SYDNEYBOYS HIGHSCHOOL MOORE PARK, SURRY HILLS

2003

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time -3 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.

Total Marks - 84

- Attempt all questions.
- All questions are of equal value.
- Each section is to be answered in a separate bundle, labeled Section A (Questions 1, 2, 3), Section B (Questions 4, 5, 6) and Section C (Questions 7 and 8).

Examiner: A.M. Gainford

Note: \quad This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 84.
Attempt Questions 1-7.
All questions are of equal value.
Answer each Section in a SEPARATE writing booklet. Extra writing booklets are available

Section A Use a SEPARATE writing booklet
Question 1 (12 marks) Marks
(a) Differentiate
(i) $x \sin 3 x$
(ii) $e^{1-x^{2}}$
(b) Find the acute angle between the lines $3 y=2 x+8$ and $5 x-y-9=0$.
(c) Evaluate
(i) $\int_{0}^{2} \frac{d x}{4+x^{2}}$
(ii) $\int_{0}^{1} \frac{x^{2}}{2+x^{3}} d x$
(d) The letters of the word INTEGRAL are arranged in a row.

If one of these arrangements is selected at random, what is the probability that the vowels are in the same position?
(e) Solve the inequality $\frac{\theta-4}{\theta}>0$.

Section A continued.

Question 2. (12 marks)
Marks
(a) If α, β and γ are the roots of the equation $2 x^{3}-5 x^{2}-3 x+1=0$, evaluate
(i) $\alpha+\beta+\gamma$ and $\alpha \beta \gamma$. 1
(ii) $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(b) Use the substitution $u=x^{2}+4$ to find the exact value of $\int_{0}^{2 \sqrt{3}} \frac{x}{\sqrt{x^{2}+4}} d x$.
(c) Determine the exact value of $\cos \left(\tan ^{-1}\left(\frac{8}{15}\right)\right)$.
(d)

The diagram shows the graph of $y=\pi+2 \sin ^{-1} 3 x$.
(i) Find the coordinates of A and C. 2
(ii) Find the gradient of the tangent at B.

Section A continued.

Question 3. (12 marks)

Marks

(a) A function is defined as $f(x)=1+e^{2 x}$.

Find the inverse function $f^{-1}(x)$ and state the domain and range.
(b) Consider the quadratic expression $Q(x)=(5 k-4) x^{2}-6 x+(6 k+3)$,

3 where k is a constant.
Find the values of k for which $Q(x)=0$ has rational roots.
(c)

$A B C D$ is a common tangent to the two circles.
(i) Prove that $\angle A B G=\angle D C H$.
(ii) Prove that $\triangle B C G\|\| B C H$.
(d) Consider the series $2^{N}+2^{N-1}+2^{N-2}+\ldots . .+2^{1-N}+2^{-N}$, where N is a positive integer.
(i) Find an expression in terms of N for the number of terms in the series.
(ii) Find an expression in terms of N for the sum of the series.

Section B Use a SEPARATE writing booklet.
Question 4. (12 marks)
Marks
(a) Consider the function $f(\theta)=\frac{\sin \theta+\sin \frac{\theta}{2}}{1+\cos \theta+\cos \frac{\theta}{2}}$
(i) Show that $f(\theta)=t$ where $t=\tan \frac{\theta}{2}$.
(ii) Write down the general solution of $f(\theta)=1$.
(a) A certain particle moves along the straight line in accordance with the law: $t=2 x^{2}-5 x+3$, where x is measured in centimetres and t in seconds.

Initially, the particle is 1.5 centimetres to the right of the origin O, and moving away from O.
(i) Show that the velocity, $v \mathrm{cms}^{-1}$, is given by

$$
v=\frac{1}{4 x-5}
$$

(ii) Find an expression for the acceleration, $a \mathrm{cms}^{-2}$, of the particle, in terms of x.
(iii) Find the velocity and acceleration of the particle when:
(α) $x=2 \mathrm{~cm}$
(β) $t=6$ seconds
(iv) Describe carefully in words the motion of the particle.

Section B continued.

Question 5.

Marks

a) (i) Prove the identity $\frac{\cos y-\cos (y+2 \alpha)}{2 \sin \alpha}=\sin (y+\alpha)$
(ii) Hence prove by mathematical induction that for positive integers n, $\sin \alpha+\sin 3 \alpha+\sin 5 \alpha+\ldots+\sin (2 n-1) \alpha=\frac{1-\cos 2 n \alpha}{2 \sin \alpha}$.
(b) (i) Show that the curve $y=\frac{x^{3}+4}{x^{2}}$ has one stationary point and no 2 points of inflexion.
(ii) Write down the equation(s) of any asymptotes.
(iii) Sketch the curve.
(iv) Hence, use the graph to find the values of k for which the 2 equation $x^{3}-k x^{2}+4=0$ has 3 real roots.

