2005

YEAR 12

TRIAL HIGHER SCHOOL

 CERTIFICATE EXAMINATION
Mathematics
 Extension 1

General Instructions

- Working time -2 Hours.
- Reading Time - 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4), Section C (Questions 5 and 6) and Section D (Question 7)

Total Marks - 84

- Attempt questions 1-7
- All QUESTIONS are of equal value.

Examiner: A. Fuller

Total marks - 84
Attempt Questions 1-7
All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

Section A

Marks

Question 1 (12 marks)
(a) \quad Simplify $\frac{3^{n}}{3^{n+1}-3^{n}}$

1
(b) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x}$
(c) The remainder when $x^{3}-3 x^{2}+p x-14$ is divided by $x-3$

2
is 1 . Find the value of p.
(d) Given that $\log _{a} 2=x$, find $\log _{a}(2 a)$ in terms of x.
(e) Find the coordinates of the point P that divides the interval from $A(-1,5)$ to $B(6,-4)$ externally in the ratio 3:2.
(f) Find, to the nearest minute, the acute angle between 2

The lines $3 x+2 y-5=0$ and $x-5 y+7=0$.
(g) Solve the inequality $\frac{2}{x} \leq 1$

Question 2 (12 marks)
(a) Differentiate with respect to x
(i) $y=\tan ^{3}(5 x+4) \quad 2$
(ii) $\quad y=\ln \left(\frac{2 x+3}{3 x+4}\right)$
(iii) $\quad y=\cos \left(e^{1-5 x}\right)$
(b) 30 girls, including Miss Australia, enter a Miss World Competition. The first six places are announced.
(i) How many different announcements are possible? 1
(ii) How many different announcements are possible 2
if Miss Australia is assured a place in the first six?
(c) If $f(x)=\tan ^{-1}(2 x)$ evaluate:
(i) $f\left(\frac{1}{2}\right)$ 1
(ii) $\quad f^{\prime}\left(\frac{1}{2}\right)$ 2

End of Section

Section B (Use a SEPARATE writing booklet)

Question 3 (12 marks)
(a) (i) State the natural domain and the corresponding range of $y=3 \cos ^{-1}(x-2)$
(ii) Hence, or otherwise sketch $y=3 \cos ^{-1}(x-2)$
(b) Find $\int x \sqrt{16+x^{2}} d x$ using the substitution $u=16+x^{2}$
(c) Find the general solution of $\sin 2 \theta=\sqrt{3} \cos 2 \theta$
(d) The roots of the equation $4 x^{3}+6 x^{2}+c=0$, 5 where c is a non-zero constant, are α, β, and $\alpha \beta$.
(i) Show that $\alpha \beta \neq 0$.
(ii) Show that $\alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}=0$ and deduce the value of $\alpha+\beta$.
(iii) Show that $\alpha \beta=-\frac{1}{2}$.

Question 4 (12 marks)
(a) If $\tan \theta=2$ and $0<\pi<\frac{\pi}{2}$ evaluate $\sin \left(\theta+\frac{\pi}{4}\right)$.
(b) . In the diagram $A B C D$ is a cyclic quadrilateral. The bisector of $\angle A B C$ cuts the circle at E , and meets AD produced at F .

(i) Copy the diagram showing the above information
(ii) Give a reason why $\angle \mathrm{CDE}=\angle \mathrm{CBE} \quad 1$
(iii) Show that DE bisects $\angle \mathrm{CDF}$
(c)

A square ABCD of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at $\mathrm{A}(\theta)$ decreases at a constant rate of $0 \cdot 1$ radians per second.
(i) At what rate is the area of the rhombus ABCD decreasing when $\theta=\frac{\pi}{6}$?
(ii) At what rate is the shorter diagonal of the rhombus ABCD 3 decreasing when $\theta=\frac{\pi}{3}$?

