

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2003 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 3 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.

Total Marks – 84

- Attempt all questions.
- All questions are of equal value.
- Each section is to be answered in a separate bundle, labeled Section A (Questions 1, 2, 3), Section B (Questions 4, 5, 6) and Section C (Questions 7 and 8).

Examiner: A.M. Gainford

Note: This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 84. Attempt Questions 1-7. All questions are of equal value.

Answer each Section in a SEPARATE writing booklet. Extra writing booklets are available

Section A Use a SEPARATE writing booklet

- Question 1(12 marks)Marks
- (a) Differentiate

(i)
$$x \sin 3x$$

(ii)
$$e^{1-x^2}$$
 1

- (b) Find the acute angle between the lines 3y = 2x + 8 and 5x y 9 = 0. 2
- (c) Evaluate

(i)
$$\int_{0}^{2} \frac{dx}{4+x^{2}}$$
 2

(ii)
$$\int_{0}^{1} \frac{x^2}{2+x^3} dx$$
 2

(e) Solve the inequality
$$\frac{-4}{-3} > 0$$
.

2

Section A continued.

Question 2. (12 marks)

(a) If , and are the roots of the equation $2x^3 - 5x^2 - 3x + 1 = 0$, evaluate

 $2\sqrt{3}$

(ii)
$$^{2} + ^{2} + ^{2}$$
. 2

(b) Use the substitution $u = x^2 + 4$ to find the exact value of $\frac{x}{\sqrt{x^2 + 4}} dx$. 3

(c) Determine the exact value of
$$\cos \tan^{-1} \frac{8}{15}$$
.

(d)

The diagram shows the graph of $y = +2\sin^{-1}3x$.

- (i) Find the coordinates of *A* and *C*.
- (ii) Find the gradient of the tangent at *B*.

Marks

2

Section A continued.

Question 3. (12 marks)

- (a) A function is defined as $f(x) = 1 + e^{2x}$. Find the inverse function $f^{-1}(x)$ and state the domain and range.
- (b) Consider the quadratic expression $Q(x) = (5k 4)x^2 6x + (6k + 3)$, 3 where *k* is a constant. Find the values of *k* for which Q(x) = 0 has rational roots.

(c)

ABCD is a common tangent to the two circles.

- (i) Prove that ABG = DCH. 2
- (ii) Prove that $BCG \parallel BCH$. 2
- (d) Consider the series $2^N + 2^{N-1} + 2^{N-2} + \dots + 2^{1-N} + 2^{-N}$, where *N* is a positive integer.
 - (i) Find an expression in terms of N for the number of terms in the series. 2
 - (ii) Find an expression in terms of *N* for the sum of the series. 1

Marks

Section B Use a SEPARATE writing booklet.

Question 4. (12 marks)

(a) Consider the function $f() = \frac{\sin + \sin \frac{\pi}{2}}{1 + \cos \frac{\pi}{2}}$

- (i) Show that f() = t where $t = \tan \frac{1}{2}$. 3
- (ii) Write down the general solution of f() = 1. 1

(a) A certain particle moves along the straight line in accordance with the law: $t = 2x^2 - 5x + 3$, where x is measured in centimetres and t in seconds.

Initially, the particle is 1 5 centimetres to the right of the origin *O*, and moving away from *O*.

(i) Show that the velocity,
$$v \text{ cms}^{-1}$$
, is given by 1
 $v = \frac{1}{4x - 5}$

(ii) Find an expression for the acceleration, $a \text{ cms}^{-2}$, of the particle, 2 in terms of x.

(iii) Find the velocity and acceleration of the particle when: 3

()
$$x = 2 \text{ cm}$$

()
$$t = 6$$
 seconds

(iv) Describe carefully in words the motion of the particle. 2

Marks

Section B continued.

Question 5.

a) (i) Prove the identity
$$\frac{\cos y - \cos(y+2)}{2\sin} = \sin(y+)$$
 2

(ii) Hence prove by mathematical induction that for positive integers
$$n$$
, 4
 $\sin + \sin 3 + \sin 5 + \dots + \sin(2n-1) = \frac{1 - \cos 2n}{2\sin}$.