Section C Use a SEPARATE writing booklet.

Question 6. (12 marks)

The straight line $y=m x+c$ meets the parabola $x=2 t, y=t^{2}$ in real distinct points P and Q which correspond respectively to the values $t=p$ and $t=q$.

(i) Prove that $p q=-c$.
(ii) Prove that $p^{2}+q^{2}=4 m+2 c$.
(iii) Show that the equation of the normal to the parabola at P is $x+p y=2 p+p^{3}$.
(iv) The point N is the point of intersection of the normals to the 2 parabola at P and Q.
Show that the coordinates at N are $\left(-p q(p+q),\left(2+p^{2}+p q+q^{2}\right)\right)$
(v) If the chord $P Q$ is free to move while maintaining a fixed gradient.
(α) Show that the locus of N is a straight line.
2
(β) Hence, or otherwise, show that this straight line is a normal to the parabola.

Section C continued.

Question 7. (12 marks)
(a) When the polynomial $P(x)$ is divided by $(x+4)$ the remainder
is 5 and when $P(x)$ is divided by $(x-1)$ the remainder is 9 .
Find the remainder when $P(x)$ is divided by $(x-1)(x+4)$.
(b) A projectile is fired from a point on horizontal ground with initial speed $V \mathrm{~ms}^{-1}$ and angle of projection θ. The cartesian equation of the path is given by

$$
y=x \tan \theta-\frac{g x^{2}}{2 V^{2} \cos ^{2} \theta}
$$

where x and y are the horizontal and vertical displacements of the particle from O, the point of projection.
The acceleration due to gravity is g and air resistance has been neglected.
(i) Use the given equation to show that the maximum range R on the horizontal plane is given by $R=\frac{V^{2}}{g}$.
(ii) Show that to hit a target h metres above the ground at the same horizontal distance R using the same angle of projection θ, the speed of projection must be increased to $\frac{V^{2}}{\sqrt{V^{2}-g h}}$.

Section C continued.

Question 7.
Marks
(c)

In the triangle $A B C,<B A C=90^{\circ} . A D$ bisects $<B A C$. $D H \perp A B$ and $D K \perp A C$.

Copy the diagram.
(i) Show that $\frac{A D}{D H}=\sqrt{2}$. $\quad 1$
(ii) By considering the areas of the triangles or otherwise, $\mathbf{2}$ show that $\frac{\sqrt{2}}{A D}=\frac{1}{A B}+\frac{1}{A C}$

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2003

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Sample Solutions

QUESTION
(0) $\left.\quad \begin{array}{rl}y=f(x) \quad y & =1+e^{2 x} \\ f^{-1}(x) & x\end{array}\right)=1+e^{2 y}$
$e^{2 y}=x-1$
$2 y=\log (x-1)$
$=\frac{1}{2} \log (x-1)$
Damar $x>1$ Range All mall y
(b) Rational roots when $\Delta=b^{2}-4 a c=$ or or has rationed square root $36-4(5 k-4)(6 k+3)=0$
$36-120 k^{2}+36 k+48=0$
$-120 k^{2}+36 k+84=0$ $10 k^{2}-3 k-7=0$
$(10 k+7)(k-1)=0$
rational roots when $k=-\frac{7}{10}$ or 1
multiple solutions when $-120 k^{2}+36 k+20$ has rational roots
(c) $(1) \angle A B G=\angle B E G$ (angle in alternate segment)
$\angle B E G=C E H$ (vertically opposite)
$\angle C E H=\angle D C H$ (ante in alteriale segment.
$\therefore \angle A B G=\angle D C H$ as required
(II) $\angle C B H=\angle B G C$ (alternate segment) $\angle B C E=\angle C H E$
$\therefore \angle G B C=\angle I+C B$ (angle sim of \therefore)

$$
\begin{aligned}
2^{N} \cdot\left(2^{-1}\right)^{n-1} & =2^{-N} & & =\frac{2^{N}}{1-\frac{1}{2}} \\
2^{-n+1} & =2^{-2 N} & & =2 \cdot 2^{N}= \\
-n+1 & =-2 N & &
\end{aligned}
$$

