2013

TRIAL HIGHER SCHOOL

CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time -5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- Show all necessary working in

Questions 11-14

Total Marks - 70 Marks

Section I 10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II 60 Marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section.

Examiner: External Examiner

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 What is the expression $\frac{2 \tan A}{1+\tan ^{2} A}$ equal to?
(A) $\cos 2 A$
(B) $\sin 2 A$
(C) $\tan 2 A$
(D) $\cot 2 A$

2 The polynomial, $p(x)$ is defined by $p(x)=x^{3}-x^{2}+x+3$.
What is the remainder when $p(x)$ is divided by $(x-1)$?
(A) 0
(B) 2
(C) 3
(D) 4

3 What is the domain and range of $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$?
(A) $\quad|x| \leq 3,|y| \leq \pi$.
(B) $\quad|x| \leq 1,|y| \leq 3$.
(C) $\quad|x| \leq 1,|y| \leq \pi$.
(D) $\quad|x| \leq 3,|y| \leq 2$.

4 What ratio does the point $P(10,11)$ divide the interval $A B$, where $A(-2,3)$ and $B(7,9)$?
(A) $1: 4$
(B) $4:-1$
(C) $1:-4$
(D) $4: 1$

5 In the figure below, a circle with centre O is tangent to $A B$ at point D and tangent to $A C$ at point C.

If $\angle A=40^{\circ}$, what is the value of x ?
(A) 140
(B) 145
(C) 150
(D) 155

6 The function $f(x)=\sin x-\frac{2}{3} x$ has a real root close to $x=1.5$
Let $x=1.5$ be a first approximation to the root.
What is the second approximation to the root using Newton's method?
(A) 1.495
(B) 1.496
(C) 1.503
(D) 1.504

7 A test is administered with 15 questions. Students are allowed to answer any ten. How many choices of ten questions are there?
(A) 150
(B) 250
(C) 3003
(D) 3000

8 The graph of $f(x)=0 \cdot 6 \cos ^{-1}(x-1)$, defines a curve that, when rotated about the y-axis, will produce a solid that is to be the shape and size of a new biscuit.
Which integral expression will give the volume of the biscuit?
(A) $\pi \int_{0}^{0.6}\left[\cos \left(\frac{3}{5} y\right)+1\right]^{2} d y$
(B) $\pi \int_{0}^{0.6}\left[\cos \left(\frac{5}{3} y\right)+1\right]^{2} d y$
(C) $\quad \pi \int_{0}^{0.6 \pi}\left[\cos \left(\frac{3}{5} y\right)+1\right]^{2} d y$
(D) $\quad \pi \int_{0}^{0.6 \pi}\left[\cos \left(\frac{5}{3} y\right)+1\right]^{2} d y$
$9 \quad$ What is the value of $\lim _{n \rightarrow \infty}\left(n \sin \frac{\pi}{n}\right)$?
(A) $-\infty$
(B) 0
(C) π
(D) $\quad \infty$

10 What is the x-intercept of the normal to the parabola $x^{2}=4 a y$ at the point (2ap, ap ${ }^{2}$) on the parabola?
(A) $a p\left(p^{2}+1\right)$
(B) $a p\left(p^{2}+2\right)$
(C) $a p^{2}$
(D) $-a p^{2}$

BLANK PAGE

Section II

60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a NEW writing booklet. Extra pages are available
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet
(a) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}$

2
(b) Find the acute angle between the lines $y=\sqrt{3} x-2$ and $y=-\sqrt{3} x+1$.
(c) The point $\left(-6 t, 9 t^{2}\right)$, where t is a variable, lies on a curve.

