2006

YEAR 12
 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics
 Extension 1

General Instructions

- Working time -2 Hours
- Reading time - 5 Minutes
- Write using black or blue pen
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4), Section C (Questions 5 and 6) and Section D (Question 7).

Total Marks - 84

- Attempt Questions 1-7.
- All QUESTIONS are of equal value.

Examiner: R. Boros

Section A - Start a new booklet

Question 1. (12 marks)

a)
(i) Evaluate $\int_{0}^{1} \frac{x}{x^{2}+1} d x$ leaving your answer in exact form.
(ii) Evaluate $\int_{-2}^{2 \sqrt{3}} \frac{1}{x^{2}+4} d x$ leaving your answer in exact form.
b) Find the gradient of the tangent to the curve $y=\tan ^{-1}(\sin x)$ at $x=0$.
c) Solve for $x, \quad \frac{1}{x+1}<3$.
d) Give the general solution of the equation, $\quad \cos \left(\theta+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
e) If $f(x)=8 x^{3}$, then find the inverse function $f^{-1}(x)$.

Question 2. (12 marks)

a) Find the co-ordinates of the point P that divides the interval $A(-4,-6)$ and $B(6,-1)$ externally in the ratio $3: 1$.
b) (i) Sketch the graph of $y=|2 x-4|$. 2
(ii) Using your graph, or otherwise, solve the inequation $|2 x-4|>x$.
c) Use the substitution $u=1+x$ to evaluate, $\int_{-1}^{3} x \sqrt{1+x} \cdot d x$.
d) Solve for $\mathrm{n}, 2 \times{ }^{n} C_{4}=5 \times{ }^{n} C_{2}$.
e) What is the least distance between the circle $x^{2}+y^{2}+2 x+4 y=1$ and the line $3 x+4 y=6$? (Leave your answer in exact form.)

End of Section A

Section B - Start a new booklet

Marks

Question 3. (12 marks)

a) If the roots of the equation, $x^{4}-2 x^{3}-5 x+1=0$, are $t_{1}, t_{2}, t_{3}, t_{4}$, find $\sum_{1}^{4}\left(t_{i} t_{j} t_{k}\right)^{-1}$, such that $i \neq j \neq k$.
b) State the domain and range of the function $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$. Hence sketch the curve.
c) A bowl of water heated to $100^{\circ} \mathrm{C}$ is placed in a coolroom where the temperature is maintained at $-5^{\circ} \mathrm{C}$. After t minutes, the temperature $T^{\circ} \mathrm{C}$ of the water is changing so that $\frac{d T}{d t}=-k(T+5)$.
(i) Prove that $T=A e^{-k t}-5$ satisfies this equation and find the value of A.
(ii) After 20 minutes, the temperature of the water has fallen to $40^{\circ} \mathrm{C}$. How long, to the nearest minute, will the water need to be in the coolroom before ice begins to form, (i.e. the temperature falls to $0^{\circ} \mathrm{C}$).
d) (i) Show that the equation $\ln x+x^{2}-4 x=0$ has a root lying between $x=3$ and $x=4$.
(ii) By taking $x=4$ as a first approximation, use one application of Newton's Method to obtain another approximation for the root, to 2 decimal places. Is this newer approximation a better one?
Explain.

Question 4. (12 marks)

a) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. It is given that the chord $P Q$ has equation $y=\left(\frac{p+q}{2}\right) x-a p q$.
(i) Show that the gradient of the tangent at P is p.
(ii) Prove that if $P Q$ passes through the focus, then the tangent at P is parallel to the normal at Q.
b) A committee of five is to be formed from 4 Liberal senators, 3 Labor senators and 2 Democrat senators.
(i) How many different committees can be formed that have 3

Liberals, 1 Labor and 1 Democrat?
(ii) If the committee is to be chosen at random, what is the probability that there will be a Liberal majority in the committee?
c)
(i) Express $7 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$.
(ii) Hence solve $7 \cos \theta-\sin \theta=5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, giving your answer to the nearest degree.
d) Find the values of the constants a and b if $x^{2}-2 x-3$ is a factor of the polynomial $P(x)=x^{3}-3 x^{2}+a x+b$.

