end{aligned}$
(d) (1) $y=\log (\cos x)$

$$
\frac{d y}{d x}=\frac{1}{\cos x} x-\frac{\sin x}{7}
$$

(1) $=-\tan x$
(1) $y=\tan ^{-1} 3 x$
(1) $\frac{d y}{d x}=\frac{3}{1+9 x^{2}}$

inestion 2

(a) $\quad \tan x=\sqrt{3}$

$$
\begin{array}{ll}
\therefore x=180 n+\tan ^{-1}(\sqrt{3}) \\
x=180 n+60^{\circ} & \text { or } x=n \pi+\frac{\pi}{3}
\end{array}
$$

b) $\frac{a!}{2!3!}=\left\{\begin{array}{l}\text { repetition of } S\left(x_{3}\right) \\ \text { vepetion of } E\left(x_{2}\right)\end{array}\right.$

$$
30240
$$

() domain: $-1 \leq 1-\sqrt{x} \leq 1$

$$
\begin{aligned}
\therefore-2 & \leqslant-\sqrt{x} \leqslant 0 \\
\therefore 0 & \leqslant \sqrt{x} \leqslant 2
\end{aligned}
$$

$$
\begin{equation*}
\therefore 0 \leq x \leq 4 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { range }-\frac{\pi}{2} \leq \sin ^{-1} u \leq \frac{\pi}{2} \\
& \therefore-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \quad\left(\frac{1}{2}\right)
\end{aligned}
$$

d) $\left.\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{3-x^{2}}}=\sin ^{-1}\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{\sqrt{3}}$

$$
\begin{aligned}
& =\sin ^{-1}(1)-\sin ^{-1}(c) \\
& =\frac{\pi}{2}
\end{aligned}
$$

(e) $\frac{x}{x^{2}-1}>0 \quad x \neq \pm 1$

$$
\therefore \frac{x}{(x+1)(x-1)}>0
$$

$$
\left[x(x+1)^{2}(x-1)^{2}\right]
$$

$\therefore(x+1)(x-1) x>0$
$-1<x<0, x>1$

(f) (i) $\because A B=A C$
$\therefore \angle A B C=\angle A C B$ (base angle of $1505 . D$)
$\widehat{X A C}=\widehat{A B C}$ (alternate segment the chem)
$X \hat{A C}=\hat{A Q P} \quad$ calterinate angles)
$\therefore \hat{A Q P}=\hat{A C B}$.
$\therefore \hat{A Q P}=\hat{A C B}$.
$\therefore \hat{A P Q}=\hat{A Q} P$
$\therefore A P=A Q(1505 \Delta)$

(ii) $B C\|P Q \& P Q\| A X$

$$
\therefore B C \| A X
$$

(iii) $\angle \hat{A D Q}=\widehat{A C B}$ (fran (i).
\therefore exterior angle equal opposite interior angle $\therefore P Q C B$ is cyclic quad.

$$
\begin{aligned}
& \\
& \text { if } y=\sin ^{-1} x \text { then } \\
& A=-\int_{0}^{\frac{\pi}{6}}-\sin y d y \\
&=-\cos y]_{0}^{\frac{\pi}{6}} \\
&=-\cos \frac{\pi}{6}+\cos 0 \\
&=-\frac{\sqrt{3}}{2}+1 \\
&=1-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Now area rectangle is $\frac{1}{2} \times \frac{\pi}{6}=\frac{\pi}{12}$. (exact) area required is $\frac{\pi}{12}-\left(1-\frac{\sqrt{3}}{2}\right)=\frac{\pi}{12}-1+\frac{\sqrt{3}}{2} u^{2}$
(b) I~ $\triangle B A Q, \quad \tan 22^{\circ}=\frac{h}{A Q} . \circ$

$$
\begin{aligned}
A Q & =A Q \tan 22^{\circ} \\
& =\frac{h}{\tan 22^{\circ}}=h \cot 22^{\circ}
\end{aligned}
$$

In $\triangle B A P \quad \tan 43^{\circ}=\frac{h}{A P}$ 。

$$
\begin{aligned}
& h=A P \tan 43^{\circ} \\
& A P=\frac{h}{\tan 43^{\circ}}=\operatorname{hot} 43^{\circ}
\end{aligned}
$$