(b) (i) Show that the curve
$$y = \frac{x^3 + 4}{x^2}$$
 has one stationary point and no 2 points of inflexion.

(iv) Hence, use the graph to find the values of k for which the equation
$$x^3 - kx^2 + 4 = 0$$
 has 3 real roots.

Section C Use a SEPARATE writing booklet.

Question 6. (12 marks)

The straight line y = mx + c meets the parabola x = 2t, $y = t^2$ in real distinct points *P* and *Q* which correspond respectively to the values t = p and t = q.

(i)	Prove that $pq = -c$.	2
(ii)	Prove that $p^2 + q^2 = 4m + 2c$.	2
(iii)	Show that the equation of the normal to the parabola at <i>P</i> is $x + py = 2p + p^3$.	2
(iv)	The point <i>N</i> is the point of intersection of the normals to the parabola at <i>P</i> and <i>Q</i> . Show that the coordinates at <i>N</i> are $\left(-pq\left(p+q\right), \left(2+p^2+pq+q^2\right)\right)$	2
(v)	If the chord PQ is free to move while maintaining a fixed gradient.	
	() Show that the locus of <i>N</i> is a straight line.	2
	() Hence, or otherwise, show that this straight line is a normal to the parabola.	2

Marks

Section C continued.

Question 7. (12 marks)

- (a) When the polynomial P(x) is divided by (x + 4) the remainder is 5 and when P(x) is divided by (x 1) the remainder is 9.
 Find the remainder when P(x) is divided by (x 1)(x + 4).
- (b) A projectile is fired from a point on horizontal ground with initial speed $V \text{ ms}^{-1}$ and angle of projection . The cartesian equation of the path is given by

$$y = x \tan -\frac{gx^2}{2V^2 \cos^2}$$

where x and y are the horizontal and vertical displacements of the particle from O, the point of projection. The appalemention due to provide in registering has been

The acceleration due to gravity is g and air resistance has been neglected.

- (i) Use the given equation to show that the maximum range *R* on 2 the horizontal plane is given by $R = \frac{V^2}{g}$.
- (ii) Show that to hit a target h metres above the ground at the same 4 horizontal distance R using the same angle of projection ,

the speed of projection must be increased to $\frac{V^2}{\sqrt{V^2 - gh}}$.

Section C continued.

Question 7.

(c)

In the triangle ABC, $< BAC = 90^{\circ}$. AD bisects < BAC. DH AB and DK AC.

Copy the diagram.

(i) Show that
$$\frac{AD}{DH} = \sqrt{2}$$
. 1
(ii) By considering the areas of the triangles or otherwise, 2
show that $\frac{\sqrt{2}}{AD} = \frac{1}{AB} + \frac{1}{AC}$