Find the Cartesian equation of the curve.
(d) Use the substitution $u=x^{4}+2$ to evaluate $\int_{0}^{1} \frac{x^{7}}{\left(x^{4}+2\right)^{2}} d x$, leaving your answer in the form $p \ln q+r$.
(e) Find $\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right)$.
(f) (i) Find a general solution of the equation

$$
\cos \left(3 x-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

(ii) Hence, find the smallest solution of this equation which is greater than 5π.
(a) The cubic equation $x^{3}+p x^{2}+q x+r=0$, where p, q and r are real, has roots α, β and γ.
(i) Given that $\alpha+\beta+\gamma=4$ and $\alpha^{2}+\beta^{2}+\gamma^{2}=20$, find the values of p and q.
(ii) Given further that one root is 4 , find the value of r.
(b) (i) Show that $(2 \sin x+\cos x)^{2}$ can be written in the form

$$
\frac{5}{2}+2 \sin 2 x-\frac{3}{2} \cos 2 x
$$

(ii) Find the exact volume when the graph of $y=2 \sin x+\cos x$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the x-axis.
(c) A particle moves in simple harmonic motion about a fixed origin O with a period of $\frac{2 \pi}{5}$ seconds. Initially, $x=1$ and $\dot{x}=-5 \sqrt{3}$.
(i) Find x as a function of t.
(ii) Find the first time that the particle passes back through $x=1$.
(d) Solve the inequality $\frac{x}{(x+1)(x-2)} \leq-\frac{1}{2}$

End of Question 12

(a) The diagram below shows the graph of the curve $y=x \sqrt{3-x}$.

The point P has coordinates $(2,2)$ and is a stationary point.
The function $f(x)$ is defined by $f(x)=x \sqrt{3-x}, x \leq 2$.

(i) On the same diagram, sketch the region satisfied by

$$
y \leq f(x) \text { and } y \geq f^{-1}(x)
$$

(ii) Explain why the area A of the shaded region in (i) is given by

$$
A=\int_{0}^{2}(x \sqrt{3-x}-x) d x
$$

Do NOT attempt to evaluate this integral.
(b) Nine different pies are to be divided between three people so that each person gets an odd number of pies.
Find the number of ways this can be done.
(c) Show that $\lim _{x \rightarrow 5} \frac{x^{3}-x^{2}-100}{x-5}=65$

Question 13 (continued)

(d) A girl stands at the edge of a quay and sees a tin can floating in the water. The water level is 5 metres below the top of the quay and the can is at a horizontal distance of 10 metres from the quay, as shown in the diagram.

The girl decides to throw a stone at the can. She throws the stone from a height of 1 metre above the top of the quay. The initial velocity of the stone is $8 \mathrm{~ms}^{-1}$ at an angle α below the horizontal, so that the initial velocity of the stone is directed at the can, as shown in the diagram below.

Assume that the stone is a particle and that it experiences no air resistance as it moves. The equations of motion of the stone are

$$
x=8 t \cos \alpha \text { and } y=8 t \sin \alpha-4 \cdot 9 t^{2} \text {. (Do NOT prove this.) }
$$

(i) Find α.

Leave your answer correct to the nearest degree.
(ii) Find the time that it takes for the stone to reach the level of the water.
(iii) Find the distance between the stone and the can, when the stone hits the water.

End of Question 13

(a) (i) Show that $\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}=\frac{2}{(k+3)!}$, where k is an integer.
(ii) Prove by induction that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!}
$$

(b) $\quad X$ and Y are points on the sides $B C$ and $A C$ of a triangle $A B C$ respectively such that $\angle A X C=\angle B Y C$ and $B X=X Y$.

Copy or trace the diagram into your answer booklet.
(i) Show that $\angle X A C=\angle Y B C$.
(ii) Hence, explain why $A B X Y$ is a cyclic quadrilateral.
(iii) Prove that $A X$ bisects the angle $\angle B A C$.

Question 14 (continued)
(c) If $\frac{d x}{d t}=-2(x-6)^{\frac{1}{2}}$, and $x=70$ when $t=0$, find x as a function of t.
(d) Liquid fuel is stored in a tank. At time t minutes, the depth of fuel in the tank is $x \mathrm{~cm}$. Initially there is a depth of 70 cm of fuel in the tank. There is a tap 6 cm above the bottom of the tank.
The flow of fuel out of the tank is modeled by the differential equation

$$
\frac{d x}{d t}=-2(x-6)^{\frac{1}{2}}
$$

(i) Explain what happens when $x=6$.
(ii) Find how long it will take for the depth of fuel to fall from 70 cm to 22 cm .