End of Section

Section C (Use a SEPARATE writing booklet)

Question 5 (12 marks)
(a) . Two boys decide to settle an argument by taking turns to toss a die. The first person to throw a six wins.
(i) What is the probability that the first person wins on his second throw?
(ii) What is the probability that the first person will win the argument?
(b) $\mathrm{P}\left(2 a t, a t^{2}\right), t>0$ is a point on the parabola $x^{2}=4 a y$. The normal to the parabola at P cuts the x axis at X and the y axis at Y.
(i) Show that the normal at P has equation $x+t y-2 a t-a t^{3}=0$
(ii) Find the co-ordinates of X and $\mathrm{Y} \quad \mathbf{1}$
(iii) Find the value of t such that P is the midpoint of XY . 2
(c)

The point T lies on the circumference of a semicircle, radius r and diameter $A B$, as shown. The point P lies on $A B$ produced and $P T$ is the tangent at T.
The arc $A T$ subtends an angle of θ at the centre, O, and the area of $\triangle O P F$ is equal to that of the sector $A O T$.
(i) Show that $\theta+\tan \theta=0$.
(ii) Taking 2 as an approximation to θ, use Newton's method once to find a better approximation to two decimal places.

Question 6 (12 marks)

(a) A particle is oscillating in simple harmonic motion such that its displacement x-metres from a given origin O satisfies the equation $\frac{d^{2} x}{d t^{2}}=-4 x$ where t is the time in seconds
(i) Show that $x=\alpha \cos (2 t+\beta)$ is a possible equation of motion for this particle, where α and β are constants
(ii) The particle is observed initially to have a velocity of 2 metres per second and a displacement from the origin of 4 metres. Find the amplitude of the oscillation.
(iii) Determine the maximum velocity of the particle
(b) Prove by Mathematical Induction that

$$
\sum_{r=1}^{n} r^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

(c) Consider the function $f(x)=\frac{x}{\sqrt{1-x^{2}}}$
(i) Find the domain of $f(x)$.
(ii) Find $f^{-1}(x)$, the inverse function of $f(x)$

Section D (Use a SEPARATE writing booklet)

```
Question 7 (12 marks)
(a) A projectile fired with velocity \(V\) and at an angle of \(45^{\circ}\) to the horizontal, just clears the tops of two vertical posts of height \(8 a^{2}\), and the posts are \(12 a^{2}\) apart. There is no air resistance, and the acceleration due to gravity is \(g\).
```

(i) If the projectile is at a point $P(x, y)$ at time t,

Derive expressions for x and y in terms of t.
(ii) Hence, show that the equation of the path of the projectile is $y=x-\frac{g x^{2}}{V^{2}}$
(iii) Using the information in (ii) show that the range of the projectile is $\frac{V^{2}}{g}$
(iv) If the first post is b units from the origin, show that
(a) $\frac{V^{2}}{g}=2 b+12 a^{2}$
(β). $\quad 8 a^{2}=b-\frac{g b^{2}}{V^{2}}$
(v) Hence or otherwise prove that $V=6 a \sqrt{g}$

SYDNEY BOYS HIGH SCHOOL

 MOORE PARK, SURRY HILLS
AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12
Mathematics Extension 1 Sample Solutions

Section	Marker
A	RD
B	RB
C	FN
D	AMG

Section A

$$
\begin{aligned}
\text { Q1 (a) } \frac{3^{n}}{3^{n+1}-3^{n}} & =\frac{3^{n}}{3^{n}(3-1)} \\
& =\frac{1}{2} \\
& =\left\lvert\, \begin{aligned}
&-\frac{15}{10}-\frac{2}{10} \\
&=\left|-\frac{11}{10}\right|
\end{aligned}\right. \\
\text { (b) } \lim _{x \rightarrow 0} \frac{\sin 5 x}{4 x} & =\lim _{5 x \rightarrow 0} \frac{\sin 5 x}{5 x} \times \frac{5}{4} \quad
\end{aligned}
$$

$$
=\frac{5}{4}
$$

(c)

$$
\begin{aligned}
& P(3)=27-27+3 p-14=1 \\
& \therefore 3 p=15 \\
& p=5
\end{aligned}
$$