End of Section B

Question 5. (12 marks)

a)

A soccer player A is x metres from a goal line of a soccer field. He takes a shot at the goal $B C$, with the ball not leaving the ground.
(i) Show that the angle θ within which he must shoot is given by $\theta=\tan ^{-1}\left(\frac{8 x}{180+x^{2}}\right)$ when he is 10 metres to one side of the near goal post and 18 metres to the same side of the far post.
(ii) Find the value of x which makes this angle a maximum. (Leave your answer in exact form).
b) A particle moves in a straight line such that its velocity $V \mathrm{~m} / \mathrm{s}$ is given by $V=2 \sqrt{2 x-1}$ when it is x metres from the origin. If $x=\frac{1}{2}$ when $t=0$ find:
(i) the acceleration.
(ii) an expression for x in terms of t.
c)

Find the volume of the solid obtained by rotating $y=\sin ^{-1} x$ about the y-axis between $y=-\frac{\pi}{4}$ and $y=\frac{\pi}{4}$. Answer in exact form.
d) The perimeter of a circle is increasing at $3 \mathrm{~cm} / \mathrm{s}$. Leaving your answer in terms of π, find the rate at which the area is increasing when the perimeter is 1 m .

Question 6. (12 marks)

a)

Consider the following three expressions involving n, where n is a positive integer:

$$
5^{n}+3,7^{n}+5,5^{n}+7
$$

(i) By substituting values of n, show that $7^{n}+5$ is the only one of these expressions which could be divisible by 6 for all positive integers n.
(ii) Use mathematical induction to show that the expression $7^{n}+5$ is in fact divisible by 6 for all positive integers n.
b)

In the diagram $U X W$ is a semi-circle with O as a midpoint of diameter $U W$.
The point P lies on $U W$ and $X P$ is perpendicular to $U W$. The length of $U P=a$ units and $P W=b$ units are shown.
(i) Explain why $O X=\frac{a+b}{2}$.
(ii) Show that $\bigsqcup U X P\|\| X W P$.
(iii) Deduce that $X P=\sqrt{a b}$.
(iv) By using the diagram show that $\frac{a+b}{2} \geq \sqrt{a b}$.
c) The displacement x metres of a particle from the origin is given by $x=5 \cos \left(3 t-\frac{\pi}{6}\right)$, where t is the time lapsed in seconds.
(i) Show that $\ddot{x}=-9 x$.
(ii) Find the period of the motion
d) Suppose that $(5+2 x)^{12}=\sum_{k=0}^{12} a_{k} x^{k}$.
(i) Use the binomial theorem to write the expression for a_{k}.
(ii) Show that $\frac{a_{k+1}}{a_{k}}=\frac{24-2 k}{5 k+5}$

End of Section C

Question 7. (12 marks)

A projectile is fired from the origin with a velocity V and an angle of elevation θ, where $\theta \neq 90^{\circ}$. You may assume that $x=V t \cos \theta$ and $y=-\frac{1}{2} g t^{2}+V t \sin \theta$, where x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds after firing, and g is the acceleration due to gravity.
(i) Show that the Cartesian equation of the flight of the projectile is:

$$
y=x \tan \theta-\frac{g}{2 V^{2} \cos ^{2} \theta} x^{2}
$$

(ii) Suppose the projectile is fired up a plane inclined at β to the horizontal so that $0^{\circ} \leq \beta \leq \theta$. If the projectile strikes the plane at $P(h, k)$, show that:

$$
\begin{equation*}
h=\frac{(\tan \theta-\tan \beta) 2 V^{2} \cos ^{2} \theta}{g} \tag{2}
\end{equation*}
$$

(iii) Hence, show that the range $O P$ of the projectile can be given by

$$
O P=\frac{2 V^{2} \sin (\theta-\beta) \cos \theta}{g \cos ^{2} \beta}
$$

(iv) Given the fact that $2 \sin (x-\beta) \cos x=\sin (2 x-\beta)-\sin \beta$. Show that the maximum value of the range of $O P$ is given by:

$$
\begin{equation*}
\frac{V^{2}}{g(1+\sin \beta)} \tag{4}
\end{equation*}
$$

(v) If the angle of inclination of the plane is 14°, at what angle to the horizontal should the projectile be fired in order to attain maximum range?