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2013

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Sample Solutions

1 What is the expression $\frac{2 \tan A}{1+\tan ^{2} A}$ equal to?
(A) $\cos 2 A$
(B) $\sin 2 A$
(C) $\tan 2 A$
(D) $\cot 2 A$

If $t=\tan \frac{\theta}{2}$ then $\sin \theta=\frac{2 t}{1+t^{2}}$.
2 The polynomial, $p(x)$ is defined by $p(x)=x^{3}-x^{2}+x+3$.
What is the remainder when $p(x)$ is divided by $(x-1)$?
(A) 0
(B) 2
(C) 3
(D) 4

Remainder $=p(1)=1-1+1+3=4$
3 What is the domain and range of $y=2 \sin ^{-1}\left(\frac{x}{3}\right)$?
$\begin{array}{ll}\text { (A) }|x| \leq 3,|y| \leq \pi . & -\frac{\pi}{2} \leq \frac{y}{2}=\sin ^{-1}\left(\frac{x}{3}\right) \leq \frac{\pi}{2} \Rightarrow-\pi \leq y \leq \pi \\ \text { (B) } & |x| \leq 1,|y| \leq 3 . \\ \text { (C) } & |x| \leq 1,|y| \leq \pi .\end{array}--1 \leq \frac{x}{3} \leq 1 \Rightarrow-3 \leq x \leq 3$.
4 What ratio does the point $P(10,11)$ divide the interval $A B$, where $A(-2,3)$ and $B(7,9)$?
(A) $1: 4$
(B) $4:-1$
(C) $1:-4$

(D) $4: 1$

$$
\begin{aligned}
& 10=\frac{-2 n+7 m}{m+n} \Rightarrow 10 m+10 n=-2 n+7 m \\
& \therefore 12 n=-3 m \Rightarrow \frac{m}{n}=-4
\end{aligned}
$$

5 In the figure below, a circle with centre O is tangent to $A B$ at point D and tangent to $A C$ at point C.

If $\angle A=40^{\circ}$, what is the value of x ?
(A) 140
(B) 145
(C) 150
(D) 155
$\angle A D O=\angle A C O=90^{\circ}$ (radius and tangent)
$\therefore x+2 \times 90+40=360$ (angle sum $A D O C$)
$\therefore x=140$

6 The function $f(x)=\sin x-\frac{2}{3} x$ has a real root close to $x=1.5$
Let $x=1.5$ be a first approximation to the root.
What is the second approximation to the root using Newton's method?
(A) 1.495
(B) 1.496
(C) 1.503
(D) 1.504

$$
\begin{aligned}
x_{1} & =1.5-\frac{f(1.5)}{f^{\prime}(1.5)} \\
& =1.5-\frac{\sin 1.5-\frac{2}{3} \times \frac{3}{2}}{\cos 1.5-\frac{2}{3}} \\
& =1.496
\end{aligned}
$$

7 A test is administered with 15 questions. Students are allowed to answer any ten. How many choices of ten questions are there?
(A) 150
${ }^{15} C_{10}=3003$
(B) 250
(C) 3003
(D) 3000