(d)

$$
\begin{align*}
\log _{a} 2 a & =\log _{a} 2+\log _{a} a \\
& =x+1 \tag{2}
\end{align*}
$$

$$
x<0 \text { or } x \geqslant 2
$$

(e)

$$
\begin{align*}
P & \equiv\left(\frac{-3 \times 6+2 x-1}{-3+2}, \frac{-3 x-4+2 \times 5}{-3+2}\right) \\
& \equiv\left(\frac{-20}{-1}, \frac{22}{-1}\right) \\
& \equiv(20,-22) \tag{2}
\end{align*}
$$

(f)

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{-\frac{3}{2}-\frac{1}{5}}{1+-\frac{3}{2} \times \frac{1}{5}}\right|
\end{aligned}
$$

(g)

$$
\begin{gathered}
\frac{2}{x} \leqslant 1 \\
2 x \leqslant x^{2} \\
0 \leqslant x^{2}-2 x \\
x(x-2) \geqslant 0
\end{gathered}
$$

$Q 2$
(a) (i)

$$
\begin{aligned}
y & =\tan ^{3}(5 x+4) \\
y^{\prime} & =3 \tan ^{2}(5 x+4) \cdot \sec ^{2}(5 x+4) \\
& =15 \cdot \tan ^{2}(5 x+4) \cdot \sec ^{2}(5 x+4)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\ln \left(\frac{2 x+3}{3 x+4}\right) \\
& =\ln (2 x+3)-\ln (3 x+4) \\
y^{\prime} & =\frac{1}{2 x+3} \times 2-\frac{1}{3 x+4} \times 3 \\
& =\frac{2}{2 x+3}-\frac{3}{3 x+4}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =\cos \left(e^{1-5 x}\right) \\
y^{\prime} & =-\sin \left(e^{1-5 x}\right) e^{1-5 x} \cdot-5 \\
& =5 \sin \left(e^{1-5 x}\right) \cdot e^{1-5 x}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& 30 \times 29 \times 28 \times 27 \times 26 \times 25 \\
= & 427518000
\end{aligned}
$$

(ii) Chase the six finalist y and then enrich where they may be glace:

$$
\begin{aligned}
& { }^{1} C_{1} \times{ }^{29} C_{5} \times 6! \\
= & 118755 \times 270 \\
= & 85503600
\end{aligned}
$$

(c) (1)

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =\tan ^{-1} \\
& =\frac{\pi}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+(2 x)^{2}} \times 2 \\
& =\frac{2}{1+4 x^{2}} \\
f^{\prime}\left(\frac{1}{2}\right) & =\frac{2}{1+4 x^{\frac{1}{4}}} \\
& =1
\end{aligned}
$$

(3) (a) (1) $y=3 \cos ^{-1}(x-2)$
$\begin{aligned} \text { Domain }-1 & \leq x-2 \leq 1 \\ +2 & +2 \\ 1 & \leq x^{+2}\end{aligned}$
Range

$$
0 \leq \cos ^{-1}(x-2) \leq \pi
$$

$$
0 \leq 3 \cos ^{-1}(x-2) \leq 3 \pi
$$

(ii) $y=3 \cos ^{-1}(x-2)$

(b) $\int x \cdot \sqrt{16+x^{2}} d x$ uoing $u=16+x^{2}$ $u=16+x^{2} \quad$ Secomes
$\frac{u}{x}=2 x$ $\int \frac{d u}{2} \cdot u^{\frac{1}{2}}$

