SYDNEY BOYS HIGE SCHOOL
 MOORE PARK, SURRY HILLS

2011
 Trial Higher School Certificate

Mathematics Extension 1

General Instructions

- Reading Time - 5 Minutes
- Working time - 2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question, if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- All answers to be given in simplified exact form unless otherwise stated.

Total Marks - 84

- Attempt all questions 1-7
- All questions are of equal value.
- Start each new question in a separate answer booklet.
- Hand in your answers in 7 separate bundles: Questions 1, 2, 3, 4, 5, 6 and 7.
- The mark value of each question is given in the right margin.

Examiner: R Boros

Start a new booklet.

Question 1 (12 marks).

Marks.
a) Solve $x(3-2 x)>0$.
b) Find $\frac{d}{d x}\left(e^{-x} \cos ^{-1} x\right)$.
c) The remainder when $x^{3}+a x^{2}-3 x+5$ is divided by $(x+2)$ is 11 . Find the value of a.
d) Using the table of standard integrals, find the exact value of:

$$
\int_{0}^{\frac{\pi}{8}} \sec 2 x \tan 2 x d x
$$

e) Solve for $x, \frac{x^{2}-9}{x} \geq 0$.
f) Find $\int_{0}^{2} \frac{1}{4+x^{2}} d x$, leaving your answer in exact form.

End of Question 1.

Start a new booklet.

Question 2 (12 marks).

Marks.

a) Use the substitution $x=\ln u$ to find:

$$
\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x
$$

b) Use one application of Newton's method to find an approximation to the root of the equation $\cos x=x$ near $x=\frac{1}{2}$. Give your answer correct to 2 decimal places.
c) The curves $y=e^{2 x}$ and $y=1+4 x-x^{2}$ intersect at the point (0,1$)$. Find the angle, to the nearest minute, between the 2 curves at this point of intersection.
d) Prove that $\frac{2}{\tan A+\cot A}=\sin 2 A$.
e) Find the derivative of $\cos ^{3} x^{\circ}$.

End of Question 2.

Start a new booklet.

Question 3 (12 marks).

Marks.
a) (i) Expand $\cos (\alpha+\beta) \quad 1$
(ii) Show that $\cos 2 \alpha=1-2 \sin ^{2} \alpha \quad 1$
(iii)Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$
b) If $\alpha=\tan ^{-1}\left(\frac{5}{12}\right)$ and $\beta=\cos ^{-1}\left(\frac{4}{5}\right)$, calculate the exact value of $\tan (\alpha-\beta)$.
c) $\quad A(-1,7)$ and $B(5,-2)$ are 2 points. Point P divides $A B$ in the ratio $k: 1$.
(i) Write down the coordinates of P in terms of k. 2
(ii) If P lies on the line $5 x-4 y-1=0$, find the ratio of $A P: P B$.
d) Use mathematical induction to prove that:

$$
1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1
$$

where n is a positive integer.
e) State the domain of $y=2 \sin ^{-1}(1-x)$.

End of Question 3.

Start a new booklet.

Question 4 (12 marks).

Marks.

a) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are 2 points on the parabola $x^{2}=4 a y$.
(i) Show that the equation of $P Q$ is given by: $y-\frac{1}{2}(p+q) x+a p q=0$
(ii) Find the condition that $P Q$ passes through the point $(0,-a)$.
(iii)If the focus of the parabola is S and $P Q$ passes through $(0,-a)$, prove that $\frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a}$.
b) A family consists of a father, mother, 3 girls and 4 boys.
(i) If the family is seated at random along a bench, find the probability that the parents are at the ends, and the boys and girls are seated alternately between them.
(ii) If the same family is seated randomly at a round table, find the probability that the parents are separated by exactly two seats, and these seats are both occupied by boys.

Question 4 continued on next page.

Question 4 continued.

Marks.
c) Two circles cut at A and B. A line through A meets one circle at P. Also, $B R$ is a tangent to the circle $A B P$ and R lies on the circle $A B Q$.

(i) Copy the diagram showing the above information.
(ii) Prove that $P B \| Q R$.
d) One root of $x^{3}+p x^{2}+q x+r=0$ equals the sum of the two other roots.

Prove that $p^{3}+8 r=4 p q$.

End of Question 4.

Start a new booklet.

Question 5 (12 marks).