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Question 1:
a) i)

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int_{0}^{1} \frac{2 x}{x^{2}+1} d x \\
& =\frac{1}{2}\left[\ln \left(x^{2}+1\right)\right]_{0}^{1} \\
& =\frac{1}{2}[\ln 2-\ln 1] \\
& =\frac{1}{2} \ln 2
\end{aligned}
$$

ii)

$$
\begin{aligned}
\int_{-2}^{2 \sqrt{3}} \frac{1}{x^{2}+4} d x & =\left[\frac{1}{2} \tan ^{-1} \frac{x}{2}\right]_{-2}^{2 \sqrt{3}} 1 / 2 \\
& =\left(\frac{1}{2} \tan ^{-1} \frac{2 \sqrt{3}}{2}\right)-\left(\frac{1}{2} \tan ^{-1} \frac{-2}{2}\right) \\
& =\left(\frac{1}{2} \tan ^{-1} \sqrt{3}\right)-\left(\frac{1}{2} \tan ^{-1}(-1)\right) \\
& =\left(\frac{1}{2} \cdot \frac{\pi}{3}\right)-\left(\frac{1}{2} \cdot \frac{-\pi}{4}\right) 1_{1 / 2} \\
& =\frac{\pi}{6}--\frac{\pi}{8} \\
& =\frac{7 \pi}{24}
\end{aligned}
$$

b) Find the gradient of the tangent to the curve $y=\tan ^{-1}(\sin x)$ at $x=0$

$$
\begin{array}{rlr}
\frac{d y}{d x} & =\frac{1}{1+(\sin x)^{2}} \times(\cos x) & -1 \text { for } n 0 x \\
& =\frac{\cos x}{1+\sin ^{2} x} & \cos x .
\end{array}
$$

when $x=0$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\cos 0}{1+\sin ^{2} 0} \\
& =\frac{1}{1} \\
& =1
\end{aligned}
$$

c) solve for $x, \frac{1}{x+1}<3$

$$
\begin{aligned}
& x+1 \neq 0 \\
& \therefore x \neq-1 \quad 1 / 2 \\
& x \text { by }(x+1)^{2} \quad \frac{(x+1)^{2}}{x+1}<3(x+1)^{2} \quad 1 / 2 \\
& x+1<3 x^{2}+6 x+3 \\
& 0<3 x^{2}+6 x+3-(x+1) \\
& 0<3 x^{2}+5 x+2 \\
& \frac{(3 x+3)(3 x+2)}{3} \\
& 0<(x+1)(3 x+2) \quad 1 / 2 \\
& =\frac{3(x+1)(3 x+2)}{3} \\
& x<-1, \quad x>-2 / 3 \quad 1 / 2
\end{aligned}
$$

d) General solution for

$$
\begin{array}{ll}
\cos (\theta+\pi / 4)=1 / \sqrt{2} \\
\cos (\theta+\pi / 4)=\cos \pi / 4 & 1 / 2 \\
\theta+\pi / 4=2 n \pi \pm \pi / 4 & 1 \\
\theta=2 n \pi \pm \pi / 4-\pi / 4 & 1 / 2
\end{array}
$$

e) $f(x)=8 x^{3}$ find inverse function $f^{-1}(x)$

$$
\begin{aligned}
& f\left(f^{-1}(x)\right)=x=f^{-1}(f(x)) 1 / 2 \\
& f\left(f^{-1}(x)\right)=x \\
& \therefore \quad 8\left(f^{-1}(x)\right)^{3}=x \\
& f^{-1}(x)^{3}=x / 8 \\
& f^{-1}(f(x))=\frac{\sqrt[3]{8 x^{3}}}{2} \\
& \therefore f^{-1}(x)=3 \sqrt{\frac{x}{8}} \\
& =\frac{2 x}{2} \\
& =\frac{\sqrt[3]{x} \cdot 1 / 2}{2} \\
& =x 1 / 2 \\
& \therefore f^{-1}(x)=\frac{\sqrt[3]{x}}{2} 1 / 2 \\
& -1 \text { for } \sqrt[3]{8}=2 \sqrt{2} \\
& -1 \text { for } \frac{\sqrt[3]{x}}{x}
\end{aligned}
$$