(4) (a)
(1)

$$
\begin{aligned}
\sin 2 \theta= & 2 \sin \theta \cos \theta \\
\sin \theta= & 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
\cos 2 \theta= & \cos ^{2} \theta-\sin ^{2} \theta \\
& 1-2 \sin ^{2} \theta \\
& 2 \cos ^{2} \theta-1 \\
\text { so } \cos \theta= & \cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} \\
& 1-2 \sin ^{2} \frac{\theta}{2} \\
& 2 \cos ^{2} \frac{\theta}{2}-1
\end{aligned}
$$

$$
\begin{align*}
f(\theta) & =\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}+\sin \frac{\theta}{2}}{1+2 \cos ^{2} \frac{\theta}{2}-1+\cos \frac{\theta}{2}} \\
& =\frac{\sin \frac{\theta}{2}\left[2 \cos \frac{\theta}{2}+1\right]}{\cos \frac{\theta}{2}\left[2 \cos \frac{\theta}{2}+1\right]}
\end{align*}
$$

$$
=\tan \frac{\theta}{2}=t
$$

(ii) $f(\theta)=\tan \frac{\theta}{2}=1$ general soln.
isf $\tan \theta=a$, her $\theta=n \pi+\tan ^{-1}(a)$

$$
\begin{aligned}
& \tan \theta=a, \text { hen } \theta \\
& \tan \frac{\theta}{2}=1,
\end{aligned} \text {, hen } \frac{\theta}{2}=n \pi+\frac{\pi}{4}, ~=2 n \pi+\frac{\pi}{2}
$$

(1) r

4 (b)

$$
\begin{align*}
& \text { (i) } t=2 x^{2}-5 x+3 \\
& \frac{d t}{d x}=4 x-5 \\
& \frac{d x}{d t}=V=\frac{1}{4 x-5} \tag{1}
\end{align*}
$$

(ii)

$$
\begin{align*}
\prime \prime & =\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \\
& =\frac{d}{d x}\left(\frac{1}{2(4 x-5)^{2}}\right) \\
& =\frac{d}{d x}\left[\frac{1}{2}(4 x-5)^{-2}\right] \\
& =-(4 x-5)^{-3} \times 4 \\
& =\frac{-4}{(4 x-5)^{3}} \tag{2}
\end{align*}
$$

(iii) (d) when $x=2, \quad V=\frac{1}{3} \mathrm{~cm} / \mathrm{s}$

$$
\begin{aligned}
& V=3 \mathrm{~cm} / \mathrm{s} \\
& a=-\frac{4}{27} \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

(B) When $t=6, \quad b=2 x^{2}-5 x+3$ -

$$
\begin{aligned}
& (2 x+1)(x-3)=0 \\
& x=-\frac{1}{2}, x=3
\end{aligned}
$$

take $x=3$

$$
\begin{aligned}
\text { take } & x=3 \\
\text { at } x=3, & v=\frac{1}{7} \mathrm{~cm} / \mathrm{s} \\
& a=\frac{1}{3}=\frac{4}{343}\left(\frac{1}{2}\right)
\end{aligned}
$$

(iv) particle is travelling to the right but is slowing
down

$$
\begin{align*}
& \text { (5) (a) (i) } \frac{\cos y-\cos (y+2 \alpha)}{2 \sin \alpha}=\sin (y+\alpha) \\
& \text { LAS: }=\frac{\cos y-(\cos y \cos 2 \alpha-\sin y \sin 2 \alpha)}{2 \sin \alpha} \\
& \frac{\cos y-\left(\cos y\left(1-2 \sin ^{2} \alpha\right)-\sin y 2 \sin \alpha \cos \alpha\right)}{2 \sin \alpha} \\
& \\
& =\frac{\cos y-\cos y+2 \sin ^{2} \alpha \cos y+2 \sin \alpha \cos \alpha \sin y}{2 \sin \alpha} \tag{2}\\
& =\sin \alpha \cos y+\cos \alpha \sin y
\end{align*}
$$

step 1 Prove true for $n=1$

$$
\begin{aligned}
& \text { CHS }=\sin \alpha \\
& \text { RUS }=\frac{1-\cos 2 \alpha}{2 \sin \alpha}=\frac{1-\left(1-2 \sin ^{2} \alpha\right)}{2 \sin \alpha}=\sin \alpha \\
&=\text { IHS } .
\end{aligned}
$$