Marks.
a) The area bounded by the curve $y=\sin ^{-1} x$, the y-axis and $y=\frac{\pi}{2}$ is rotated about the y-axis.
(i) Show that the volume of the solid so formed is given by:

$$
\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} y d y
$$

(ii) Hence, find the exact volume of this solid.
b) The area of an equilateral triangle is increasing at the rate of $4 \mathrm{~cm}^{2} / \mathrm{s}$.
(i) If x is the length of the side of the triangle, find an expression for the area of the triangle.
(ii) Find the exact rate of increase of the side of the triangle, when it has a side length of 2 cm .

Question 5 continued on next page.

Question 5 continued.

Marks.

c) (i) Find the largest possible domain of positive values for which
$f(x)=x^{2}-6 x+13$ has an inverse.
(ii) Find the equation of the inverse function $f^{-1}(x)$. 1
d)
(i) Prove that $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\ddot{x}$.
(ii) A cat moving in a straight line has an acceleration given by
$\ddot{x}=x(8-3 x)$, where x is the displacement in metres from a fixed point
O. Initially the cat is at the origin, O, and has a speed of $4 \mathrm{~m} / \mathrm{s}$. Find
the cat's speed when it is 1 m on the positive side of O.

End of Question 5.

Start a new booklet.

Question 6 (12 marks).
a) Given $f(x)=3 \cos ^{-1}(\sin 2 x)-2 \sin ^{-1}(\cos 3 x)$, show that $f(x)$ is a

Marks. constant function by finding $f^{\prime}(x)$.
b) From point A, due south of a building, the angle of elevation to the top of the building is 49°. Two hundred metres due east of A, at point B, the angle of elevation is found to be 41° as shown in the diagram below. Determine, to the nearest metre, the height of the building.

Question 6 continued on next page.

Question 6 continued.

Marks.
c) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation $\frac{d^{2} x}{d t^{2}}=-4 x$, where t is the time in seconds.
(i) Show that $x=a \cos (2 t+\beta)$ is a possible equation of motion for the particle, where a and β are constants.
(ii) The particle is observed at time $t=0$ to have a velocity of $2 \mathrm{~m} / \mathrm{s}$ and a displacement from the origin of 4 m . Find the amplitude of the oscillation.
(iii)Determine the maximum velocity of the particle.
d) Using $t=\tan \frac{\theta}{2}$, find the general solution in radians to $\sin \theta-\cos \theta=1$.

End of Question 6.

Start a new booklet.

Question 7 (12 marks).

Marks.

a) A girl, 1 metre tall, throws a frisbee from a point O, with velocity $v \mathrm{~m} / \mathrm{s}$ at an angle α with the horizontal. It strikes the wall of a building at the highest point B of its trajectory. It takes $1 \frac{1}{2}$ seconds to travel from O to B and the wall is 6 metres away from the girl. Taking the coordinate axes from O as shown and $g \square 10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Prove that at any time t, the position of the frisbee is given by:

$$
x=v t \cos \alpha \text { and } y=v t \sin \alpha-5 t^{2} .
$$

(ii) Show that $v \cos \alpha=4$ and $v \sin \alpha=15$.
(iii)Determine the initial velocity v, in exact form, and the angle of projection α to the nearest degree.
(iv)Find the height h of the building, correct to 2 decimal places.

Question 7 continued on next page.

Question 7 continued.

Marks.
b) $\quad P(x, y)$ is a point on the curve $y=e^{-x^{2}}$, where $x>0, \mathrm{O}$ is the origin, and the perpendiculars from P to the x-axis and y-axis meet at A and B respectively.
(i) Show that the maximum area of the rectangle $O A P B$ is $\frac{1}{\sqrt{2 e}}$.
(ii) Show that the minimum length of $O P$ is $\sqrt{\frac{1+\ln 2}{2}}$. 3

End of Question 7.

End of Examination.

Standard Integrals.