Question 2.
$\begin{array}{ll}\text { a). } A(-4,-6) \quad B(6,-1) \quad \text { divide externally in } \\ & \begin{array}{l}\text { ratio } 3: 1\end{array}\end{array}$

$$
\begin{aligned}
& x \text {-coordinate }=\frac{(3 x 6)-(1 x-4)}{3-1}=111 / 2 \\
& y \text {-co .ordinate }=\frac{(3 x-1)-(1 x-6)}{3-1}=\frac{3}{2} 1 / 2
\end{aligned}
$$

\therefore The coordinates of P are $(11,3 / 2) 1$ $11 / 2$ if x_{2}, x_{1} yer y_{2} are switched.
b)i) sketch the graph of $y=|2 x-4|$

ii) solve $|2 x-4|>x$

$$
\begin{gathered}
\sqrt{(2 x-4)^{2}}>x \\
(2 x-4)^{2}>x^{2} \\
4 x^{2}-16 x+16>x^{2} \\
3 x^{2}-16 x+16>0 \\
\frac{(3 x-12)(3 x-4)}{3}>0 \\
\frac{3(x-4)(3 x-4)}{3}>0 \\
x>4, x<4 / 3
\end{gathered}
$$

c) Use $u_{t}=1+x$ to evaluate $\int_{-1}^{3} x \sqrt{1+x} d x$

$$
\begin{aligned}
& u=1+x \\
& \text { limits: } \\
& \frac{d u}{d x}=1 \quad \therefore x=u-1 \\
& x=3 \quad \therefore \quad v=1+3 \Rightarrow v=41 / 2 \\
& x=-1 \quad \therefore u=1-1 \quad \Rightarrow u=0 \\
& d u=d x \\
& \int_{0}^{4}(u-1) \cdot \sqrt{u} d u \quad 1 / 2 \\
& =\int_{0}^{0}(u-1) \cdot u^{1 / 2} d u \\
& =\int_{0}^{4}\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\left[\frac{U^{5 / 2}}{5 / 2}-\frac{U^{3 / 2}}{3 / 2}\right]_{0}^{4} 1 / 2 \\
& =\left[\frac{2}{5} \cdot 4^{5 / 2}-\frac{2}{3} \cdot 4^{3 / 2}\right]-\left[\frac{2}{5} \cdot 0^{5 / 2}-\frac{2}{3} \cdot 0^{3 / 2}\right] \\
& =\left[\frac{2 \times 32}{5}-\frac{2 \times 8}{3}\right] \\
& =\frac{64}{5}-\frac{16}{3} \\
& =\frac{112}{15} \text { OR } 7^{7 / 15} 1 / 2
\end{aligned}
$$

d) solve for $n, 2 x{ }^{n} C_{4}=5 \times{ }^{n} C_{2} \quad-1 / 2$ for $n=-3$

$$
2 \times \frac{n!}{(n-4)!4!}=5 \times \frac{n!}{(n-2)!} \times 2!1
$$

\div by $n!\frac{2}{24} \cdot \frac{1}{(n-4)!}=\frac{5}{2} \cdot \frac{1}{(n-2)!}$

$$
\begin{aligned}
& \hline x \text { by }(n-4)! \\
& \hline \frac{2}{24}=\frac{5}{2} \cdot \frac{1}{(n-2)(n-3)} \\
& \hline \text { by }{ }^{2 / 5} \\
& \hline \frac{1}{30}=\frac{1}{(n-2)(n-3)} \\
& \hline \therefore \quad 2 x^{8} C_{4}=140=5 x^{8} C_{2} \\
& \therefore n=8 \cdot 1
\end{aligned}
$$

$2 e)$ circle $x^{2}+y^{2}+2 x+4 y=1$

$$
\begin{aligned}
& \therefore(x+1)^{2}+(y+2)^{2}=6 \\
& \therefore \text { centre }(-1,-2) \text { radius } \sqrt{6}
\end{aligned}
$$

line $3 x+4 y=6 \quad \Rightarrow \quad 3 x+4 y-6=0$
least distance between circle a line is the distance between the line a centre of the $1 / 2$ circle less the radius.