8 The graph of $f(x)=0 \cdot 6 \cos ^{-1}(x-1)$, defines a curve that, when rotated about the y-axis, will produce a solid that is to be the shape and size of a new biscuit.
Which integral expression will give the volume of the biscuit?
(A) $\quad \pi \int_{0}^{0.6}\left[\cos \left(\frac{3}{5} y\right)+1\right]^{2} d y \quad y=\frac{3}{5} \cos ^{-1}(x-1)$
(B) $\pi \int_{0}^{0.6}\left[\cos \left(\frac{5}{3} y\right)+1\right]^{2} d y \quad \therefore x=\cos \left(\frac{5}{3} y\right)+1$
(C) $\pi \int_{0}^{0.6 \pi}\left[\cos \left(\frac{3}{5} y\right)+1\right]^{2} d y \quad 0 \leq \frac{5}{3} y=\cos ^{-1}(x-1) \leq \pi$
(D) $\pi \int_{0}^{0.6 \pi}\left[\cos \left(\frac{5}{3} y\right)+1\right]^{2} d y$
$\therefore 0 \leq y \leq \frac{3}{5} \pi$
$9 \quad$ What is the value of $\lim _{n \rightarrow \infty}\left(n \sin \frac{\pi}{n}\right)$?
(A) $\quad-\infty$

$$
\lim _{n \rightarrow \infty}\left(n \sin \frac{\pi}{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sin \frac{\pi}{n}}{\frac{1}{n}}\right)
$$

(B) 0
$=\lim _{u \rightarrow 0}\left(\frac{\sin \pi u}{u}\right) \quad\left[u=\frac{1}{n}\right]$
$=\pi$
10 What is the x-intercept of the normal to the parabola $x^{2}=4 a y$ at the point $\left(2 a p, a p^{2}\right)$ on the parabola?
(A) $\quad a p\left(p^{2}+1\right)$
$x+p y=2 a p+a p^{3}$
(B) $\quad a p\left(p^{2}+2\right)$
$\therefore y=0, x=2 a p+a p^{3}$
(C) $a p^{2}$
(D) $-a p^{2}$

Section II

Question 11

(a) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}}$

2

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{2-x^{2}}} & =\left[\sin ^{-1}\left(\frac{x}{\sqrt{2}}\right)\right]_{0}^{1} \\
& =\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{\pi}{4}
\end{aligned}
$$

(b) Find the acute angle between the lines $y=\sqrt{3} x-2$ and $y=-\sqrt{3} x+1$.

$$
\begin{aligned}
m_{1}= & \sqrt{3}, m_{2}=-\sqrt{3} \\
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{2 \sqrt{3}}{1-3}\right| \\
& =\sqrt{3} \\
\theta & =60^{\circ}
\end{aligned}
$$

Accept an answer of $\theta=\frac{\pi}{3}$.
(c) The point $\left(-6 t, 9 t^{2}\right)$, where t is a variable, lies on a curve.

Find the Cartesian equation of the curve.

$$
\begin{aligned}
& x=-6 t \Rightarrow t=-\frac{1}{6} x \\
& \therefore y=9 t^{2}=9\left(-\frac{1}{6} x\right)^{2} \\
& \therefore x^{2}=4 y
\end{aligned}
$$

(d) Use the substitution $u=x^{4}+2$ to evaluate $\int_{0}^{1} \frac{x^{7}}{\left(x^{4}+2\right)^{2}} d x$,
leaving your answer in the form $p \ln q+r$.

$$
\begin{aligned}
& u=x^{4}+2 \Rightarrow d u=4 x^{3} d x \\
& x=0, u=2 \\
& x=1, u=3
\end{aligned} \begin{aligned}
\int_{0}^{1} \frac{x^{7}}{\left(x^{4}+2\right)^{2}} d x & =\frac{1}{4} \int_{0}^{1} \frac{x^{4}\left(4 x^{3} d x\right)}{\left(x^{4}+2\right)^{2}}=\frac{1}{4} \int_{2}^{3} \frac{u-2}{u^{2}} d u=\frac{1}{4} \int_{2}^{3}\left(\frac{1}{u}-\frac{2}{u^{2}}\right) d u \\
& =\frac{1}{4}\left[\ln u+\frac{2}{u}\right]_{2}^{3}=\frac{1}{4}\left[\left(\ln 3+\frac{2}{3}\right)-\left(\ln 2+\frac{2}{2}\right)\right]=\frac{1}{4}\left(\ln \frac{3}{2}-\frac{1}{3}\right) \\
& =\frac{1}{4} \ln \frac{3}{2}-\frac{1}{12}
\end{aligned}
$$