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin -\frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

SBHS THSC EXT1 2011
Question 1
(a) $x(3-2 x)>0$

$$
0<x<3 / 2
$$

(b)

$$
\begin{aligned}
\frac{d}{d x}\left(e^{-x} \cdot \cos ^{-1} x\right) & =e^{-x} \cdot \frac{1}{\sqrt{1-x^{2}}}+\cos ^{-1} x \cdot-e^{-x} \\
& =-e^{-x}\left(\cos ^{-1} x+\frac{1}{\sqrt{1-x^{2}}}\right)
\end{aligned}
$$

(c)

$$
\begin{gathered}
P(x)=x^{3}+a x^{2}-3 x+5 \\
P(-2)=(-2)^{3}+a(-2)^{2}-3(-2)+5=11 \\
-8+4 a+6+5=11 \\
4 a=8 \\
a=2
\end{gathered}
$$

(d)

$$
\begin{aligned}
& a=2 \\
& \int_{0}^{\frac{\pi}{8}} \sec 2 x \tan 2 x d x=\left[\frac{1}{2} \sec 2 x\right]_{0}^{\frac{\pi}{8}} \\
&=\frac{1}{2} \sec 2\left(\frac{\pi}{8}\right)-\frac{1}{2} \sec 2(0) \\
&=\frac{1}{2} \sec \frac{\pi}{4}-\frac{1}{2} \sec 0 \\
&=\frac{1}{2}(\sqrt{2})-\frac{1}{2}(1) \\
&=\frac{1}{2}(\sqrt{2}-1)
\end{aligned}
$$

(e) $\frac{x^{2}-9}{x} \geqslant 0$

$$
x \neq 0
$$

$$
\begin{gathered}
x \neq 0 \\
x\left(x^{2}-9\right) \geqslant 0
\end{gathered}
$$

$$
x(x-3)(x+3) \geqslant 0
$$

(f)

$$
\begin{aligned}
& \int_{0}^{2} \frac{1}{4+x^{2}} d x \\
= & {\left[\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} } \\
= & \frac{1}{2} \tan ^{-1}\left(\frac{2}{2}\right)-\frac{1}{2} \tan ^{-1}\left(\frac{0}{2}\right) \\
= & \frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{1}{2}(0) \\
= & \frac{\pi}{8} .
\end{aligned}
$$

2011 Mathematics Extension 1 Trial HSC Q2 soln

a)

$$
\begin{aligned}
& \int \frac{e^{x}}{\sqrt{1-e^{2 x}}} \cdot d x \\
& =\int \frac{1}{\sqrt{1-u^{2}}} \cdot d u \\
& =\sin ^{-1} u+C \\
& =\sin ^{-1}\left(e^{x}\right)+C
\end{aligned}
$$

$x=\ln u$
$e^{x}=u$
$d u=e^{x} \cdot d x$
b) $f(x)=x-\cos x$
$f^{\prime}(x)=1+\sin x$
$x_{2}=\frac{1}{2}-\frac{f\left(\frac{1}{2}\right)}{f^{\prime}\left(\frac{1}{2}\right)}$
$x_{2}=0.5+\frac{-0.37758}{1.479426}$
$x_{2}=0.76$
c) $y=e^{2 x}$
$y^{\prime}=2 e^{2 x}$
$y=1+4 x-x^{2}$
$y^{\prime}=4-2 x$
At $(0,1)$
$m_{1}=2, \quad m_{2}=4$
$\tan \theta=\left|\frac{2-4}{1+2(4)}\right|$
$=\left|-\frac{2}{9}\right|$
$\therefore \theta=12^{\circ} 32^{\prime}$
d)

$$
\begin{aligned}
& \frac{2}{\tan A+\cot A}=\sin 2 A \\
& \text { LHS }=\frac{2}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}} \\
& =\frac{2}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}} \\
& =\frac{2}{\frac{1}{\sin A \cos A}} \\
& =2 \sin A \cos A \\
& =\sin 2 A \\
& =\text { RHS }
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{d}{d x}\left[\cos ^{3} x^{\circ}\right] \\
& =\frac{d}{d x}\left[\cos ^{3}\left(\frac{\pi x}{180}\right)\right] \\
& =3 \cos ^{2}\left(\frac{\pi x}{180}\right) \cdot-\frac{\pi}{180} \sin \left(\frac{\pi x}{180}\right) \\
& =-\frac{\pi}{60} \cos ^{2}\left(\frac{\pi x}{180}\right) \sin \left(\frac{\pi x}{180}\right)
\end{aligned}
$$