$$
\begin{aligned}
& \frac{d u}{d x}=2 x \\
& \frac{d u}{}=2 x d x \\
& \frac{d u}{2}=x d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \int u^{\frac{1}{2}} d u \\
= & \frac{1}{x} \cdot u^{\frac{3}{2}} \cdot \frac{2}{3}+c \\
= & \frac{1}{3} u^{1 \frac{1}{2}}+c \\
= & \frac{1}{3} \cdot\left(16+x^{2}\right) \sqrt{16+x^{2}}+c
\end{aligned}
$$

or $\frac{1}{3} \cdot\left[\sqrt{16+x^{2}}\right]^{3}+c$.
(c) general sold to $\sin 2 \theta=\sqrt{3} \cos 2 \theta$

$$
\frac{\sin 2 \theta}{\cos 2 \theta}=\tan 2 \theta=\frac{\sqrt{3}}{1}
$$

So $2 \theta=\frac{\pi}{3}+k \pi$

$$
\theta=\frac{\pi}{6}+\frac{k}{2} \pi \text { where } k=0, \frac{5}{2}, \frac{5}{2}, \ldots, \ldots
$$

(d) $4 x^{3}+6 x^{2}+c=0$
$c \neq 0$, roots are $\alpha, \beta, \alpha \beta$.

$$
a=4
$$

$$
6=6
$$

(i) sum of root $\alpha+\beta+\alpha \beta=-\frac{b}{a}=-\frac{b}{4}$ $c=0$ $d=c$.
product $\alpha \beta \alpha \beta=(\alpha \beta)^{2}=-\frac{\alpha}{a}=-\frac{c}{4}$
product in twos $\quad \alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}=\frac{c}{\alpha}=\frac{0^{4}}{4}=0$
now since $(\alpha \beta)^{2}=-\frac{c}{4}$ and $c \neq 0$
then $\alpha \beta \neq 0$
(ii) From above, since $\alpha \beta+\alpha^{2} \beta+\alpha \beta=\frac{0}{4}=0$
then $\alpha \beta(1+\alpha+\beta)=0$
So $\alpha \beta=0$ but it cannot from (i)
So $1+\alpha+\beta=0$

$$
\alpha+\beta=-1
$$

(iii) since $\alpha+\beta+\alpha \beta=-\frac{6}{4}=-\frac{3}{2}$ from above.
and $\alpha+\beta=-1$. and $\alpha+\beta=-1$.

$$
\begin{aligned}
-1+\alpha \beta & =-1 \frac{1}{2} \\
\alpha \beta & =-1 \frac{1}{2}+1=-\frac{1}{2}
\end{aligned}
$$

$4 \quad(a) \tan \theta=2$
evaluate

$$
\sin \left(\theta+\frac{\pi}{4}\right)
$$

$$
\sin \left(\theta+\frac{\pi}{4}\right)=
$$

(b) (i)

$$
(0.94868 \ldots)
$$

$$
=\frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{2}}
$$

$$
=\frac{2}{\sqrt{10}}+\frac{1}{\sqrt{10}}=\frac{3}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}=\frac{3 \sqrt{10}}{10}
$$

$$
\begin{aligned}
& \text { gui } \alpha+(180-\alpha)=180 \\
& \text { qua co } \beta_{2}^{\circ}+\frac{\beta}{2}+(180-\beta)=180^{\circ}
\end{aligned}
$$

(ii) $\hat{C B E}=\frac{\beta}{2}$ stands on minor are CE-
$\hat{C D E}=\frac{\beta}{2}$ also since it stands on minor are $C E$
(iii) now $\hat{A D C}+\hat{C D E}+E \hat{D F}=180^{\circ}$ straight line angle

$$
\begin{aligned}
(185-\beta)+\frac{\beta}{2}+E \hat{D F} & =180 \\
-\frac{\beta}{2}+E \hat{D} F=0 & \Rightarrow E \hat{D F}=\frac{\beta}{2}
\end{aligned}
$$