$$
\begin{aligned}
d & =\frac{1(3 y-1)+(4 x-2)-6 \mid}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{|-3-8-6|}{5} \\
& =\frac{|-18|}{5} \quad 1 / 2
\end{aligned}
$$

\therefore minimum distance $=\frac{17}{5}-\sqrt{6} \quad 1 / 2$
17/5 I mark only.
a)

$$
\begin{aligned}
& \sum_{\substack{1 \\
i \neq j \neq k}}^{4}\left(t_{i} t_{j} t_{2}\right)^{-1}=\frac{1}{t_{1} t_{23}}+\frac{1}{t_{2} t_{3} t}+\frac{1}{t_{3} t t_{1}}+\frac{1}{t_{4} t_{4}\left(r_{2}\right.} \\
&=\frac{t_{1}+t_{2}+t_{3}+t_{1}}{t_{1} t_{2} t_{3} t_{4}} \\
& \begin{aligned}
t_{1}+t_{2}+t_{3}+t_{4} & =-\frac{b}{a} \\
& =2 \\
t_{1} t_{2} t_{3} t_{4} & =\frac{e}{a} \\
& =1
\end{aligned}
\end{aligned}
$$

So $\sum_{\substack{i \neq j k k}}^{4}\left(t_{i} t_{j}\right)^{-1}=2$.

Domain: $-1 \leq \frac{x}{3} \leq 1$

$$
-3 \leq x \leqslant 3
$$

Ranglan: $-\frac{\pi}{2} \leqslant \sin ^{-1}\left(\frac{x}{3}\right) \leqslant \frac{\pi}{2}$.

$$
\begin{aligned}
& -\pi \leqslant 2 \sin ^{-1}\left(\frac{x}{3}\right) \leqslant \pi \\
& -\pi \leqslant y \leqslant \pi
\end{aligned}
$$

Ci)

$$
\begin{aligned}
L H S & =\frac{d}{d t} \\
& =-k A e^{-k t}
\end{aligned}
$$

u initial conditions

$$
\begin{aligned}
100 & =A e^{-k 0}-5 \\
A & =105
\end{aligned}
$$

ii) After 20 mutes

$$
\begin{aligned}
40 & =105 e^{-20 k}-5 \\
\frac{45}{105} & =e^{-20 k} \\
-20 k & =\ln \frac{3}{7} \\
k & =\frac{\ln \frac{3}{7}}{-20}
\end{aligned}
$$

At $0^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& 0=\operatorname{cose} e^{-k t}-5 \\
& e^{-k t}=\frac{5}{105} \\
& t=\frac{\ln \frac{1}{21}}{-k} \\
& t=72 \text { minutes. }
\end{aligned}
$$

$$
\begin{aligned}
n H S & =-k(T+5) \\
& =-k\left(A e^{-k t}-5+5\right) \\
& =-k A e^{-k t} \\
& =4 H S .
\end{aligned}
$$

di) Since $f(x)=\ln x+x^{2}-4 x$ is a contrucous function and

$$
\begin{aligned}
f(3) & =\ln 3+3^{2}-4 \times 3 \\
& \approx-1.9<0
\end{aligned}
$$

and

$$
\begin{aligned}
f(4) & =\ln 4+4^{2}-4 \times 4 . \\
& \approx 1.4>0
\end{aligned}
$$

Therefore $f(x)=\ln x-x^{2}-4 x$ must wave a root between $x=3, x=4$.
ii)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}+2 x-4 \\
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)} \\
x_{0} & =4 \\
x_{1} & =4-\frac{\ln 4+16-16}{\frac{1}{4}+8-4} \\
& \simeq 3.67
\end{aligned}
$$

Yes, sauce we know $f(x)$ has a root between 3 and 4 and this approximation is close to 3 than than the frost approximation oft.