QUESTiON 3×1

$$
\begin{aligned}
\operatorname{Cos}(\alpha+\beta) & =\operatorname{Cos} \alpha \cos \beta-\operatorname{Sin} \alpha \operatorname{Sin} \beta \\
=\operatorname{Cos}(\alpha+\alpha) & =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =1-\operatorname{Sin}^{2} \alpha-\sin ^{2} \alpha \\
& =1-2 \sin ^{2} \alpha
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \\
&=\operatorname{Lim}_{x \rightarrow 0}-\frac{2 \operatorname{Sin}^{2} x}{x^{2}} \\
&=\operatorname{Lim}_{x \rightarrow 0}=2 \frac{\operatorname{Sin} x}{x} \cdot \frac{\operatorname{Sin} x}{x} \\
&= 2
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Tan}(\alpha-\beta) & =\frac{\frac{5}{12}-\frac{3}{4}}{1+5 / 123 / 4} \\
& =\frac{-16}{3} \sigma-0.254
\end{aligned}
$$

(c) $P_{x}=\frac{5 k-1}{k+1} \quad P_{y}=\frac{-2 k+7}{k+1}$
(ii)

$$
\begin{aligned}
& \frac{25 k-5}{k+1}=\frac{-8 k+28}{k+1}-1=0 \\
& 33 k-33=k+1 \\
& 32 k=34 \\
& k=\frac{34}{32}=\frac{17}{16} \\
& k=\frac{17}{16}: 1=17: 16
\end{aligned}
$$

(d) if $n=1$
$\angle 1+S=1 \times 1!$ RH $=2-1$
$S(1)$ is true.
Assume $s(k)$ tine

$$
\begin{aligned}
& 1 \times 1!+2 \times 2!\cdots+k \times k!=(k+1)!-1 \\
& s(k+1) \text { is } \\
& 1 \times 1!+2 \times 2!+k \times k!+(k+1)(k+1)!=(k+2)!-1 \\
& \text { LAtS }(k+1)!-1+(k+1)(k+1)!\text { by assumption } \\
& =(k+1)![1+k+1]-1 \\
& =(k+2)(k+1)!-1 \\
& =(k+2)!-1=\text { RHS }
\end{aligned}
$$

$\therefore S(k+1)$ is true if $S(k)$ is true
\therefore by Mathematical Induction, in) is true for any integer $n \geq 1$
(e)

$$
\begin{gathered}
-1 \leq x \leq 1 \\
1 \geq-x \geqslant-1 \\
2 \geqslant 1-x \geqslant 0 \\
0 \leq 1-x \leq 2
\end{gathered}
$$

2011 Maths Ext1-SolNs

$$
V=\frac{1}{2} m
$$

$4(a)$
(i)

$$
\begin{aligned}
m_{P Q} & =\frac{a p^{2}-a q^{2}}{2 a p-2 a q}=\frac{d\left(p^{2}-q^{2}\right)}{2 d(p-q)} \\
& =\frac{(p-q)(p+q)}{2(p-q)} \\
& =\frac{1}{2}(p+q)
\end{aligned}
$$

Then Equation of $P Q: \quad y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{gather*}
y-a p^{2}=\frac{1}{2}(p+q)(x-2 a p) \\
y-a p^{2}=\frac{1}{2}(p+q) x-a p(p+q \\
y-a p^{2}=\frac{1}{2}(p+q) x-a p^{2}-a p \\
\Rightarrow y=\frac{1}{2}(p+q) x-a p q \\
\therefore y-\frac{1}{2}(p+q) x+a p q=0 \tag{2}
\end{gather*}
$$

(ii) $P Q$ passes through $(0,-a)$

$$
\begin{gathered}
\Rightarrow-a-\frac{1}{2}(p+q) 0+a p q=0 \\
-a+a p q=0 \\
a(p q-1)=0 \\
\Rightarrow a=0 \text { or } p q=1
\end{gathered}
$$

Not a parabola

$$
\therefore p q=1
$$

$4(a)$

From defer of a parabola,

$$
S P=P M \text { and } S Q=Q N
$$

Now $P M^{2}=\left(a p^{2}+a\right)^{2}+(2 a p-2 a p)^{2}$

$$
\begin{aligned}
\Rightarrow P M & =a p^{2}+a \\
& =a\left(p^{2}+1\right)=S p
\end{aligned}
$$