Question 11 (continued)
(e) Find $\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right)$.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right) & =x^{2} \times \frac{1}{1+x^{2}}+2 x \tan ^{-1} x \\
& =\frac{x^{2}}{1+x^{2}}+2 x \tan ^{-1} x
\end{aligned}
$$

(f) (i) Find a general solution of the equation

$$
\cos \left(3 x-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

$3 x-\frac{\pi}{6}=2 n \pi \pm \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right), n \in \mathbb{Z}$
$\therefore 3 x=2 n \pi \pm \frac{\pi}{6}+\frac{\pi}{6}$
$=2 n \pi+\frac{\pi}{3}, 2 n \pi$
$\therefore x=\frac{2}{3} n \pi+\frac{\pi}{9}, \frac{2}{3} n \pi$
(ii) Hence, find the smallest solution of this equation which is greater than 5π.

$$
\begin{aligned}
& \frac{2}{3} n \pi+\frac{\pi}{9} \geq 5 \pi \Rightarrow n \geq \frac{22}{3} \\
& \therefore n=8 \\
& \text { Smallest angle }=\frac{2}{3} \times 8 \pi=\frac{16}{3} \pi
\end{aligned}
$$

Question 12

(a) The cubic equation $x^{3}+p x^{2}+q x+r=0$, where p, q and r are real, has roots α, β and γ.
(i) Given that $\alpha+\beta+\gamma=4$ and $\alpha^{2}+\beta^{2}+\gamma^{2}=20$,

2
find the values of p and q.

$$
\begin{aligned}
p & =-(\alpha+\beta+\gamma) \\
& =-4 \\
q & =\alpha \beta+\beta \gamma+\gamma \alpha \\
\alpha^{2}+\beta^{2}+\gamma^{2} & =20 \\
& =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =16-2 q
\end{aligned}
$$

$\therefore q=-2$
$\therefore p=-4, q=-2$
(ii) Given further that one root is 4 , find the value of r.
$\therefore x^{3}-4 x^{2}-2 x+r=0$
Substitute $x=4: \quad 4^{3}-4 \times 16-2 \times 4+r=0$
$\therefore r=8$
(b) (i) Show that $(2 \sin x+\cos x)^{2}$ can be written in the form

$$
\begin{aligned}
& \frac{5}{2}+2 \sin 2 x-\frac{3}{2} \cos 2 x \\
&(2 \sin x+\cos x)^{2}=2 \times 2 \sin ^{2} x+2 \times 2 \sin x \cos x+\cos ^{2} x \\
&=2(1-\cos 2 x)+2 \sin 2 x+\frac{1}{2}(1+\cos 2 x) \\
&=\frac{5}{2}+2 \sin 2 x-\frac{3}{2} \cos 2 x
\end{aligned}
$$

(ii) Find the exact volume when the graph of $y=2 \sin x+\cos x$

$$
\begin{aligned}
\text { Volume } & =\pi \int_{0}^{\frac{\pi}{2}}(2 \sin x+\cos x)^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{2}}\left(\frac{5}{2}+2 \sin 2 x-\frac{3}{2} \cos 2 x\right) d x \\
& =\pi\left[\frac{5}{2} x-\cos 2 x-\frac{3}{4} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\pi\left[\left(\frac{5 \pi}{4}-\cos \pi-\frac{3}{4} \sin \pi\right)-(-1)\right] \\
& =\frac{5 \pi^{2}}{4}+2 \pi
\end{aligned}
$$

Question 12 (continued)
(c) A particle moves in simple harmonic motion about a fixed origin O with a period of $\frac{2 \pi}{5}$ seconds. Initially, $x=1$ and $\dot{x}=-5 \sqrt{3}$.
(i) Find x as a function of t.
$T=\frac{2 \pi}{5}=\frac{2 \pi}{n} \Rightarrow n=5$
Let $x=A \cos (5 t+\varepsilon)$, where $A, \varepsilon>0$.
$t=0 \Rightarrow 1=A \cos \varepsilon$
$\dot{x}=-5 A \sin (5 t+\varepsilon)$
$\therefore-5 \sqrt{3}=-5 A \sin \varepsilon$
$t=0 \Rightarrow A \sin \varepsilon=\sqrt{3}$
Solving (1) and (2) gives $A=2, \varepsilon=\frac{\pi}{3}$
$\therefore x=2 \cos \left(5 t+\frac{\pi}{3}\right)$
(ii) Find the first time that the particle passes back through $x=1$.

