2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Extension 1

General Instructions

- Reading time -5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 bundles.
Section A (Questions 1-3), Section B (Questions 4-5) and Section C (Questions 6-7).
- Start each Section in a NEW answer booklet.

Total Marks - 84 Marks

- Attempt questions 1-7
- All questions are of equal value.

Examiner: R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 84
Attempt Questions 1-7
All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.
SECTION A (Use a SEPARATE writing booklet)

Question 1 (12 marks)
(a) \quad Solve for $x: \quad\left(x^{2}-1\right)(x+5)>0$

2

$$
\int_{0}^{\frac{\pi}{6}} \sec 2 x \tan 2 x d x
$$

(d) Find the exact value of $\int_{0}^{\sqrt{3}} \frac{1}{9+x^{2}} d x$
(e) 8 people including A and B are to be seated around a circle.

How many arrangements are possible if A and B do not wish to sit together?
(f) Show that $\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta}=2 \tan \frac{\theta}{2}$
(a) Differentiate $y=\sin ^{-1} 2 x$
(b)

Find the domain and range of $y=3 \sin ^{-1} \sqrt{1-x^{2}}$
(c) (i) Express $\sqrt{3} \cos x-\sin x$ in the form $R \cos (x+\alpha)$,
where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Hence or otherwise, find the general solution for

$$
\sqrt{3} \cos x-\sin x=1
$$

(d)

In the diagram below $A B C D$ is a cyclic quadrilateral.
$B A$ is produced to F.
$B C \| F E$
$C F$ and $A E$ meet at D.

Copy or trace the diagram into your answer booklet.
(i) Show that $\triangle D E F\|\| F E A$
(ii) Hence show that $(E F)^{2}=E A \times E D$

SECTION A continued

Question 3 (12 marks)

(a) Use the Principle of Mathematical Induction to show that $2^{3 n}-1$ is divisible by 7 for all integers $n \geq 1$.
(b) For the curve $y=1+2 \cos x-2 \cos ^{2} x$,
(i) Show that $\frac{d y}{d x}=2 \sin x(2 \cos x-1)$
(ii) Hence find the stationary point(s) in the interval $-\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$
(iii) Sketch the curve and find the greatest and least value of y in $-\frac{\pi}{6} \leq x \leq \frac{\pi}{2}$
(c)

A rectangle is inscribed under the curve $y=\frac{1}{1+x^{2}}$, as shown in the diagram above, such that the rectangle is symmetrical about the y axis.
(i) Show that the area of the rectangle is given by $\frac{2 a}{1+a^{2}}$.
(ii) Find the value of a that produces the maximum area of the rectangle and what is this maximum area?

END OF SECTION A

SECTION B (Use a SEPARATE writing booklet)

Question 4 (12 marks)
(a) (i) Show that the equation of the tangent at $T\left(-2 t, t^{2}\right)$ on the parabola $y=\frac{1}{4} x^{2}$ is given by $t x+y+t^{2}=0$.
(ii) $\quad M(x, y)$ is the midpoint of the interval $T A$ where A is the x intercept of the tangent at T.

Find the equation of the locus of M as T moves on the parabola.
(b)

Solve $4 x^{3}-12 x^{2}+11 x-3=0$ if the roots are the terms of an arithmetic series.
(c) (i) Find the points of intersection of the curves $y=2 \cos x$ and
$y=\frac{1}{2} \sec x$ in the interval $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(ii) The area enclosed between the two curves listed above is

Find the volume of the solid of revolution. (Leave your answer in exact form.)

SECTION B continued

Question 5 (12 marks)
Marks
(a) A spherical balloon leaks air such that the radius decreases at a rate of $5 \mathrm{~cm} /$ second.

Calculate the rate of change of the volume of the balloon when the radius is 100 mm .
[The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$]
(b) A particle moves in such a way that its displacement $x \mathrm{~cm}$ from the origin O after a time t seconds is given by

$$
x=2 \cos \left(t+\frac{\pi}{6}\right) \mathrm{cm}
$$

(i) Show that the particle moves in Simple Harmonic Motion.
(ii) Evaluate the period of the motion.
(iii) Find the time at which the particle first passes through the origin on its first oscillation.
(iv) Find the velocity when the particle is 1 cm from the origin on its first oscillation.
(c) Find $\int \sqrt{16-x^{2}} d x$ using the substitution $x=4 \sin \theta$.