Also, $Q N=a q^{2}+a$

$$
=o\left(q^{2}+1\right)=S Q
$$

Then $\frac{1}{S P}+\frac{1}{S Q}$

$$
\begin{aligned}
= & \frac{1}{a\left(p^{2}+1\right)}+\frac{1}{a\left(q^{2}+1\right)} \\
= & \frac{a^{2}+1+p^{2}+1}{a\left(p^{2}+1\right)\left(q^{2}+1\right)}=\frac{p^{2}+q^{2}+2}{a\left(p^{2} q^{2}+p^{2}+q^{2}+1\right)} \\
& B u t p q=1 \quad(\text { from } u) \\
\Rightarrow & \frac{1}{s p}+\frac{1}{s Q}=\frac{p^{2}+q^{2}+2}{a\left(p^{2}+q^{2}+2\right)}=\frac{1}{a}
\end{aligned}
$$

$4(b)$ (i) F
2! Wage parents are on ends.
Ways girls and boys are seated $=4!\times 3$!

$$
\therefore \begin{gathered}
\text { Total ways } \\
\text { of seating the } \\
\text { N way }
\end{gathered}=2!\times 4!\times 3!=288 \text { ways. }
$$

HIs,, Total Ways without restrictions $=9!=\begin{gathered}362880 \\ \text { way p }\end{gathered}$
$\therefore P($ parentio at ends, boys + girts seated

$$
\begin{aligned}
\text { alternately between } & =\frac{288}{362880} \\
& =\frac{1}{1260}
\end{aligned}
$$

(1)
(ii)

$$
\begin{equation*}
=1440 \times 2 . w^{2}=2880 \tag{1}
\end{equation*}
$$

No wains without restriction $=(9-1)!=8!$

$$
=40320 \mathrm{way}
$$

$\therefore P\binom{$ and Fsepanted by }{2 boys in cire } 2 boys in cire le $=\frac{2840}{40320}=\frac{1}{145}$

Prove $P B / / Q R$
construct $A B, B P, R_{1}$

Then $\angle A B D=\angle A P B$ Alternate \angle There Let these angles $=a$.
Also $\angle R Q A=\angle R B A$ (Angles at circumfere standing on same are are equal)
But $\begin{aligned} & \angle R B A= \angle A B D \text { (same angle) } \\ &=a\end{aligned}$

$$
\therefore \angle R Q A=\angle A B \bar{D}=a
$$

$\therefore P B / / Q R$ (Alternate angles are equal
\qquad 2
$4(d) \quad x^{3}+p x^{2}+q x+r=0$
given α, Let roots be $\alpha, \beta, \alpha+\beta$
Then $\alpha(\alpha+\beta)=-\beta \quad$ (sum of root $=\frac{-b}{a}$)

$$
\alpha+\beta=\frac{-p}{2}
$$

But $(\alpha+\beta)$ is a root.

$$
\begin{aligned}
\Rightarrow P\left(\frac{-p}{2}\right) & =\frac{-p^{3}}{8}+\frac{p^{3}}{4}-\frac{p q}{2}+r=0 \\
\times 8 & \Rightarrow-p^{3}+2 p^{3}-4 p q+8 r=0 \\
& \Rightarrow 4 p q=p^{3}+8 r
\end{aligned}
$$

(a)

$$
\begin{array}{rl}
y & y=\sin ^{-1} x \\
\therefore x=\sin y \\
V & =\pi \int_{0}^{\frac{\pi}{2}} x^{2} \cdot d y \\
& =\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} y \cdot d y \\
& =\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos 2 y) d y \\
& =\frac{\pi}{2}\left[y-\frac{\sin 2 y}{2}\right]_{0}^{\frac{\pi}{2}}
\end{array}
$$

(ii) $=\frac{\pi^{2}}{4}$
(b)

(i) $A=\frac{1}{2} \cdot x^{2} \sin 60$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} x^{2} \\
& =
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A=\frac{\sqrt{3} x^{2}}{4} \\
& \frac{d A}{d x}=\frac{\sqrt{3} x}{2} \\
& \frac{d A}{d t}=\frac{d A}{d x} \cdot \frac{d x}{d x} \\
& 4=\frac{\sqrt{3} x}{2} \cdot \frac{d x}{d t}
\end{aligned}
$$

at $x=2 ; \quad \frac{d x}{d t}=\frac{4}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}$
(c)

$$
\begin{aligned}
B(x) & =x^{2}-6 x+13 \\
B(x) & =(x-3)^{2}+4
\end{aligned}
$$

Vertex at $(3,4)$
harjent domain of fosithin values $\{x: x \geqslant 3\}$
For inineise function $x=(y-3)^{2}+4$

$$
\begin{aligned}
(y-3)^{2} & =x-4 \\
y-3 & =\sqrt{x-2} \\
y & =3+\sqrt{x-4} \\
\therefore f^{-1}(x) & =3+\sqrt{x-4}
\end{aligned}
$$