THIS IS THE END OF THE PAPER

Marks

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2003

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Sample Solutions

QUESTION 1 QUESTION 2 $a(1) \propto + \beta + \beta = -\frac{b}{a} = \frac{5}{2}$ (a) (i) $\sin 3x \times 1 + x \times 3\cos 3x$ ~ BJ =- 12 Sin 3x + 3> Cos 3x (ii) $e^{1-\chi^2} x - 2\chi = -2\chi e^{1-\chi^2}$ (b) $y = \frac{2}{3}x + \frac{2}{3}$ y = 5x - 9 $m_1 = \frac{2}{3}$ $m_2 = 5$ $tan \Theta = \left| \frac{\frac{2}{3} - 5}{1 + \frac{2}{3} \times 5} \right|$ $2J_{3} \qquad U = \chi^{2} + Y$ $\int \frac{\chi}{\sqrt{U}} \times \frac{du}{2\chi} \qquad \frac{du}{d\chi} = 2\chi$ $\frac{d\chi}{d\chi} = \frac{du}{2\chi}$ $\frac{d\chi}{d\chi} = \frac{du}{2\chi}$ (b) 2 (c) $(1) \left[\frac{1}{2} \tan^{-1} \frac{x}{2} \right]_{0}^{2}$ $\frac{1}{2} \left[\frac{T_{4}}{2} - 0 \right] = \frac{T_{2}}{2}$. 2 = [4 -2] = 2 (ii) $\frac{1}{3} \int_{0}^{1} \frac{3\chi^{2}}{\chi^{3}+2}$ = $\frac{1}{3} \left[\log (\chi^{3}+2) \right]_{0}^{1}$ = $\frac{1}{3} (\log 3 - \log 2)$ = 0.135 or $\frac{1}{3} \log \frac{3}{2}$ $y = \tan^{-1} \frac{8}{15}$ $\tan y = \frac{8}{15}$ $\frac{17}{8}$ 2 ٢ $\cos y = \frac{15}{17}$ 5! 1 336 (d) $di(i) A(\frac{1}{3},2\pi) C(-\frac{1}{3},0)$ (e)0<0 or 0>4 $\frac{3}{dn}$ $\sqrt{1-1}$ $1 - \frac{4}{6} > 0 \text{ or } \frac{6^{2}(0, 4)}{6} > 0$ $1 > \frac{4}{6}$ $0^{2} - 46 \neq 0$ 8 < 0 or 0 > 4 0(c - 4) > 0 $\chi = 0$ grad of taget = $\frac{6}{1-0}$ = 6 0 <0 0 0 24

QUESTION 3
(a)
$$y=f(x)$$
 $y = 1 + e^{2x}$
 $f'(x)$ $x = 1 + e^{2y}$
 $e^{2y} = x^{-1}$
 $2y = \log(x^{-1})$
 $y = \frac{1}{2}\log(x^{-1})$
 $y = \frac{1}{2}\log(x^{-1$

$$(4) (1) \sin 2\theta = 2\sin \theta \cos \theta$$

$$(1) \sin \theta = 2\sin \theta \cos \theta$$

$$(1) \sin \theta = 2\sin \theta \cos^{2} \theta - \sin^{2} \theta$$

$$2\cos^{2} \theta - 1$$

$$\sin \theta = \cos^{2} \theta - \sin^{2} \theta$$

$$1 - 2\sin^{2} \theta$$

$$1$$

4 (b) (i)
$$t = 2x^2 - 5x + 3$$

 $\frac{dt}{dx} = 4x - 5$
 $\frac{ds}{dx} = V = \frac{1}{4x - 5}$ (i)
 $\frac{ds}{dt} = V = \frac{1}{4x - 5}$
(i) Using $x'' = \frac{d}{dx}(\frac{1}{2}v^2)$
 $= \frac{d}{dx}(\frac{1}{2}v^2)$
 $= \frac{d}{dx}(\frac{1}{2}(4x - 5)^2)$

$$= \frac{d}{dx} \left[\frac{1}{2} (4x-5)^{-2} \right]$$

= $-(4x-5)^{-3} \times 4$
= $-\frac{4}{(4x-5)^{3}} \quad (2)$
 (111) (d) when $x = 2$, $V = \frac{1}{3} \text{ cm/s} \quad (2)$
 $a = -\frac{4}{27} \text{ cm/s}^{2} \quad (2)$

(b) When
$$t=6$$
, $b=2x^2-5x+3$,
 $(2x+1)(x-3)=0$
 $x=-2, x=3$.
 $take \ x=3$
 $0+x=3, \ V=\frac{1}{7} \ cm/s$ $(\frac{1}{2})$
 $a=\frac{-4}{343}$ $(\frac{1}{2})$
(iv) particle is travelling to the right but is slowing
down: (2)

$$(5) (a) (i) \underbrace{\operatorname{Osg-Os}(y+2x)}_{2 \le in d} = \sin(g+d).$$

$$(48. = \operatorname{Osy}(-(\operatorname{Osy}(0) 2 d - \sin g \sin 2u))$$

$$2 \le in d$$

$$\operatorname{Osy}(-(\operatorname{Osy}(1 - 2 \sin^2 d)) - \sin g 2 \sin 4 \cos 4))$$