Let the first time be T, where $T>0$
$\therefore x(T)=x(0)$
$\therefore \cos \left(5 T+\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)$
$\therefore 5 T+\frac{\pi}{3}=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}, \ldots$
$\therefore 5 T+\frac{\pi}{3}=\frac{5 \pi}{3} \quad(T>0)$
$\therefore 5 T=\frac{4 \pi}{3}$
$\therefore T=\frac{4 \pi}{15}$

Question 12 (continued)
(d) Solve the inequality $\frac{x}{(x+1)(x-2)} \leq-\frac{1}{2}$

$$
\begin{aligned}
& x \neq-1,2 \\
& 2(x+1)^{2}(x-2)^{2} \times \frac{x}{(x+1)(x-2)} \leq-\frac{1}{2} \times 2(x+1)^{2}(x-2)^{2} \\
& \therefore 2 x(x+1)(x-2) \leq-(x+1)^{2}(x-2)^{2} \\
& \therefore(x+1)^{2}(x-2)^{2}+2 x(x+1)(x-2) \leq 0 \\
& \therefore(x+1)(x-2)[(x+1)(x-2)+2 x] \leq 0 \\
& \therefore(x+1)(x-2)\left(x^{2}+x-2\right) \leq 0 \\
& \therefore(x+1)(x-2)(x-1)(x+2) \leq 0 \\
& \therefore-2 \leq x<-1,1 \leq x<2
\end{aligned}
$$

Question 13

(a) The diagram below shows the graph of the curve $y=x \sqrt{3-x}$.

The point P has coordinates $(2,2)$ and is a stationary point.
The function $f(x)$ is defined by $f(x)=x \sqrt{3-x}, x \leq 2$.
(i) On the same diagram, sketch the region satisfied by

$$
y \leq f(x) \text { and } y \geq f^{-1}(x)
$$

(ii) Explain why the area A of the shaded region in (i) is given by

$$
A=2 \int_{0}^{2}(x \sqrt{3-x}-x) d x
$$

Do NOT attempt to evaluate this integral.
$y=f^{-1}(x)$ is a reflection of $y=f(x)$ in the line $y=x$.
So the area between $y=f(x)$ and $y=x$ for $0 \leq x \leq 2$ is the same as the area between $y=f^{-1}(x)$ and $y=x$ for $0 \leq x \leq 2$.
The area between $y=f(x)$ and $y=x$ for $0 \leq x \leq 2=\int_{0}^{2}(x \sqrt{3-x}-x) d x$
\therefore Shaded area $=2 \int_{0}^{2}(x \sqrt{3-x}-x) d x$

Question 13 (continued)
(b) Nine different pies are to be divided between three people so that each person gets an odd number of pies.
Find the number of ways this can be done.
There are 3 cases $\quad 1$. $(1,3,5)$ with 3 ! different arrangements amongst the 3 people. i.e. the first person gets 1 pie, the second person gets 3 pies and the third gets 5 pies. This could be re-arranged in 3! ways. $\therefore{ }^{9} C_{1} \times{ }^{8} C_{3} \times 3$!
2. $(1,1,7)$ with 3 different arrangements amongst the 3 people.