true for $n=1$.
step 2 assume true for $n=k$ (a positive integer) so

$$
\begin{aligned}
& \text { Sep } 2 \text { assume true for } n=k \text { (a pin }(2 k-1) \alpha=\frac{1-\cos 2 k \alpha}{2 \sin \alpha} \\
& \sin \alpha+\sin 3 \alpha+\cdots+\sin 5+\cdots
\end{aligned}
$$

and we must prove it true for $n=k+1$, so'

$$
\begin{aligned}
& \operatorname{in} \alpha+\sin 3 \alpha+\sin 5 \alpha+\cdots+\sin (2 k-1) \alpha+\sin (2 k+1) \alpha=\frac{1-\cos 2(k+1)}{2 \sin \alpha} \\
& \text { LHS. } \frac{1-\cos 2 k \alpha}{2 \sin \alpha}+\sin (2 k+1) \alpha .
\end{aligned}
$$

$$
\frac{1-\cos 2 k \alpha}{2 \sin \alpha}+\sin (2 k \alpha+\alpha) .
$$

now using (a) (i) $\sin (y+\alpha)=\frac{\cos y-\cos (y+2 \alpha)}{2 \sin \alpha}$
Hen $\sin (2 k \alpha+\alpha)=\frac{\cos 2 k \alpha-\cos (2 k \alpha+2 \alpha)}{2 \sin \alpha}$

$$
\text { now, } \begin{aligned}
& \frac{1-\cos 2 k \alpha}{2 \sin \alpha}+\frac{\cos 2 / k \alpha-\cos 2(k+1) \alpha}{2 \sin \alpha} \\
= & \frac{1-\cos 2(k+1) \alpha}{2 \sin \alpha} \\
= & \text { RUS }
\end{aligned}
$$

True for $n=k+1$.
step 3 If the statement is true for $n=k$, then it is also true for $n=k+1$. Since the statement' is true For $n=1$, it follows that it must also be free for $n=2$ and so on. \therefore the statement is true foo all positive integers n.
(5) (b) (i) $y=\frac{x^{3}+4}{x^{2}}=\frac{x^{3}}{x^{2}}+\frac{4}{x^{2}}=x+4 x^{-2}=x+\frac{4}{x^{2}}$

$$
\begin{aligned}
& y^{\prime}=1-8 x^{-3}=1- \\
& y^{\prime \prime}=24 x^{-4}=\frac{24}{x^{4}}
\end{aligned}
$$

Stat points exist when $y^{\prime}=0,1-\frac{8}{x^{3}}=0$

$$
\begin{align*}
& \text { Stat points exist when } \left.y=0, \begin{array}{l}
\frac{8}{x^{3}}=1 \Rightarrow x^{3}=8 \\
\\
\text { At } x=2, y=2+\frac{4}{2^{2}}=3 .
\end{array} \begin{array}{l}
\Rightarrow x=2 . \\
(\text { min stat } p t) \\
y^{\prime \prime}>0
\end{array}\right)
\end{align*}
$$

Inflexion's occur when $y^{\prime \prime}=0$ and 7 a sign change

$$
\begin{array}{r}
\frac{24}{x^{4}}=0 \Rightarrow 24=0 x^{4} \\
\text { does not ea }
\end{array}
$$

does not exist. (1)
(ii) $y=\frac{x^{3}+4}{x^{2}} \Rightarrow x \neq 0 \quad$ (y axis)
(2) virtual asympte

$\operatorname{Las}_{x \rightarrow \infty} \quad y>x .\left(\frac{1}{2}\right)$ oblique asyithptote
(iv)
when $y=0$,

$$
0=\frac{x^{3}+4}{x^{2}}
$$

so

$$
\begin{gathered}
x^{3}+4=0 \\
x^{3}=-4 \\
x=\sqrt[3]{-4}
\end{gathered}
$$

5 (b) (iv)

$$
\begin{gathered}
x^{3}-k x^{2}+4=0 \\
x^{3}+4=k x^{2}
\end{gathered}
$$

So $\quad \frac{x^{3}+4}{x^{2}}=k$.

$$
\Rightarrow y=\frac{x^{3}+4}{x^{2}}=k
$$

3 intersections will occur between $y=k$ and $y=\frac{x^{3}+4}{x^{2}}$ if

$$
k>3 .
$$

(2)
\therefore Solution - Section C
Question (6) [12]

$$
x=2 t, y=t^{2} \quad \therefore \quad y=\frac{x^{2}}{4}
$$

$$
\begin{equation*}
\therefore \quad x^{2}-4 m x-4 c=0 \tag{1}
\end{equation*}
$$