Ford In $\triangle A P Q, ~ A P_{2}^{2}+P Q^{2}=A Q^{2}$

$$
\begin{aligned}
& A P^{2}-A Q^{2}=160000 \\
& h^{2} \cot ^{2} 43^{\circ}-h^{2} \cot ^{2} 22^{\circ}=-160000 \\
& h^{2}=\frac{-160000}{\cot ^{2} 43^{3}-\cot ^{2} 22^{\circ}}=\frac{16000}{\cot ^{2} 2^{\circ}-0^{2} 43^{3}}
\end{aligned}
$$

$$
3 \text { (c) } \begin{array}{rlrl}
& \int \sec ^{2} x \tan ^{2} x d x & & \text { let } u=\tan x \\
= & \int u^{2} \cdot d u & & \frac{d u}{d x}=\sec ^{2} x \\
= & d u=\sec ^{2} x \cdot d x \\
= & \frac{u^{3}}{3}+c \\
= & & \tan ^{3} x \\
3 &
\end{array}
$$

(1) \quad (a) (1$) ~ y=p x-a p^{2}$

$$
\begin{align*}
& y=q x-a q^{2} \tag{L}\\
& 0=\left(p-g \mid x-a\left(p^{2}-y^{2}\right)\right. \\
& \begin{aligned}
x=\frac{a\left(\rho^{2}-y^{2}\right)}{\rho-y^{2}}
\end{aligned} \quad \begin{aligned}
y & =p a(p+\dot{y})-a p^{2} \\
& =a p^{2}+a p p-a p^{2}
\end{aligned} \\
& x=a(p+q) \\
& y=a p y \\
& \therefore \operatorname{An}(a(p+c y), a p y)
\end{align*}
$$

$$
\text { (i) } y=a \text { chen } \begin{array}{r}
a p q=a \\
p y=1
\end{array}
$$

$$
\begin{aligned}
& \text { (II) chad } y=\frac{1}{2}(p+g) x \text { apy. } \\
& \text { Shew } \frac{y-a p^{2}}{x-2 a p}=\frac{a q^{2}-a p^{2}}{2 a q-2 a p}=q \frac{p}{2} \text {. } \\
& y \text {-ap }{ }^{2}=\left(\frac{r y}{r}\right) x-\frac{2 a p}{r}(p+y) \\
& y-a p^{2}=p+q x-a p^{2}-a p \dot{y} . \\
& y=\frac{p+g x}{x}-\operatorname{sp} \\
& \text { new if } x=0 \quad y=-a p y \\
& -8-8+3 \\
& y=-a \text { herance }{ }^{2} y=1 \\
& \text { (b) } \\
& \text { (b) } \begin{aligned}
& y=x^{3}-2 x^{2}+3 \\
& d y=3 x^{2}-4 x \\
& d x \\
& m=3 \times 4-4 \times 2 \\
& m=4
\end{aligned} \\
& \text { (b) } \begin{aligned}
& y=x^{3}-2 x^{2}+3 \\
& d y=3 x^{2}-4 x \\
& d x \\
& m=3 \times 4-4 \times 2 \\
& m=4
\end{aligned} \\
& \text { (b) } \begin{aligned}
& y=x^{3}-2 x^{2}+3 \\
& d y=3 x^{2}-4 x \\
& d x \\
& m=3 \times 4-4 \times 2 \\
& m=4
\end{aligned} \\
& -8-8+3 \\
& \frac{y-3}{x-2}=4 \\
& y-3=4 x-8 \\
& y=4 x-5 \\
& 2 \\
& \text { Solue } x^{3}-2 x^{2}+3=4 x-5 \\
& x^{3}-2 e^{2}-4 x-8=0 \quad d W \\
& \text { mertiare } 2,2, \alpha \\
& \alpha+\alpha+\alpha=2 \\
& \alpha=-\alpha \\
& \omega(-2,-13) 2
\end{aligned}
$$

$$
=27+8
$$

$=35$ which io divioi6. 6 by 5 .
Assume true for $x=t_{k}$, it $S_{k}=3^{3 t}+2^{k+L}$
Nous lest for $m=k+1$, if $S_{k+1}=3^{3 k+3}+2^{k+3}$ w her $P \in J$.

$$
\begin{aligned}
S_{k+1} & =27\left(5 P-2^{k+2}\right)+2 \cdot 2^{k+2} \text { where } Q \in J \\
& =5.27^{k}-(27-2) 2^{k+2} \\
& =5\left\{27 P-5.2^{k+2}\right\} \\
& =5 Q
\end{aligned}
$$

\therefore The for $a=k+1$ if true for $n=t$.
Now true for $x=1$ to true for $y=2$ and oo on for al integer n.
a)

$$
\begin{aligned}
f(x) & =x^{3}-7, f^{\prime}(x)=3 x^{2} \\
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =2-\frac{8-7}{3.4} \\
& =23 / 12 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{v^{2}}{2} & =45-6 x-3 x^{2} \\
\ddot{x} & =\frac{d}{d x}\left(\frac{v^{2}}{2}\right) \\
& =-6-6 x \\
& =-6(x+1) \\
& =-(\sqrt{6})^{2} X \text { where } X=x+1
\end{aligned}
$$