$$
\therefore{ }^{9} C_{1} \times{ }^{8} C_{1} \times 3
$$

3. $(3,3,3)$ with 1 possibilities

$$
\therefore{ }^{9} C_{3} \times{ }^{6} C_{3}
$$

$\therefore{ }^{9} C_{1} \times{ }^{8} C_{3} \times 3!+{ }^{9} C_{1} \times{ }^{8} C_{1} \times 3+{ }^{9} C_{3} \times{ }^{6} C_{3}=4920$
(c) Show that $\lim _{x \rightarrow 5} \frac{x^{3}-x^{2}-100}{x-5}=65$

Let $f(x)=x^{3}-x^{2}$.
$f^{\prime}(x)=3 x^{2}-2 x$
$f(5)=125-25=100$

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 5} \frac{x^{3}-x^{2}-100}{x-5} & =\lim _{x \rightarrow 5} \frac{f(x)-f(5)}{x-5} \\
& =f^{\prime}(5) \\
& =3 \times 25-2 \times 5 \\
& =65
\end{aligned}
$$

Alternatively:

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 5} \frac{x^{3}-x^{2}-100}{x-5} & =\lim _{x \rightarrow 5} \frac{x^{3}-125-x^{2}+25}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{\left(x^{3}-125\right)-\left(x^{2}-25\right)}{x-5} \\
& =\lim _{x \rightarrow 5}\left[\left(x^{2}+5 x+25\right)-(x+5)\right] \\
& =3 \times 25-10 \\
& =65
\end{aligned}
$$

Question 13 (continued)
(d)

$$
x=8 t \cos \alpha \text { and } y=6-8 t \sin \alpha-4 \cdot 9 t^{2} . \text { (Do NOT prove this.) }
$$

(i) Find α.

Given that the initial velocity of the stone is directed at the can then
$\tan \alpha=\frac{6}{10}=\frac{3}{5}$
$\therefore \alpha=31^{\circ}$
(ii) Find the time that it takes for the stone to reach the level of the water.

The stone will reach the water when $y=0$
$\therefore 6-8 t \sin \alpha-4.9 t^{2}=0$
$\therefore 4 \cdot 9 t^{2}+8 t \sin \alpha-6=0$
$\therefore 4 \cdot 9 t^{2}+8 t \times \frac{3}{\sqrt{34}}-6=0 \quad\left[\tan \alpha=\frac{3}{5} \Rightarrow \sin \alpha=\frac{3}{\sqrt{34}}\right]$
$\therefore t=0.76359,-1.60$
$\therefore t=0.76$
The stone will reach water level after 0.76 seconds.
(iii) Find the distance between the stone and the can, when the stone hits the water.

The horizontal difference, $d \mathrm{~m}$, where $d=10-8 t \cos \alpha$
$\therefore d=10-8 \times 0.76 \times \frac{5}{\sqrt{34}}=4.8$
So the distance between the stone and the can is 4.8 m

Question 14

(a) (i) Show that $\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}=\frac{2}{(k+3)!}$, where k is an integer.

$$
\begin{aligned}
\text { LHS } & =\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!} \\
& =\frac{k+3-(k+1)}{(k+3)!} \\
& =\frac{2}{(k+3)!}=\text { RHS }
\end{aligned}
$$

(ii) Prove by induction that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!}
$$

Test $n=1$:

$$
\begin{aligned}
& \mathrm{LHS}=\sum_{r=1}^{1} \frac{r \times 2^{r}}{(r+2)!}=\frac{1 \times 2^{1}}{(1+2)!}=\frac{2}{6}=\frac{1}{3} \\
& \mathrm{RHS}=1-\frac{2^{2}}{(1+2)!}=1-\frac{4}{6}=\frac{1}{3}
\end{aligned}
$$