SECTION C (Use a SEPARATE writing booklet)

Question 6 (12 marks)
(a) Find a primitive function for $\frac{3 x}{4+x^{2}}$ second approximation for x_{1}, using Newton's Method.
[Express your answer correct to 2 decimal places.]
(c) At any time t, the rate of cooling of the temperature T of a body, when the surrounding temperature is S, is given by the differential equation

$$
\frac{d T}{d t}=-k(T-S)
$$

for some constant k.
(i) Show that $T=S+A e^{-k t}$, for some constant A, satisfies this differential equation.
(ii) A metal rod has a temperature of $1390^{\circ} \mathrm{C}$ and cools to $1060^{\circ} \mathrm{C}$ in 10 minutes when the surrounding temperature is $30^{\circ} \mathrm{C}$.

Find how much longer it will take the rod to cool to $110^{\circ} \mathrm{C}$, giving your answer to the nearest minute.
(iii) Sketch the graph of the function $T=S+A e^{-k t}$, using the values of S, A and k found above.

SECTION C continued

(a) Using the expansion of $(1+x)^{n}$
(i) Find an expression for $\sum_{r=1}^{n} r\binom{n}{r}$
(ii) Hence, or otherwise, prove that $\sum_{r=0}^{n}(r+1)\binom{n}{r}=2^{n-1}(n+2)$
T is the top of a building, h metres high. The points O, D and F are in the same line on flat level ground.
O is the base of the building.
D is d metres from O , and F is a further d metres from D.
At time $t=0$, two particles A and B are projected with the same initial velocity $V \mathrm{~m} / \mathrm{s}$ from T.
Particle A is projected horizontally and particle B is projected in the same direction, but at an angle $\alpha, \alpha>0$, to the horizontal.
The equations of motion of both particles are

$$
\ddot{x}=0 \text { and } \ddot{y}=-g
$$

(i) Assuming that the position of particle A at time t is given by

$$
x=V t, y=-\frac{1}{2} g t^{2}+h
$$

show that the Cartesian equation of the trajectory is given by

$$
y=h-\frac{g}{2 V^{2}} x^{2}
$$

(ii) Assuming that the position of particle B at time t is given by

$$
x=V t \cos \alpha \text { and } y=-\frac{1}{2} g t^{2}+V t \sin \alpha+h
$$

show that the Cartesian equation of the trajectory is given by

$$
y=x \tan \alpha-\frac{g x^{2}}{2 V^{2}} \sec ^{2} \alpha+h
$$

(iii) If A lands at D show that $h=\frac{g d^{2}}{2 V^{2}}$
(iv) If both A and B land at D show that $\tan \alpha=\frac{d}{h}$
(v) If A lands at D and B lands at F show that $d \geq 2 h \sqrt{3}$

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEYBOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Sample Solutions

Section	Marker
A	Mr Dunn
B	Ms Nesbitt
C	Mr Bigelow

Section A
12) $\left(x^{2}-1\right)(x+5)>0$

AND

$$
-5<x<-1 \quad(2 \operatorname{mank})
$$

(-)

$$
\begin{aligned}
y & =\ln \sqrt{x+1} \\
& =\frac{1}{2} \ln (x+1) \\
y^{\prime} & =\frac{1}{2(x+1)} \text { (2manha) }
\end{aligned}
$$

e)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}} \sec 2 x \cos 2 x d \\
& \left.=\frac{1}{2} \sec 2 x\right]_{0}^{\pi / 6} \\
& =\frac{1}{2} \operatorname{sic} \frac{\pi}{3}-\frac{1}{2} \sec c \\
& =\frac{1}{2} \times 2-\frac{1}{2} \times 1 \\
& =\frac{1}{2} \quad(2 \operatorname{mac}(j)
\end{aligned}
$$

d)

$$
\begin{aligned}
\int_{0}^{\sqrt{3}} \frac{d x}{9+x^{2}} & \left.=\frac{1}{3} \tan ^{-1} \frac{x}{3}\right]_{0}^{\sqrt{3}} \\
& =\left[\frac{1}{3} \tan ^{-1} \frac{\sqrt{3}}{3}\right]^{0} \\
& =\frac{1}{3} \tan ^{-1} \frac{1}{\sqrt{3}} \\
& =\frac{1}{3} \times \frac{\pi}{6} \\
& =\frac{\pi}{18} \quad(2 \cos)
\end{aligned}
$$