$$2 \le in d$$

$$\operatorname{Osy}(-(\operatorname{Osy}(1 - 2 \sin^2 d)) - \sin g 2 \sin 4 \cos 4)$$

$$2 \le in d$$

$$\operatorname{Osy}(-(\operatorname{Osy}(1 - 2 \sin^2 d)) - \sin g 2 \sin 4 \cos 4)$$

$$2 \le in d$$

$$\operatorname{Osy}(-(\operatorname{Osy}(1 - 2 \sin^2 d)) - \sin g 2 \sin 4 \cos 4)$$

$$2 \le in d$$

$$\operatorname{Osy}(-(\operatorname{Osy}(1 - 2 \sin^2 d)) - \sin g 2 \sin 4 \cos 4)$$

$$2 \le in d$$

$$= \sin 4 \cos g + 2 \sin 2 d \sin g$$

$$= \sin 4 \cos g + 2 \sin 4 \cos 4 + 2 \sin 4 \cos 4 + 2 \sin 4 \cos 4)$$

$$(i)$$

$$\operatorname{Osy}(- \cos 2 d + 2 \sin 3 d + \sin 5 d + \cdots + \sin(2n-1)d = \frac{1 - \cos 2nd}{2 \sin d}$$

$$\operatorname{Sind}(2n-1)d = \frac{1 - \cos 2nd}{2 \sin d}$$

$$\operatorname{Sind}(2n-1)d = \frac{1 - \cos 2nd}{2 \sin d}$$

$$\operatorname{Sind}(2k-1)d = \frac{1 - \cos 2k d}{2 \sin d}$$

$$\operatorname{Ind}(2k-1)d = \frac{1 - \cos 2k d}{2 \sin d}$$

$$\operatorname{Ind}(2k-1)d = \frac{1 - \cos 2k d}{2 \sin d}$$

$$\operatorname{Ind}(2k+1)d = \frac{1 - \cos 2(k+1)}{2 \sin d}$$

$$\operatorname{Ind}(2k+1)d = \frac{1 - \cos 2(k+1)}{2 \sin d}$$

<u>1-0052K& + sin(2k++).</u> 251nd NOW Using (a) (i) $\sin(y+x) = \cos y - \cos(y+2x)$ $2\sin x$ then $\sin(2ka+a) = \cos 2ka - \cos(2ka+2a)$ $2 \sin a$ NOW, $\frac{1-\cos 2ka}{2\cosh 4} + \frac{\cos 2ka}{2\sin 4} - \frac{\cos 2(k+1)a}{2\sin 4}$ $= \frac{1 - \cos 2(k+1)d}{2 \sin d}$ = RHS = True for n=k+1. step 3 If the statement is true for n=k then it is also true for n=k+1. Since the statement is true tor n=1, it follows that it must also be true for n=2 and so on. .. the statement is true for all positive integers n. I

(5) (b) (c)
$$y = \frac{x^3}{x^2} + \frac{x^3}{x^2} + \frac{x^3}{x^2} + \frac{x}{x^2} = x + 4x^{-2} = x + \frac{4}{x^{2}}$$

 $y'' = 24x^{-4} = \frac{24}{x^4}$
 $y'' = 24x^{-4} = \frac{24}{x^4}$
Stat points exist where $y'=0$, $1 - \frac{8}{x^3} = 0$
 $x^3 = 1 \Rightarrow x^3 = 8$
 $x^3 = 1 \Rightarrow x^2 = 8$
 $x^2 = 2 + \frac{4}{2^2} = 3$ (2,3) (1) (min stat pt)
Inflexions occur when $y''=0$ and $\exists a$ sign change
 $\frac{24}{x^4} = 0 \Rightarrow 24 = 0x^4$
 $does not exist.$ (D)
(ii) $y = \frac{x^3 + 4}{x^2} \Rightarrow x \neq 0$ (y axio) (2) Withusloke
 $y = \frac{x^3(1 + \frac{4}{x^3})}{x^2} = x(1 + \frac{4}{x^3})$ and as
 $x \Rightarrow x$ (3)
(iv)
 $x = -\frac{3}{x^2}$
 $y'' = x^3 + 4 = 0$
 $x^3 = -\frac{4}{x^2}$
 $y = 3 - 4$