$\Rightarrow D E$ bisects $\hat{C D F}$

4 (c) Square $A B C D$ side / unit

$$
\frac{d \theta}{d t}=-0.1 \text { radians } / \mathrm{sec} \text {. }
$$

(i) area Rhombus $A=\frac{1}{2}+1 \times 1 \times \sin \theta+2$

$$
A=\sin \theta
$$

Now $\begin{aligned} \frac{d A}{d t} & =\frac{d A}{d \theta} \times \frac{d \theta}{d t} \\ & =\cos \theta \times\end{aligned}$

$$
=\cos \theta \times-0.1
$$

When $\theta=\frac{\pi}{6}, \frac{d A}{d t}=-0.1 \times \frac{\sqrt{3}}{2}=-\frac{1}{10} \times \frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& -0.1 \times \frac{\sqrt{3}}{2}=-\frac{1}{10} \times \frac{\sqrt{3}}{2} \\
& =-\frac{\sqrt{3}}{20} \text { unit }^{2} / \mathrm{sec} \\
& \quad(-0.0866 \ldots) .
\end{aligned}
$$

area is decreasing, at a

$$
=\cos \theta \times-0.1
$$ rate of $\frac{\sqrt{3}}{20} \mu^{2} / s$.

(ii) Shorter dusional $B D$.

$$
\begin{aligned}
& (B D)^{2} \\
= & 1^{2}+1-2 \times 1 \times 1 \times \cos \theta \\
B D & =\sqrt{2(1-\cos \theta)}=\sqrt{2} \cdot(1-\cos \theta)^{2} \\
\frac{d B D}{d t} & =\frac{d B D}{d \theta} \times \frac{d \theta}{d t} \\
& =\sqrt{2} \times \frac{1}{2}(1-\cos \theta)^{-\frac{1}{2}} \times \sin \theta \times-0.1 \\
& =\frac{\sqrt{2} \times \sin \theta \times-0.1}{2 \cdot \sqrt{1-\cos \theta}}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\frac{\pi}{3} \\
& \frac{d B D}{d t}=\frac{\sqrt{2} \times \frac{\sqrt{3}}{2} \times-0.1}{2} \\
& \\
& = \\
& \\
& =\frac{\frac{\sqrt{1-\frac{1}{6}}}{2} \times \frac{1}{2} \times \frac{1}{10}}{\frac{2}{10}} \times \frac{\sqrt{2}}{2} \\
&
\end{aligned}
$$

shorter diagonal decreasing at $\frac{\sqrt{3}}{20} \mathrm{l} / \mathrm{s}$

Section C

QUESTION 5

(a)
(i) $\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=\frac{25}{216}$
(ii) $\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \times \frac{1}{6} \ldots \ldots . . .$. geometric series

$$
S_{\infty}=\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^{2}}=\frac{6}{11}
$$

(b)(i) $y=\frac{x^{2}}{4 a}, y^{1}=\frac{x}{2 a}=\frac{2 a t}{2 a}=t=$ gradient of tangent gradient of normal $=-\frac{1}{t}$
eqn. of normal is $y-a t^{2}=-\frac{1}{t}(x-2 a t)$
$y t-a t^{3}=-x+2 a t$ $x+t y-2 a t-a t^{3}=0$ as required.
(ii) when $y=0, x=2 a t+a t^{3} \quad \times\left(2 a t+a t^{3}, 0\right)$ when $\mathrm{x}=0, \mathrm{y}=\frac{2 \mathrm{at}+\mathrm{at}^{3}}{\mathrm{t}}=2 a+a t^{2} \quad \mathrm{Y}\left(0,2 a+a t^{2}\right)$
(iii) Midpoint, P is $\left(a t+\frac{a t^{3}}{2}, a+\frac{a t^{2}}{2}\right)$

$$
\begin{array}{lr}
2 a t=a t+\frac{a t^{3}}{2} & \mathrm{at}^{2}=a+\frac{a t^{2}}{2} \\
4 a t=2 a t+a t^{3} & 2 \mathrm{at}^{2}=2 a+a t^{2} \\
4=2+\mathrm{t}^{2} & 2 \mathrm{t}^{2}=2+t^{2} \\
\mathrm{t}= \pm \sqrt{2} \quad \mathrm{t}=\sqrt{2}, \mathrm{t}>0
\end{array}
$$