Question 4.
i)

$$
\begin{aligned}
& y=\frac{x^{2}}{4 u} \\
& \frac{d y}{d x}=\frac{x}{2 u} \\
& \text { At } p\left(2 a p, a p^{2}\right) \\
& m p=\frac{2 u p}{2 a} \\
&=\rho .
\end{aligned}
$$

iii) Similarly to part (i) the tangent at Q is $m_{Q}=q$.
Thus the gradvent of the normal will be $m=-\frac{1}{q}$.
Given that the chord goes through the Locus ($0, a$). then

$$
\begin{aligned}
a & =\left(\frac{p+n}{2}\right) 0-a p q . \\
p q & =-1 \\
\therefore q & =-\frac{1}{p} .
\end{aligned}
$$

Thus the gradient of the normal at will ${ }^{\text {be }}-\frac{1}{q}=-\frac{1}{\left(-\frac{1}{p}\right)}$

$$
=p .
$$

\therefore Tangent at β is parallel to the normal at \mathbb{Q}.
b).i) $\binom{4}{3}\binom{3}{1}\binom{2}{1}=24$.
ii) $n($ Sample space $)=\binom{9}{5}=126$.

$$
\begin{aligned}
n(v) & =n(41,6)+n(31,6) \\
& =\binom{4}{4}\binom{5}{1}+\binom{4}{3}\binom{5}{2} \\
& =5+40 \\
& =45 .
\end{aligned}
$$

$$
\begin{aligned}
P(E) & =\frac{n(E)}{n(S)} \\
& =\frac{49}{126} \\
& =\frac{9}{14} .
\end{aligned}
$$

(6 (i)

$$
\begin{gathered}
R=\sqrt{49+1} \\
=5 \sqrt{2} \\
\tan \alpha=\frac{1}{7} \\
\alpha=8^{\circ} 8^{\prime}
\end{gathered}
$$

So $7 \cos \theta-\sin \theta=5 \sqrt{2} \cos \left(\theta+8^{\circ} 8^{\prime}\right)$.
ii) $5 \sqrt{2} \cdot \cos \left(\theta+88^{\prime}\right)=5$.

$$
\begin{gathered}
\cos \left(\theta+8^{\circ} 8^{\prime}\right)=\frac{1}{\sqrt{2}} \\
\theta+8^{\circ} 8^{\prime}=45^{\circ}, 315^{\circ} \\
\theta \approx 37^{\circ}, 307^{\circ} .
\end{gathered}
$$

d)

$$
\begin{aligned}
P(-1) & =(-1)^{3}-3(-1)^{2}+a(-1)+b \\
& =-4-a+b \\
P(3) & =(3)^{3}-3(3)^{2}+(3) a+b \\
& =3 a+b .
\end{aligned}
$$

$$
\left\lvert\, \begin{array}{cc}
\text { So } & -4-a+b=0 \\
\text { and. } & 3 a+b=0
\end{array}\right.
$$

from (A) $a=b-4$
sub into (B)

$$
\begin{gathered}
3 b-12+b=0 \\
b=3
\end{gathered}
$$

50

$$
a=-1
$$

$$
\therefore a=-1, b=3 \ldots
$$

中uestion (5)
(i)

$$
\begin{aligned}
& (\tan \theta) x^{2}-8 x+180 \tan \theta=\frac{8 x}{180+x^{2}} \\
& \tan \theta=\frac{\tan ^{-1}\left(\frac{8 x}{180+x^{2}}\right)}{\therefore \theta} \begin{array}{l}
\left(x^{2}+180\right)^{2}
\end{array} \frac{d \theta}{d x}=\frac{\left(80+x^{2}\right) 8-8 x(2 x)}{}
\end{aligned}
$$

1.e $\frac{1440-8 x^{2}}{\left(x^{2}+180\right)^{2}}=0$.
$8\left(x^{2}-180\right)=0, \quad x^{2}=180$ $x=6 \sqrt{5}$.
(c)

$$
\left(\sin ^{2} y=\frac{1-\cos 2 y}{2}\right)
$$

$$
V=2 \pi \int_{0}^{\pi / 4} \sin ^{2} y d y
$$

$=\pi\left(\frac{\pi}{4} \div \frac{1}{2}\right)$
[3]
(d)

$$
\begin{aligned}
& \frac{d p}{d t}=3 ; p=2 \pi r \\
& \therefore \quad t=\frac{p}{2 \pi} \\
& A=\pi\left(\frac{p^{2}}{4 \pi^{2}}\right)=\frac{p^{2}}{4 \pi}
\end{aligned}
$$