True for $n=1$.
Assume true for $n=k$ i.e. $\sum_{r=1}^{k} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{k+1}}{(k+2)!}$
Need to prove true for $n=k+1$ i.e. $\sum_{r=1}^{k+1} \frac{r \times 2^{r}}{(r+2)!}=1-\frac{2^{k+2}}{(k+3)!}$

$$
\begin{aligned}
\text { LHS } & =\sum_{r=1}^{k+1} \frac{r \times 2^{r}}{(r+2)!} \\
& =\sum_{r=1}^{k} \frac{r \times 2^{r}}{(r+2)!}+\frac{(k+1) \times 2^{k+1}}{(k+3)!} \\
& =1-\frac{2^{k+1}}{(k+2)!}+\frac{(k+1) \times 2^{k+1}}{(k+3)!} \quad \text { [By assumption] } \\
& =1-2^{k+1}\left[\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}\right] \\
& =1-2^{k+1} \times \frac{2}{(k+3)!} \quad \text { [From (a) (i)] } \\
& =1-\frac{2^{k+2}}{(k+3)!} \\
& =\text { RHS }
\end{aligned}
$$

So the case $n=k+1$ is true if the case $n=k$ is true.
So by the principle of mathematical induction, the formula is true for all positive integers.

Question 14 (continued)
(b) $\quad X$ and Y are points on the sides $B C$ and $A C$ of a triangle $A B C$ respectively such that $\angle A X C=\angle B Y C$ and $B X=X Y$.

(i) Show that $\angle X A C=\angle Y B C$.

$$
\begin{array}{rlrl}
\angle X A C+ & \angle A X C+\angle X C A=180^{\circ} & & \text { [angle sum } \triangle A X C] \\
\begin{aligned}
\therefore \angle X A C & =180^{\circ}-(\angle A X C+\angle X C A) & & \\
& =180^{\circ}-\angle B Y C-\angle B C Y & & {[\text { data: } \angle A X C=\angle B Y C] } \\
& =\angle Y B C & & {[\text { angle sum } \triangle Y B C] }
\end{aligned}
\end{array}
$$

(ii) Hence, explain why $A B X Y$ is a cyclic quadrilateral.

As $\angle X A C=\angle Y B C$ then $\angle X A Y=\angle Y B X$
So $A B X Y$ is a cyclic quadrilateral (converse of angles in the same segment)
(iii) Prove that $A X$ bisects the angle $\angle B A C$.
$\angle B Y X=\angle B A X \quad$ (angles in same segment)
Similarly, $\angle X B Y=\angle X A Y$.
Now $\angle X B Y=\angle B Y X \quad$ (equal angles opp. equal sides)
$\therefore \angle X A Y=\angle B A X$
i.e. $A X$ bisects $\angle B A C$
(c) If $\frac{d x}{d t}=-2(x-6)^{\frac{1}{2}}$, and $x=70$ when $t=0$, find x as a function of t.

$$
\frac{d t}{d x}=-\frac{1}{2}(x-6)^{-\frac{1}{2}}
$$

$\therefore t=-(x-6)^{\frac{1}{2}}+C$
Substitute $x=70, t=0$
$\therefore 0=-(70-6)^{\frac{1}{2}}+C$
$\therefore C=8$
$\therefore t=-(x-6)^{\frac{1}{2}}+8$
$\therefore(x-6)^{\frac{1}{2}}=8-t$
$\therefore x=6+(8-t)^{2}$

Question 14 (continued)
(d) Liquid fuel is stored in a tank. At time t minutes, the depth of fuel in the tank is $x \mathrm{~cm}$. Initially there is a depth of 70 cm of fuel in the tank.
There is a tap 6 cm above the bottom of the tank.
The flow of fuel out of the tank is modeled by the differential equation

$$
\frac{d x}{d t}=-2(x-6)^{\frac{1}{2}}
$$

(i) Explain what happens when $x=6$.

The fuel ceases to flow out the tap.
(ii) Find how long it will take for the depth of fuel to fall from 70 cm to 22 cm .

From (c), $x=6+(8-t)^{2}$
Find t, when $x=22$.

$$
\begin{aligned}
& 22=6+(8-t)^{2} \\
& \therefore(t-8)^{2}=16 \\
& \therefore t=8 \pm 4 \\
& \therefore t=4 \quad(0 \leq t \leq 8)
\end{aligned}
$$

It takes 4 seconds to fall to 22 cm .

End of solutions