4 Totad munter of

If A and B are Legecthen
Then 2×6 !
Hence not logeeber

$$
\begin{aligned}
& =7!-2 \times 6! \\
& =6!(7-2) \\
& =5 \times 6! \\
& =3600 \quad \text { (2nanho) }
\end{aligned}
$$

f)

$$
\begin{aligned}
& L H S=\frac{1-\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta} \\
& =\frac{1-\cos ^{2} \theta+\operatorname{sen}^{2} \theta}{\operatorname{sen} \theta(1+\cos \theta)} \\
& =\frac{\sin ^{2} \theta}{\operatorname{sen} \theta(1+\cos \theta)} \\
& =\frac{2 x a-\theta}{1+\cos \theta} \\
& \text { Let } t=\tan \frac{\theta}{2} \\
& =\frac{2 \times \frac{2 t}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}} \\
& =\frac{2 \times \frac{2 t}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}} \\
& \text { (spencoy) } \\
& 1 \\
& \mathcal{N}^{N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{A t}{1+t^{2}}}{1+t^{2}+1-t^{2}}-\frac{4 t}{2}=2 t
\end{aligned}
$$

QUESTICN TWO
a)

$$
\begin{aligned}
& y=\pi x^{-1} 2 x \\
& \text { Let } x=2 x
\end{aligned}
$$

Then $y=\operatorname{sen}^{-1} \cdot \mathrm{c}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d x}{d x} \\
& =\frac{1}{\sqrt{1-u^{2}}} \times 2 \\
& =\frac{2}{\sqrt{1-4 x^{2}}}(2 \text { manh })
\end{aligned}
$$

a)

$$
y=3 \sin ^{-1} \sqrt{1-x^{2}}
$$

Conkuder $\sqrt{1-x^{2}}$

$$
-1 \leq x \leq 1 \text { Domain }
$$

e) contionied

$$
\begin{gathered}
2 \cos \left(x+\frac{\pi}{6}\right)=1(2 \operatorname{manh}) \\
\cos \left(x+\frac{\pi}{6}\right)=\frac{1}{2} \\
x+\frac{\pi}{6}= \pm \frac{\pi}{3} \\
x=2 k \pi \pm \frac{\pi}{3}-\frac{\pi}{6} \\
x=2 h \pi+\frac{\pi}{6}(2 \operatorname{manh}) \\
\text { or } 2 k \pi-\frac{\pi}{2}
\end{gathered}
$$

d)

Ther

$$
y=3 \sin ^{-1} 0 \quad t_{0} 3 \sin ^{-1} 1
$$

c)

$$
\begin{aligned}
\sqrt{3} \cos x-\sec x & =R \cos (x+\alpha) \\
& =R \cos x \cos \alpha-\alpha \\
R \cos \alpha & =\sqrt{3} \\
R \sin \alpha & =1 \\
\cos \alpha & =\frac{1}{\sqrt{3}} \\
\alpha & =\frac{\pi}{6} \\
R^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) & =3+1 \\
R & =2
\end{aligned}
$$

$$
=R \cos x \cos \alpha-R \sin x \operatorname{si\alpha }
$$

 (altinnale affoncte)

Hence \triangle DEF $111 \triangle F B A$

$$
\begin{aligned}
\frac{E F}{E A}= & \frac{E \Delta}{E F} \\
E F^{2}= & E A \times E \theta \\
& (2 \text { manhs })
\end{aligned}
$$