The roots to (1) are: $2 p, 2 q$.

$$
\begin{align*}
& \therefore \quad \sum \alpha_{i}: 2 p+2 q=4 m \\
&: e p+q=2 m
\end{align*}
$$

product of roots: $4 p q=-4 c$
(i)

$$
\begin{equation*}
\therefore \quad p q=-c \tag{3}
\end{equation*}
$$

(ii) Now, $p^{2}+q^{2}=(p+q)^{2}-2 p q$

$$
=4 m^{2}-2(-c)
$$

$$
\therefore \quad p^{2}+q^{2}=4 m^{2}+2 c \quad[2]
$$

(iii)

$$
\begin{aligned}
& i) \text { gradient of tat. }=p \\
& \therefore \text { gradient of normal }=-\frac{1}{p}
\end{aligned}
$$

\therefore equation of normal: $y-p^{2}=-\frac{1}{p}(x-2 p)$

$$
\therefore x+p^{y}=p^{3}+2 q
$$

(iv) The equation of normal at Q "

$$
\begin{equation*}
x+q y=q^{3}+2 q \tag{5}
\end{equation*}
$$

\therefore (4) -(5) we hare:

$$
\begin{align*}
& (p-q) y=\left(p^{3}-q^{3}\right)+2(p-q) \\
& \therefore y=2+p^{2}+p q+q^{2}
\end{align*}
$$

Substitute (6) into (4) we hare:

$$
\begin{gathered}
x+3 p+p^{3}+p^{2} q+p q^{2}=p^{3}+2 \not p \\
\therefore \quad x=-p^{2} q-p q^{2}=-p q(p+q) \\
\therefore N\left(-p q(p+q),\left(2+p^{2}+p q+q^{2}\right)\right)
\end{gathered}
$$

$$
[2] .
$$

$\frac{\text { Question }(6)}{(v) \cdot\left[\begin{array}{l}p q=-c, p+q=2 m \\ p^{2}+q^{2}=4 m^{2}+2 c .\end{array}\right.}$

The x-coord. of N becomes $c(2 m)$
The y-lond. of N becomes
$\left\{2+\left(4 m^{2}+2 c\right)-c \xi\right.$

$$
N=\left(2 m c, 4 m^{2}+c+2\right)
$$

(α) Chord $P Q$, whose equation is $y=m x+c$, is free to move Whilst maintaining a fixed grad 1.: ${ }^{m} P Q=m$ (acoustant), but
c is a variable.
Now $x=2 m c, \Rightarrow c=\frac{x}{2 m}$

The points of intersection of the
locus of N and $x^{2}=4 y$ are form by solving

$$
\left\{\begin{array}{l}
y=\frac{x}{2 m}+2\left(1+2 m^{2}\right) \\
x=2 t, y=t^{2}
\end{array}\right.
$$

$$
\begin{equation*}
1 \cdot \dot{e} t^{2}=\frac{6 t}{x m}+2\left(1+2 m^{2}\right) \tag{4}
\end{equation*}
$$

$m t^{2}-t-2 m\left(1+2 m^{2}\right)=0$
$\therefore t=\frac{1 \pm \sqrt{1+8 m^{2}\left(1+2 m^{2}\right)}}{2 m}$

$$
=\frac{1 \pm\left(1+4 m^{2}\right)}{2 m}
$$

$\therefore \quad t=\frac{1+2 m^{2}}{m}, 0+-2 m$
N cut parabola
\therefore aus of N cut parabola in 2 pt
say U,V with parameters

$$
\begin{equation*}
t=\left\{\frac{1+2 m^{2}}{-2 m}\right. \tag{2}
\end{equation*}
$$

Frow gradient of $\mathrm{tg}_{\mathrm{g}}+,(=t) \Rightarrow$
the gradients of tats at V, V are
$\frac{1+2 m^{2}}{\text { the tgt at } V \text { has gradient - } 2 m}$
while the locus of N has
gradient $\frac{1}{2 m}$. Hence the loon of N
gradient $\frac{1}{2 m}$. Hence the locus of N
is perm to tat at $V \Rightarrow$ normal at V
$\left.\frac{\text { Question (7). }}{\text { qu }}\right]$
(a)

$$
\begin{align*}
& P(x)=(x+4) m(x)+5 \\
&=(x-1) n(x)+9 . \\
& \therefore P(-4)=5, \quad P(1)=9 . \\
& P(x)=(x-1)(x+4) \varphi(x)+(a x+b) . \tag{2}
\end{align*}
$$