(2) (i) Shari $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\ddot{x}$

$$
\begin{aligned}
\ddot{x} & =\frac{d v}{d t} \\
& =\frac{d v}{d x} \cdot \frac{d x}{d t} \\
& =\frac{d v}{d x} \cdot v \\
& =\frac{d\left(\frac{1}{2} v^{2}\right)}{d v} \cdot \frac{d v}{d x} \\
& =\frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=\frac{d\left(\frac{1}{2} v^{2}\right)}{d v} \cdot \frac{d v}{d t} \cdot \frac{d t}{d x}
\end{aligned}
$$

(ii)

$$
\begin{array}{r}
\ddot{x}=8 x-3 x^{2} \\
\therefore \frac{d\left(\frac{1}{(x)} v^{2}\right)}{d x}=8 x-3 x^{2}
\end{array}
$$

By integration $\frac{1}{2} v^{2}=4 x^{2}-x^{3}+c$
$t \cdot t=0, x=0, v=4$;

$$
\begin{aligned}
\therefore \frac{8}{2} & =c \\
v^{2} & =4 x^{2}-x^{3}+8 \\
v^{2} & =8 x^{2}-2 x^{3}+14 \\
v^{2} & =8-2+16 \\
v & = \pm \sqrt{22}
\end{aligned}
$$

at $x=1$;
spued (hos no direction) ANS $=\sqrt{22}$
（a）

$$
\begin{aligned}
y & =3 \cos ^{-1}(\sin 2 x)-2 \sin ^{-1}(\cos 3 x) \\
y^{\prime} & =-3 \frac{x 2 \cos 2 x}{\sqrt{1-\sin ^{2} 2 x}}-\frac{2 x-3 \sin 3 x}{\sqrt{1-\cos ^{2} 3 x}} \\
& =-\frac{6 \cos 2 x}{\cos 2 x}+\frac{6 \sin 3 x}{\sin 3 x} \\
& =0
\end{aligned}
$$

$$
\therefore y \text { constant }
$$

（b）

$$
\begin{aligned}
& \tan 49=\frac{h}{a} \tan 41=\frac{h}{b} \\
& 200^{2}+\frac{h^{2}}{\tan ^{2} 49}=\frac{h 2}{\tan 41} \\
& h^{2} \not\left(\frac{1}{\tan ^{2} 41}-\frac{1}{\tan ^{2}+9}\right)=200^{\circ} \\
& h^{2}=200^{2} \div\left(\frac{1}{\tan ^{2} 41}-\frac{1}{\tan ^{2} 49}\right) \\
& h=265
\end{aligned}
$$

（C）（1）

$$
\begin{aligned}
x & =a \cos (2 t+\beta) \\
\dot{x} & =-2 a \sin (2 t+\beta) \\
\ddot{x} & =-4 a \cos (2 t+\beta) \\
& =-4 x
\end{aligned}
$$

（11）$\quad t=0 \quad v=0 \quad x=4$

$$
\begin{aligned}
& v^{2}=n^{2}\left(a^{2}-x^{2}\right) \\
& 4=4\left(a^{2}-16\right) \\
& a=\sqrt{17}
\end{aligned}
$$

（iii）max velocily $=a_{n}$

$$
=2 \sqrt{17}
$$

（iv）

$$
\begin{aligned}
& \text { iv) } t=\tan \theta / 2 \\
& \sin \theta=\frac{2 t}{1+t^{2}} \operatorname{Cos} 0=\frac{1-t^{2}}{1+t^{2}} \\
& \operatorname{Sin} 0-\cos 0=\frac{2 t-1+t^{2}}{1+t^{2}}=1 \\
& 2 t-1+t^{2}=1+t^{2} \\
& 2 t=2 \\
& t=1
\end{aligned}
$$