Test:

(1) | θ | 13 | $6 \sqrt{5}$ | 14 |
| :---: | :---: | :---: | :---: |
| $\frac{d \theta}{d x}$ | + | 0 | -1568 |

(b)

$$
r=2(2 x-1)^{\frac{1}{2}}
$$

(i) $r^{2} / 2=4 x-2$

$$
\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=4 .
$$

(ii) $\frac{d x}{d t}=2(2 x-1)^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d t}{d x} & =\frac{1}{2 \sqrt{2 x-1}} \\
\therefore t & =\frac{1}{2}(2 x-1)^{\frac{1}{2}}+c
\end{aligned}
$$

When $t=0, x=\frac{1}{2} . \Rightarrow c=0$.

$$
\begin{aligned}
& \therefore 2 t=\sqrt{2 x-1} \\
& 1+4 t^{2}=2 x \\
& \therefore x=\frac{1+4 t^{2}}{2} \\
&=2 t^{2}+\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A}{d t}=\frac{d A}{d p} \cdot \frac{d p}{d t}=\frac{p}{2 \pi} \times 3 . \\
& p=100 \\
& \therefore \frac{d A}{d t}=\frac{150}{\pi} \mathrm{ck}^{2} / \mathrm{s} \\
&
\end{aligned}
$$

$[2]$
$\frac{\text { Question (6) }}{6(a) \quad \mu=}$
$6(a) \quad \mu=11$ b. $\quad 8$.
(ii) For $n=1, \quad 7+5=12$
(ii) For $n=1,7+5=12$

Assinne $s(k)$ is toue lie. $\quad T^{5}+5=6 M, M \in \mathbb{N}$
Cousider $\mu=k+1$

$$
\begin{aligned}
& 7^{k+1}+5 \\
= & 7 \cdot 7^{k}+5 \\
= & 7\left(7^{5}+5\right)-30 \\
= & 42 M-30=6(7 M-5)
\end{aligned}
$$

$=6 N$ where $N=7 M-5 G \mathbb{N}$.
$\because S(k+1) n$ thue when $s(k)$
b true aid $s(1)$ i true
\therefore by mathematical inductur $6 \mid(7+5) \quad \forall n \in \mathbb{N}$
(b)

$$
O x=\frac{1}{2} \cup w=a+b
$$

(radius $=1 / 2$ diameter)

$$
\therefore \quad 0 x=\frac{a+b}{2}
$$

(ii) Le+ $\angle x \cup p=\alpha$.

$$
<U \times W=90^{\circ}\binom{\text { Angle in } a}{\text { semi circle }}
$$

$$
\therefore \angle X W P=90^{\circ}-\alpha
$$

In $\Delta U \times P, \Delta \times W P$.

$$
\angle x w p=90-\alpha \Rightarrow \angle x w p
$$

(Angle sum of $\Delta x p w$.
$\therefore \Delta u \times p \| \Delta x w p[1]$ Cequiangular
In $\Delta \times p u$

$$
x p^{2}+a^{2}=x u^{2} \quad \frac{x p}{p w}=\frac{u p}{x p}
$$

In $\Delta x W P$ ob 3631139312

$$
x p^{2}+b^{2}=x w^{2}
$$

In $\Delta U \times W$

$$
\begin{gather*}
(a+b)^{2}=x u^{2}+x w \\
a^{2}+b^{2}+2 a b=\left(a^{2}+b^{2}\right)+2 \times p^{2} \tag{1}\\
\therefore \times p^{2}=a b \\
\Rightarrow \times p=\sqrt{a b}
\end{gather*}
$$

In $\Delta 0 \times p \quad \mid 0 \times 1>x p$ ($o x$ is the hypotenuse)

$$
\therefore \quad \frac{a+b}{2}>\sqrt{a b}
$$

(c)

$$
\begin{aligned}
\dot{x} & =-15 \sin \left(3 t-\frac{\pi}{6}\right) \\
\ddot{x} & =-45 \cos \left(3 t-\frac{\pi}{6}\right) \\
& =-9\left[5 \cos \left(3 t-\frac{\pi}{6}\right)\right] \\
& =-9 x \quad[1]
\end{aligned}
$$