From (1)

$$
\text { lie } \quad \therefore \quad b=9-
$$

(b) To find the range, set $y=0$.
(i) lie $x\left(\tan \theta-\frac{g x}{2 v^{2} \cos ^{2} \theta}\right)=0$.
1.e. $x=0$, or $x=\frac{2 v^{2} c_{0}^{2} \theta \times \tan \theta}{g}$
lie $\operatorname{tang} e=\frac{V^{2}(2 \sin \theta \cos \theta)}{g}$

$$
=\frac{v^{2} \sin 2 \theta}{g}[2]
$$

\therefore Maximum range occurs when $\sin 2 \theta=1 \Rightarrow R=\frac{r^{2}}{!}$

Equation of higher trajectory $\left(T_{2}\right)$ is
(1) $h=R \tan \theta-\frac{g R^{2}}{2 v^{2} \sigma^{2} \theta}$. (velocity)

When the speed of of projectile
was V, the range was:

$$
\begin{equation*}
R=\frac{r^{2} \sin 2 \theta}{g} \tag{2}
\end{equation*}
$$

Substitute (2) lute (1) we have.

$$
h=\frac{v^{\prime 2} \sin ^{2} \theta k \tan \theta}{g}-\frac{v^{4} \sin ^{2} 2 \theta}{g u^{2} \cos ^{2} \theta}
$$

Note: $\sin 2 \theta=2 \sin \theta \cos \theta, \quad \tan \theta=\sin \theta / \cos \theta$
$2 \therefore \quad h=\frac{2 V^{2} \sin ^{2} \theta}{g}-\frac{2 V^{4} \sin ^{2} \theta}{g U^{2}}$
When $v=V$, Range is $R_{\text {max }} \therefore \theta=4$
$2 \quad \therefore \quad h=\frac{v^{2}}{g}-\frac{v^{4}}{g U^{2}} \quad[4$.

$$
\begin{aligned}
& \therefore U^{2} g h=v^{2} U^{2}-v^{4} U^{2}\left(v^{2}-g h\right)= \\
& \therefore U^{2}=\frac{V^{4}}{V^{2}-g h} \quad \therefore U=\frac{v^{2}}{\sqrt{V^{2}-g h}}
\end{aligned}
$$

- Question

7 (c)

$$
\therefore \quad \angle B A D=\angle D A C=45^{\circ}
$$

$$
\Rightarrow \angle H D A=\angle K D A=45^{\circ}
$$

(Anglesum of a, Δ).
l.e $\triangle A H D$ is isos. $\Rightarrow A H=D H$.
$\begin{aligned} \text { In } \triangle A H D, A D^{2} & =A H^{2}+D H^{2} \\ \left(P_{y} \text { thagoras) }\right. & =2 D H^{2}\end{aligned}$

$$
\therefore\left(\frac{A D}{D H}\right)^{2}=2
$$

(i) $\Rightarrow \frac{A D}{D H}=\sqrt{2} \quad[1]$.

$$
\begin{equation*}
\therefore \quad \frac{1}{D H}=\frac{\sqrt{2}}{A D} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& \triangle A H D \equiv \triangle A K D \cdot(A A S) \\
& \therefore D H=D K . \tag{2}
\end{align*}
$$

Area of $\triangle A B C$

$$
=\frac{1}{2} A B \cdot A C
$$

but area of $\triangle A B C$

$$
\begin{aligned}
= & \text { area of } \triangle A B D \\
& + \text { aroa }
\end{aligned}
$$

$$
+ \text { area of } \triangle A C D \text {. }
$$

Areaco $\triangle A B D=\frac{1}{2} A B \cdot D H$
Area of $\triangle A C D=\frac{1}{2} A C \cdot D K$.
from (2) $\because D K=D H$

$$
\therefore \text { area of } \triangle A C D=\frac{1}{2} A C \cdot D H \text {. }
$$

$$
\therefore \frac{1}{2} A^{\prime} B \cdot A C=\frac{1}{2}(A B \cdot D H+A C \cdot D H) .
$$

$$
\therefore D H(A B+A C)=A B \cdot A C \cdot[2]
$$

$$
\therefore \frac{A B+A C}{A B \cdot A C}=\frac{1}{D H}
$$

$$
\therefore \frac{1}{A C}+\frac{1}{A B}=\frac{\sqrt{2}}{A D}
$$