\therefore Motion is SHM with center of motion $=-1$.

$$
\begin{aligned}
u & =\sqrt{6} \text { so period }=\frac{2 \pi}{\sqrt{6}}=\sqrt{6} \\
v^{2} & =-6\left(x^{2}+2 x+1\right)+90+6 \\
& =96-6(x+1)^{2} \\
& =6\left\{4^{2}-(x+1)^{2}\right\} \\
\text { Amplitude } & =4
\end{aligned}
$$

(a)
(i)

$$
\begin{aligned}
y & =\sin ^{-1}(\cos x) \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-\cos ^{2} x}}-\sin x \\
& =\frac{-\sin x}{\sqrt{\sin ^{2} x}} \\
& =-\frac{\sin x}{|\sin x|} \\
& =-1 \text { for } 0<x<\pi \\
& =1 \text { for }-\pi<x<0
\end{aligned}
$$

(ii) $y=\sin ^{-1}[\cos \pi]$
$=\sin ^{-1}[-1]$

$$
=-\sin ^{-1}[1]
$$

$$
=-\frac{\pi}{2}
$$

(iii)

(b)

$$
\begin{aligned}
& \dot{x}=V \cos \theta=35 \cos \theta=35 \\
& \dot{y}=35 \sin 0-10 t=-10 t \\
& y=1.8-5 t^{2} \\
& x=v t \cos \theta=35 t
\end{aligned}
$$

(i) Strikes ground when $y=0$

$$
\begin{aligned}
\therefore 0 & =1.8-5 t^{2} \\
t & =3 / 5 \mathrm{sec} .
\end{aligned}
$$

(ii) $x=35 \times \frac{3}{5}=21 \mathrm{~m} \quad 2$
(iii) When $x=14,14=35 t$

$$
\text { ie } t=2 / 5
$$

When $t=2 / s, y=1.8-5\left(\frac{2}{5}\right)^{2}$ ie $y=1 \mathrm{~m}$
\therefore clears net by $1-0.95 \mathrm{~m}=5 \mathrm{~cm}$.
(c)
(i) $\frac{d}{d x}\left(x e^{x}\right)=x e^{x}+1 \cdot e^{x}=e^{x}(x+1)$!
(ii) $\frac{d}{d x} x e^{x}-e^{x}=x e^{x}$ iè $\left.\begin{array}{l}\frac{d}{d x}\left[x e^{x}-e^{x}\right]=x e^{x} \frac{1}{2} \\ \Rightarrow \int x e^{x} d x=x e^{x}-e^{x} / 2\end{array}\right\} 1$ $\therefore \int_{0}^{1} x e^{x} d x=\left[x e^{x}-e^{x}\right]_{0}^{1} 1 / 2$ $=\left[(e-e)-\left(0-e^{0}\right)\right]$ $=1$

(1) Triangles ore simelor

$$
\begin{aligned}
\therefore \quad \frac{x}{2} & =\frac{8}{y} \\
x & =\frac{16}{y}
\end{aligned}
$$

(ii)

When $y=6, \frac{d b c}{d t}=\frac{-16}{36} \cdot 10$

$$
=-\frac{40}{9} \mathrm{~m} / \mathrm{s} .
$$

$$
\begin{array}{rlrl}
\text { (iii): } & \frac{d y}{d t}=\frac{d x}{d t} & \frac{d y}{d x} & =1 \\
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t} & =\frac{d x}{d t} & -\frac{16}{y^{2}} & =-1(\text { speed). } \\
y & =4.2
\end{array}
$$

(b)
(1)

$$
\begin{aligned}
& f(x)=\left(e^{x}-1\right) \ln x \\
& f^{\prime}(x)=\frac{e^{x}-1}{x}+e^{x} \ln x \\
& f^{\prime}(1)=e-1+0=e-1
\end{aligned}
$$

(ii) As $x \rightarrow 0, \quad f^{\prime}(x) \rightarrow-\infty$ since $\ln x \rightarrow-\infty$ os $x \rightarrow 0$
(iii) $\frac{e^{f-1}}{0}+\cdots \quad \underset{\alpha}{\rightarrow}$ $f^{\prime}(x)=0$ for $0<x<1$ Let this root be α. For $x<\alpha \quad f^{\prime}(x)<0$ $x>\alpha \quad f^{\prime}(x)>0.2$
\therefore Ting stationary point is a local minimum.