(i)

$$
\begin{equation*}
T=\frac{2 \pi}{\mu}=\frac{2 \pi}{3} \tag{i}
\end{equation*}
$$

(ii)
(d)
(i) $a_{k}=$
$\binom{12}{k} 5$
(ii)

$$
\frac{a_{k+1}}{a_{k}}=\frac{\binom{12}{k+1} 5^{11-k} 2^{k+1}}{(12) 5^{12-k} 2^{k}}=\frac{2}{5} \frac{(12-k)}{k+1}
$$

QUESTION 7

(i) $t=\frac{x}{v \cos \vartheta}$

$$
\begin{aligned}
& y=-\frac{g x^{2}}{2 v^{2} \cos ^{2} \vartheta}+\frac{v x \sin \vartheta}{v \cos \vartheta} \\
& y=x \tan \vartheta-\frac{g x^{2}}{2 v^{2} \cos ^{2} \vartheta}
\end{aligned}
$$

(ii)

At $\mathrm{P}, y=k=h \tan \vartheta, x=h$
$h \tan \beta=h \tan \vartheta-\frac{g h^{2}}{2 \nu^{2} \cos ^{2} \vartheta}$ from (i)
$\frac{g h^{2}}{2 v^{2} \cos ^{2} \vartheta}=h(\tan \vartheta-\tan \beta)$
$h=\frac{(\tan \vartheta-\tan \beta) 2 v^{2} \cos ^{2} \vartheta}{g}$
(iii)

$$
\begin{aligned}
O P & =\frac{h}{\cos \beta} \\
& =\frac{(\tan \vartheta-\tan \beta) 2 \nu^{2} \cos ^{2} \vartheta}{g \cos \beta}[\text { from (ii) }]
\end{aligned}
$$

$$
=\frac{\left(\frac{\sin \vartheta}{\cos \vartheta}-\frac{\sin \beta}{\cos \beta}\right) 2 v^{2} \cos ^{2} \vartheta}{g \cos \beta}
$$

$$
=\frac{(\sin \vartheta \cos \beta-\sin \beta \cos \vartheta) 2 v^{2} \cos \vartheta}{g \cos ^{2} \beta}
$$

$$
=\frac{2 v^{2} \sin (\vartheta-\beta) \cos \vartheta}{g \cos ^{2} \beta}
$$

(iv)
$\mathrm{OP}=\frac{[\sin (2 \vartheta-\beta)-\sin \beta] v^{2}}{g \cos ^{2} \beta}$ (given)
$\frac{d(O P)}{(d \vartheta)}=\frac{2 \nu^{2}}{g \cos ^{2} \beta}[2 \cos (2 \vartheta-\beta)]$
$O P \max / \min \cos (2 \vartheta-\beta)=0$
$2 \vartheta-\beta=90^{\circ}$
$\vartheta=\frac{90^{\circ}+\beta}{2}$
$O P^{\prime \prime}=\frac{4 v^{2}}{g \cos ^{2} \beta} \times-2 \sin (2 \vartheta-\beta)$
always <0 as $(2 \vartheta-\beta)<180^{\circ}$
\therefore max val OP when $\vartheta=\frac{90^{\circ}+\beta}{2}$
Max val. $\mathrm{OP}=\frac{v^{2}\left(\sin 90^{\circ}-\sin \beta\right)}{g\left(1-\sin ^{2} \beta\right)}$

$$
\begin{aligned}
& =\frac{\mathrm{v}^{2}(1-\sin \beta)}{g\left(1-\sin ^{2} \beta\right)} \\
& =\frac{v^{2}}{g(1+\sin \beta)}
\end{aligned}
$$

(v)
max val OP when $\vartheta=\frac{90^{\circ}+\beta}{2}$ [from (iv)]

$$
\begin{aligned}
& \vartheta=\frac{90^{\circ}+14^{0}}{2} \\
& \vartheta=52^{\circ}
\end{aligned}
$$