(c)(i) $\angle T O P=\pi-\phi$
$\tan \angle T O P=\frac{P T}{r}=-\tan \phi, P T=-r \tan \phi$
area $\triangle T O P=$ area sector TOA (given)
$\frac{1}{2} r \times P T=\frac{1}{2} r^{2} \phi$
$-r \tan \phi=r \phi$
$-\tan \phi=\phi$
$\phi+\tan \phi=0$ as required.
(ii) $a_{1}=a-\frac{f(a)}{f^{1}(a)}=a_{1}=2-\frac{f(2)}{f^{1}(2)}$
$2-\frac{2+\tan 2}{1+\sec ^{2} 2}=2-\frac{-0 \cdot 185}{6 \cdot 774}$
$2 \cdot 03$ (2d.p.)

QUESTION 6

(a)(i) if $x=\alpha \cos (2 t+\beta)$
$\frac{d x}{d t}=-2 \alpha \sin (2 t+\beta)$
$\frac{d^{2} x}{d t^{2}}=-4 \alpha \cos (2 t+\beta)=-4 x$ (a possible equation)
(ii) $\quad v^{2}=n^{2}\left(\alpha^{2}-x^{2}\right), n=2$ and $x=4$ when $v=2$
$4=4\left(\alpha^{2}-16\right)$
$\alpha=\sqrt{17} m$
(ii) Max velocity when displacement $=0$

$$
v^{2}=4(17-0)
$$

$v=2 \sqrt{17} \mathrm{~m} / \mathrm{s}$
(b) When $n=1,1^{3}=\frac{1}{4} \times 1^{2} \times 2^{2}-\mathrm{P}(1)$ is true Assume $\mathrm{P}(k)$ is true $1^{3}+2^{3} \ldots .+k^{3}=\frac{1}{4} k^{2}(k+1)^{2}$ if $n=k+1$,

$$
1^{3}+2^{3} \ldots .+k^{3}+(k+1)^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2}
$$

LHS $=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3}$ (using assumption)

$$
\begin{aligned}
& =(k+1)^{2}\left(\frac{1}{4} k^{2}+k+1\right) \\
& =(k+1)^{2} \frac{1}{4}\left(k^{2}+4 k+4\right) \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\
& =\text { RHS }
\end{aligned}
$$

$\mathrm{P}(k+1)$ is true if $\mathrm{P}(k)$ is true. $\mathrm{P}(1)$ is true.
\therefore, by Mathematical Induction, $P(n)$ is true for any integer $n \geq 1$
(c)(i) $1-x^{2}>0 \quad-1<x<1$
(ii) If $y=f(x)$, the inverse function is
$x=\frac{y}{\sqrt{1-y^{2}}}$
$x^{2}=\frac{y^{2}}{1-y^{2}}$
$x^{2}-x^{2} y^{2}=y^{2}$
$y^{2}\left(1+x^{2}\right)=x^{2}$
$y^{2}=\frac{x^{2}}{1+x^{2}}$
$f^{-1}(x)=\frac{x}{\sqrt{1+x^{2}}}$ (odd function)

Section D

(7) (a)