QUBJTION TMABR
*)
Prove $2^{3 n}-1$ as damedle $\log 7$ for $\kappa^{n \geqslant 1} \operatorname{lin}^{3}$ (egens)
Let $n=1$ Then $x^{3}-1=7$
er True for $n=1$
Anumane

$$
\alpha^{3 K}-1=7 K \text { whee } K \text { is }
$$

on riegen

Try to frowe

$$
2^{3 k+3}-1=7 N \text { when Non on }
$$

$$
\angle H S=2^{3} \cdot 2^{3 / 2}-1
$$

$=8(7 k+1)-1$ from ancuipution.

$$
\begin{aligned}
& =56 K+7 \\
& =7(8 K+1) \\
& =7 M
\end{aligned}
$$

True for $n=1$

$$
\begin{aligned}
& n=1+1=2 \\
& n=2+1=3
\end{aligned}
$$

ACL integen' $n \geqslant 1$ (3manhas)

$$
\begin{aligned}
x)_{i} y & =1+2 \cos x-2 \cos ^{2} x \\
y^{\prime} & =-2 \sec x+4 \cos x \sin x \\
& =2 \sin x(2 \cos x-1)(\operatorname{losh})
\end{aligned}
$$

ii) $y^{\prime}=0$ when $\sin x=0$

$$
\cos x=1 / 2
$$

He $x=0, \frac{\pi}{3}$

When $\left.\begin{array}{rl}x & =0, y \\ x & =\frac{\pi}{3} ; y=\frac{3}{2}\end{array}\right\}$ 2maxhs
iin)

Max of 1.5 at $x=\frac{\pi}{3}$
Monimum of 1 at

$$
x=0 \text { or } x=\frac{\pi}{2}
$$ imach

c)

$A n c=U$

$$
=2 a \times \frac{1}{1+a^{2}}=\frac{2 a}{1+c^{2}}
$$

Cinder $2 x$ (incilh)

$$
\begin{aligned}
& y^{\prime}=\frac{\left(x^{2}+1\right) 2-2 \cdot 2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2-2 x^{2}}{\left(x+x^{2}\right.}
\end{aligned}
$$

$y^{\prime}=0$ when $x= \pm 1$

THREE
(ii) conlimed.

$$
\begin{aligned}
\text { Whin } x & =1+\epsilon \quad y^{i}<0 \\
x & =1-\varepsilon \quad y^{i}>0 \\
1-\varepsilon & 1+\varepsilon
\end{aligned}
$$

Henvè $x=1$ frotcoued noximuan'

$$
\text { A ien }=\frac{2}{1+1}=2 \text { meware contt. (3marhs) }
$$

$O R$

$$
\begin{aligned}
y^{\prime \prime} & =\frac{\left(1+x^{2}(-4 x)-\left(2-2 x^{2}\right) 4 x\left(1+x^{2}\right)\right.}{\left(1+x^{2}\right) 4} \\
& =\frac{-4 x\left(1+x^{2}\right)\left[1+x^{2}+\left(2-2 x^{2}\right)\right]}{\left(1+x^{2}\right)^{4}} \\
& =\frac{-4 x\left(1+x^{2}\right)\left(3-x^{2}\right)}{\left(1+x^{2}\right)^{4}}
\end{aligned}
$$

Whin $x=1 y^{\prime \prime}=\frac{-4 \times 2 \times 2}{2^{4}}$
$y^{\prime \prime}$ +o Mence maxcincen

QUESTION 5 (c)