$\tan \frac{\theta}{2}=1$

$$
\theta=\pi
$$

or

$$
\theta=(2 n+1) \pi+\frac{\pi}{2}
$$

んそて
(x)
$Q 7$
(1)

$$
\begin{aligned}
\ddot{x} & =0 \\
\dot{x} & =c_{1} \\
\therefore \dot{x} & =\sim \cos \alpha . \\
& \operatorname{len} t=0 . \\
\therefore \dot{x} & =v \cos \alpha .
\end{aligned}
$$

$$
x=v t \cos \alpha
$$

$$
x=0, t=0
$$

$$
\therefore c_{3}=0
$$

$$
x=v A \cos \alpha \mid
$$

$$
\tilde{y}^{1}=-10
$$

When $t=0$ $\dot{x}=\sim \cos \alpha$.

$$
\begin{aligned}
& y=-10 t+c r \\
& y=v \sin \alpha \\
& \text { y an } t=0
\end{aligned}
$$

\& $y^{\prime}=\sim \sin \alpha$.

$$
\begin{aligned}
& y=v \dot{N} \alpha \\
& \text { when } t=0
\end{aligned}
$$ $x=y=0$.

$$
\because c_{2}=r \sin \alpha
$$

hence.
when $t=0, y=0$

$$
\therefore c_{4}=0
$$

hance.

$$
y=\sqrt{t} \sin \alpha-5 t^{2}
$$

$$
\begin{aligned}
& j=-10 t+\nu i n \alpha \\
& y=-5 t^{2}+\lambda x \leq \alpha+c_{4}
\end{aligned}
$$

(II) when $t=1.5 \quad x=6 * \dot{y}=0$

$$
\begin{aligned}
h & =2 t \sin d-5 t^{2}+1 \\
& =2 \times 1.5 x-5 \times \frac{9}{4}+1 \\
& =12.25
\end{aligned}
$$

(b) (c) $y\left\{\downarrow y=e^{-x^{2}}\right.$

$$
\begin{aligned}
&=x y \\
&=x e^{-x^{2}} \\
& \frac{d A}{d x}=x \times-2 x e^{-x^{2}}+e^{-x^{2}} \\
&=e^{-x^{2}}\left(1-2 x^{2}\right) \\
& \text { Let } \frac{d A}{d x}=0 \\
& 1-2 x^{2}=0 \\
& x^{2}=\frac{1}{2} \quad(N B x>0) \\
& x=\frac{1}{\sqrt{2}} \quad\left(\frac{1}{2}\right)^{2} \\
& \therefore A=\frac{1}{\sqrt{2}} e^{-(\sqrt{2})} \\
&=\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{e}} \\
&=\frac{1}{\sqrt{2 e} \quad \quad \text { IMUST TSST }} \\
& \quad \text { FOQ MAX. }
\end{aligned}
$$ using Numbias]

(i)

$$
\begin{aligned}
l_{0 p} & =\sqrt{x^{2}+y^{2}} \\
& =\sqrt{x^{2}+\left(e^{-x^{2}}\right)^{2}} \\
& =\left(x^{2}+e^{-2 x^{2}}\right)^{\frac{1}{2}} \\
l^{\prime} & =\frac{1}{2}\left(x^{2}+e^{-2 x^{2}}\right)^{-\frac{1}{2}} \times\left(2 x-4 x e^{-2 x^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 x\left(1-2 e^{-2 x^{2}}\right)}{2 \sqrt{x^{2}+e^{-2 x^{2}}}} \\
& \text { let } l^{\prime}=0 \\
& \text { ie. } 2 x\left(1-2 e^{-2 x^{2}}\right)=0 \\
& x=0 \quad \text { on } \quad e^{-2 x^{2}}=\frac{1}{2} \text {. } \\
& \downarrow \\
& \text { then } O P=1 \quad e^{-2 x^{2}}=\frac{1}{2} . \\
& e^{2 x^{2}}=2 \text {. } \\
& 2 x^{2}=\ln 2 . \\
& x^{2}=\frac{\ln 2}{2} \\
& x=\sqrt{\frac{\ln 2}{2}},(x>0) \\
& \therefore l=\sqrt{\frac{\ln 2}{2}+e^{-2 \ln \alpha}} \\
& =\sqrt{\frac{\ln \alpha}{2}+e^{-\ln 2}} \\
& =\sqrt{\frac{\ln 2}{2}+e^{\ln \frac{1}{2}}} \\
& =\sqrt{\frac{\ln 2}{2}+\frac{1}{2}} \\
& =\sqrt{\frac{1+\ln \alpha}{2 .}} \\
& \text { Must test } \\
& \text { dOR MIN } \\
& \text { USing } \\
& \text { VALVES) }
\end{aligned}
$$