(i)
$\ddot{x}=0$
Integrate w.r.t. t
$\dot{x}=K$
When $t=0, \dot{x}=\frac{V}{\sqrt{2}}$
$\therefore K=\frac{V}{\sqrt{2}}$
$\therefore \dot{x}=\frac{V}{\sqrt{2}}$
Integrate w.r.t. t
$x=\frac{V t}{\sqrt{2}}+M$
When $t=0, x=0$
$\therefore M=0$
$\therefore x=\frac{V t}{\sqrt{2}}$
$\ddot{y}=-g$
Integrate w.r.t. t
$\dot{y}=-g t+L$
When $t=0, \dot{y}=\frac{V}{\sqrt{2}}$
$\therefore L=\frac{V}{\sqrt{2}}$
$\therefore \dot{y}=\frac{V}{\sqrt{2}}-g t$
Integrate w.r.t. t
$y=\frac{V t}{\sqrt{2}}-\frac{1}{2} g t^{2}+N$
When $t=0, y=0$
$\therefore N=0$
$\therefore y=\frac{V t}{\sqrt{2}}-\frac{1}{2} g t^{2}$
(ii) From the equation for x :

$$
\begin{aligned}
t=\frac{\sqrt{2} x}{V} \quad \therefore y & =\frac{V}{\sqrt{2}} \frac{\sqrt{2} x}{V}-\frac{1}{2} g\left(\frac{\sqrt{2} x}{V}\right)^{2} \\
y & =x-\frac{g x^{2}}{V^{2}}
\end{aligned}
$$

(iii) The range is achieved when $y=0$

$$
\begin{aligned}
\therefore x-\frac{g x^{2}}{V^{2}} & =0 \\
x\left(1-\frac{g x}{V^{2}}\right) & =0 \\
\therefore 1-\frac{g x}{V^{2}} & =0 \\
x & =\frac{V^{2}}{g} \quad \text { (Range) }
\end{aligned}
$$

(iv) (α) By symmetry the second post is b units from point of impact

$$
\therefore\left(x_{R}=\right) \frac{V^{2}}{g}=2 b+12 a^{2}
$$

(β) When $x=b, y=8 a^{2}$, in the equation from (ii):

$$
8 a^{2}=b-\frac{g b^{2}}{V^{2}}
$$

(v) From (α) :

$$
\begin{align*}
& 2 b=\frac{V^{2}}{g}-12 a^{2} \\
& \therefore b=\frac{V^{2}}{2 g}-6 a^{2} \\
& \therefore \frac{V^{2}}{2 g}=b+6 a^{2} \\
& \therefore V^{2}=2 g\left(b+6 a^{2}\right) \\
& \quad=g\left(2 b+12 a^{2}\right) \\
& \therefore V=\sqrt{g} \sqrt{2 b+12 a^{2}} \tag{*}
\end{align*}
$$

Hence it remains to prove that $2 b=24 a^{2}$.
Now $\frac{g}{V^{2}}=\frac{1}{2 b+12 a^{2}}$

$$
\begin{aligned}
& \text { So } \quad \begin{aligned}
& 8 a^{2}=b-\frac{g b^{2}}{V^{2}} \\
&=b-\frac{b^{2}}{2 b+12 a^{2}} \\
&=\frac{2 b^{2}+12 a^{2} b-b^{2}}{2 b+12 a^{2}} \\
& \begin{aligned}
\therefore 16 a^{2} b+ & 96 a^{4}
\end{aligned}=2 b^{2}+12 a^{2} b-b^{2} \\
&=b^{2}+12 a^{2} b
\end{aligned}
\end{aligned}
$$

$\therefore b^{2}-4 a^{2} b-96 a^{4}=0$

$$
\begin{aligned}
\therefore b & =\frac{4 a^{2} \pm \sqrt{16 a^{4}+4 \times 96 a^{4}}}{2} \\
& =\frac{4 a^{2} \pm 4 \sqrt{a^{4}+24 a^{4}}}{2} \\
& =\frac{4 a^{2} \pm 4 \times 5 a^{2}}{2} \\
& =12 a^{2} \quad \text { Neg result extraneous) }
\end{aligned}
$$

\therefore In equation (*)

$$
\begin{aligned}
V & =\sqrt{g} \sqrt{36 a^{2}} \\
& =6 a \sqrt{g} \quad \text { As required. }
\end{aligned}
$$