5 (b) (iv)
$$x^{3} - kx^{2} + 4 = 0$$

 $x^{3} + 4 = kx^{2}$
So $\frac{x^{3} + 4}{x^{2}} = k$.
 $\Rightarrow y = \frac{x^{3} + 4}{x^{2}} = k$
3 intersections will occur between $y = k$ and $y = \frac{x^{3} + 4}{x^{2}}$ if
 $k > 3$. (2)

$$\frac{\left[\begin{array}{c} \text{Solution} - \text{Section C} \right]}{\left[\begin{array}{c} \text{Question (6)} \\ \text{Restron (6)} \\ \text{Liz]} \end{array}\right]} \\ \begin{array}{c} \text{Restron (6)} \\ \text{Restron (6)} \\ \text{Liz]} \end{array}$$

$$\frac{\left[\begin{array}{c} \text{Question (6)} \\ \text{Restron (6)} \\ \text{Liz]} \end{array}\right]}{\left[\begin{array}{c} \text{Restron (7)} \\ \text{Restron (6)} \\ \text{Restron$$

$$\frac{q \text{ uestion}(6)}{(v)} \xrightarrow{P_1 = -c, P+q = 2m}{p^{2} + q^{2} = 4m^{2} + 2c}}$$

$$\frac{r}{(v)} \xrightarrow{P_2 + q^{2} = 4m^{2} + 2c}}{p^{2} + q^{2} = 4m^{2} + 2c}$$

$$\frac{r}{p^{2} + q^{2} = 4m^{2} + 2c}}{p^{2} + q^{2} = 4m^{2} + 2c}$$

$$\frac{r}{p^{2} + q^{2} = 4m^{2} + 2c}}{p^{2} + q^{2} + 2c}$$

$$\frac{r}{p^{2} + q^{2} = 4m^{2} + 2c}}{p^{2} + 2c}$$

$$\frac{r}{p^{2} + q^{2} - 2m} + 2c}{p^{2} + 2c}$$

$$\frac{r}{p^{2} + q^{2} - 2m} + 2c}{p^{2} + 2m}$$

$$\frac{r}{p^{2} + q^{2} - 2m}$$

$$\frac{r}{p^{2} + q^{2} - 2m}$$

$$\frac{r}{p^{2} + q^{2} - 2m}$$

$$\frac{r}{p^{2} + q^{2} + 2m}$$

$$\frac{r}{p^{2} +$$

$$\frac{q}{1(c)} \qquad A$$

$$\frac{q}{1(c)} \qquad A$$

$$\frac{q}{45} + 5$$

Area of
$$ABC$$

= $\frac{1}{2}AB \cdot AC$.
but area of ABC
= $area of ABD
+ $area of ABD
+ $area of ABD$
Area of $ABD = \frac{1}{2}AB \cdot PH$
Area of $ACD = \frac{1}{2}AC \cdot PK$.
from (2) $DK = DH$
 $Area of $ACD = \frac{1}{2}AC \cdot PH$.
 $from$ (2) $DK = DH$
 $Area of $ACD = \frac{1}{2}AC \cdot PH$.
 $Area of $ACD = \frac{1}{2}AC \cdot PH$.
 $Area of $ACD = \frac{1}{2}AC \cdot PH$.
 $AFB \cdot AC = \frac{1}{2}(AB \cdot DH + AC \cdot DH)$.
 $DH(AB + AC) = AB \cdot AC \cdot [2]$.
 $AB + AC = \frac{1}{AB} \cdot AC$.
 $AB + AC = \frac{1}{AB} \cdot AC$.$$$$$$