$$
\begin{aligned}
& \left.\int \sqrt{16-x^{2}} d x \quad \begin{array}{l}
x=4 \sin \theta \\
=\int \sqrt{16-16 \sin ^{2} \theta} \cdot 4 \cos \theta d \theta \quad \begin{array}{l}
d x \\
d \theta
\end{array}=4 \cos \theta \\
d x=4 \cos \theta d \theta \\
\int \sqrt{16 \cos ^{2} \theta} \cdot 4 \cos \theta d \theta \\
\int 4 \cos \theta \cdot 4 \cos \theta d \theta \\
16 \cos ^{2} \theta d \theta \\
\left.8 \int \cos 2 \theta+1\right) d \theta \quad \begin{array}{l}
2 \cos ^{2} \theta=2 \cos ^{2} \theta-1 \\
2 \cos ^{2} 2 \theta+1
\end{array} \\
8\left(\frac{1}{2} \sin 2 \theta+\theta\right) \\
4 \sin 2 \theta+8 \theta+c \\
4 \cdot 2 \sin \theta \cos \theta+80 \\
4 \times 2 \cdot \frac{x}{4} \frac{\sqrt{16-x^{2}}}{4}+8 \sin ^{-1} \frac{x}{4} \quad \theta=\sin ^{-1} \frac{x}{4} \\
=\frac{x}{2} \sqrt{16-x^{2}}
\end{array}\right] x+8 \sin ^{-1} \frac{x}{4}+c
\end{aligned}
$$

Quizstion 6.
cal of $y^{\prime}=\frac{3 x}{4+x^{2}}$

$$
y=\frac{3}{2} \ln \left(4+x^{2}\right)+c
$$

(b).

$$
\begin{aligned}
P(x) & =8 x^{3}-12 x^{2}+6 x+13 \\
P^{\prime}(x) & =24 x^{2}-24 x+6 . \\
& =6(2 x-1)^{2}
\end{aligned}
$$

(1) $P_{(x)}$ is incieaking when $P^{\prime}(x)>0$.

$$
\begin{aligned}
& \text { ie } \dot{b}(r x-1)^{2}>0 \\
& \therefore \text { all Real, escept } x=\frac{1}{2}
\end{aligned}
$$

("1) Lerice $P(x) \rightarrow-\infty$ as $x \rightarrow-\infty, P(0)=13$. and $P_{i=1}$ is uncieasing for all $x \neq t$. it follenes that there smuxt de a mit x_{1} silue $x_{1}<0$.

$$
\text { (iii) } \begin{aligned}
a_{2} & =a_{1}-\frac{f\left(a_{1}\right)}{f\left(a_{1}\right)} \\
\text { if } a_{1} & =-1 \text { ithen } a_{2}
\end{aligned}=-1-\frac{-8-12-6+13}{24+24+6 .} .
$$

(c) (i) $T=S+A e^{-k t \cdot}$

$$
\begin{align*}
\therefore \cdot \frac{d T}{d t} & =-k A e^{-k t} \tag{A}\\
& =-k(T-5) \text { pan (A) }
\end{align*}
$$

(11) when $t=0, T=1390$ and $S=30$ (constant)

$$
\begin{aligned}
& \therefore 1390=30+A e^{0 .} \\
& \therefore A=1360 . \\
& \therefore T=30+1360 e^{-k t}
\end{aligned}
$$

when $t=10, T=1060$.

$$
\begin{aligned}
\therefore 1060 & =30+1360 e^{-10 k} \\
\frac{1030}{1360} & =e^{-10 k} \\
-10 k & =\ln \frac{103}{136} . \\
k & =0.0278 . \\
\therefore T & =30+1360 e^{-0.0278 t}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Let} T=110 . \\
& 110=30+1360 e^{-0.0278 t} \\
& \frac{80}{1360}=e^{-0.0278 t} \\
& \therefore \ln \frac{8}{136}=-0.0278 t \\
& A=\frac{\ln \frac{1}{17}}{-0.0278} \\
& \doteqdot 102 \text { min }
\end{aligned}
$$

\therefore Pit takes 92 min longer.

Quizston 7 .
(a) new

$$
\begin{aligned}
&(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+(n) x^{2}+\binom{n}{3} x^{3}+\cdots+\binom{n}{r} x^{r}+\cdots \\
&\left.\cdots+\left(C_{n}^{n}\right) x^{n}-A\right)
\end{aligned}
$$

(1) differentiate feth sites y © \oplus atru.

$$
\left.\begin{array}{rl}
n(1+x)^{n-1}=(1 \\
1
\end{array}\right) * 2\binom{n}{2} x+3\binom{n}{3} x^{2}+\cdots+r(\tilde{r}) x^{r-1}+\cdots .
$$

let. $x=1$

$$
\begin{aligned}
& n \cdot 2^{n-1}=\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\cdots+r\binom{n}{n}+\cdots n\binom{n}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sum_{r=0}^{\text {equintenta }} r\binom{n}{r}=n 2^{n-1} .\right)
\end{aligned}
$$

(II)

$$
\begin{aligned}
& \text { R.T. A. } \sum_{r=0}^{n}(r+1)\binom{n}{r}=2^{n-1}(n+2 .) \\
& \text { LHS }=\sum_{r=0}^{n} r\binom{n}{r}+\sum_{r=0}^{n}\left(r_{r}^{n}\right) \\
&=n 2^{n-1}+2^{n} \quad\left(\begin{array}{l}
q / \text { ne bet } x=1 \\
i n(A) \\
n
\end{array}\right. \\
&\left.=2^{n-1}(n+2) \quad 2^{n}=\sum_{r=0}^{n}(r)\right) \\
&=\text { RHS. }
\end{aligned}
$$

(b) (i) $x=V t \Rightarrow t=\frac{x}{v}$.

$$
\begin{aligned}
\therefore y & =-\frac{1}{2} g t^{2}+h . \text { Lecomes } \\
y & =-\frac{1}{2} g \cdot\left(\frac{x}{v}\right)^{2}+h . \\
y & =h-\frac{1}{2} \frac{g x^{2}}{v^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x=v t \cos \alpha \Rightarrow t=\frac{x}{v \cos \alpha} \quad \therefore y=-\frac{1}{2} g t^{2}+v t \sin \alpha+h . \\
& \text { hecomes } y=-\frac{1}{2} g \cdot\left(\frac{x}{v \cos \alpha}\right)^{2}+v \frac{x}{v \cos \alpha} \alpha+h . \\
& \text { ie } y=x \tan \alpha-\frac{g x^{2} \sec \alpha}{\alpha v^{2}}+h
\end{aligned}
$$

(ii1) Sutatitule. (d,0) in (i)

$$
\begin{aligned}
0 & =h-\frac{g d^{2}}{\partial v^{2}} \\
\therefore h & =\frac{g d^{2}}{\partial v^{2}}
\end{aligned}
$$

(iN Arkititute $(d, 0)$ in (ii).

$$
\begin{aligned}
& 0=d \tan \alpha-\frac{g d^{2}}{\alpha v^{2}} \sec ^{2} \alpha+h . \\
& 0=d \tan \alpha-h\left(1+\tan ^{2} \alpha\right)+h \quad\left(h=\frac{g d^{2}}{\alpha v^{2}}\right) \\
& \quad h \tan ^{2} \alpha-\alpha \tan \alpha=0 \\
& \tan \alpha(h \tan \alpha-\alpha)=0 \\
& \quad \therefore \tan \alpha=0 \text { on } \tan \alpha=\frac{\alpha}{h}
\end{aligned}
$$

clearly $\operatorname{ta} \alpha \neq 0 \quad \therefore \tan \alpha=\frac{\alpha}{h}$
(N). Antistitucte $(2 d, 0)$ into (ii).

$$
\begin{aligned}
& 2 d \tan \alpha-\frac{g \cdot 4 d^{2}}{2 v^{2}} \sec ^{2} \alpha+h=0 . \\
& 2 d \tan \alpha-4 h \sec ^{2} \alpha+h=0 . \\
& 2 d \tan \alpha-4 h\left(1+\tan ^{2} \alpha\right)+h=0 \\
& 2 d \tan \alpha-4 h-4 h \operatorname{ta}^{2} \alpha+h=0 \\
& 4 h \tan ^{2} \alpha-2 d \tan \alpha+3 h=0
\end{aligned}
$$

Ior $\operatorname{ton} \alpha$ to hereal $-4 d^{2}-4 \times 4 h \times 3 h \geqslant 0$.

$$
\text { ie } \begin{array}{r}
4 \alpha^{2}-48 h^{2} \geqslant 0 \\
4 d^{2} \geqslant 48 h^{2} \\
d^{2} \geqslant 12 h^{2} \\
d \geqslant 2 h \sqrt{3}
\end{array}
$$

