2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics
 Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Start each NEW question in a separate answer booklet.

Total Marks - 70

Section I
Pages 2-4
10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II
Pages 6-11
60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Examiners: R. Elliot \& J. Chen

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The roots of $3 x^{3}-2 x^{2}+x-1=0$ are α, β and γ.
What is the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$?
(A) $-\frac{1}{9}$
(B) $-\frac{2}{9}$
(C) 1
(D) $\frac{2}{9}$

2 What is the minimum value of $\sqrt{7} \sin x-3 \cos x$?
(A) $\quad-2$
(B) $\quad-4$
(B) -16
(D) $\sqrt{7}-3$
$3 \quad$ What is the domain and range of $y=\sin ^{-1}\left(\frac{2 x}{5}\right)$?
(A) Domain: $-1 \leq x \leq 1$;
Range: $-\pi \leq y \leq \pi$
(B) Domain: $-1 \leq x \leq 1$;
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) Domain: $-\frac{5}{2} \leq x \leq \frac{5}{2} ; \quad$ Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) Domain: $-\frac{5}{2} \leq x \leq \frac{5}{2} ; \quad$ Range: $-\pi \leq y \leq \pi$

4 Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x}$.
(A) 0
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{3}{2}$

5 In the diagram below, $A B$ is a tangent to the circle $B C D$.
Also, $C D$ is a tangent to the circle $A B D$.
$\angle B A D=\theta$ and $\angle B C D=\phi$.

Which of the following is a true statement?
(A) $\quad \triangle A B D \equiv \triangle B D C$
(B) $A B C D$ is a cyclic quadrilateral
(C) $\triangle A B D||\mid B D C$
(D) $\quad A B \| C D$

6 A particle moves in simple harmonic motion so that its velocity, v, is given by

$$
v^{2}=6-x-x^{2} .
$$

Between which two points does it oscillate?
(A) $x=6$ and $x=3$
(B) $\quad x=-2$ and $x=3$
(C) $x=1$ and $x=2$
(D) $\quad x=2$ and $x=-3$

7 Which of the following is an expression for $\int \cos ^{3} x \sin x d x$?
(A) $-\cos ^{4} x+c$
(B) $\quad-\frac{1}{4} \cos ^{4} x+c$
(C) $\cos ^{4} x+c$
(D) $\frac{1}{4} \cos ^{4} x+c$

8 Which of the following is the correct expression for the inverse of $f(x)=e^{1-2 x}$?
(A) $f^{-1}(x)=-2 e^{1-2 x}$
(B) $f^{-1}(x)=-\frac{1}{2} e^{1-2 x}$
(C) $\quad f^{-1}(x)=-\frac{1}{2} \log _{e}(1-2 x)$
(D) $\quad f^{-1}(x)=\frac{1}{2}\left(1-\log _{e} x\right)$

9 Three Mathematics study guides, four Mathematics textbooks and five exercise books are randomly placed along a bookshelf. What is the probability that the Mathematics textbooks are all next to each other?
(A) $\frac{4!}{12!}$
(B) $\frac{9!}{12!}$
(C) $\frac{4!3!5!}{12!}$
(D) $\frac{4!9!}{12!}$

10 A particle moves on the x-axis with velocity $v \mathrm{~m} / \mathrm{s}$, such that $v^{2}=16 x-x^{2}$. Which of the following is the particle's maximum speed and the position of where this maximum speed occurs?
(A) Maximum speed $=16 \mathrm{~m} / \mathrm{s}$ at $x=0$
(B) Maximum speed $=8 \mathrm{~m} / \mathrm{s}$ at $x=-8$
(C) Maximum speed $=-8 \mathrm{~m} / \mathrm{s}$ at $x=8$
(D) Maximum speed $=8 \mathrm{~m} / \mathrm{s}$ at $x=8$

BLANK PAGE

Section II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section
Answer each question in a NEW writing booklet. Extra pages are available
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet
(a) Differentiate $\sin ^{-1}\left(\log _{e} x\right)$.

1
(b) Find $\int \frac{1}{\sqrt{4-9 x^{2}}} d x$.
(c) (i) Simplify $\sin (A+B)+\sin (A-B)$.
(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{6}} \sin 3 x \cos x d x$.
(d) The point $P\left(6 p, 3 p^{2}\right)$ is a point on the parabola $x^{2}=12 y$.
(i) Find the equation of the tangent at P.
(ii) The tangent at P cuts the y-axis at B.

The point A divides $P B$ internally in the ratio $1: 2$.
Find the locus of the point A as P varies.
(e) A piece of meat at temperature $T^{\circ} \mathrm{C}$ is placed in an oven, which has a constant temperature of $H^{\circ} \mathrm{C}$.
The rate at which the temperature of the meat warms is given by

$$
\frac{d T}{d t}=-K(T-H),
$$

where t is in minutes and for some positive constant K.
(i) Show that $T=H+B e^{-K t}$, where B is a constant, is a solution of the differential equation above.
(ii) If the meat warms from $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the oven, which has a constant temperature of $180^{\circ} \mathrm{C}$, in 30 minutes, find the value of K.
(iii) How long will it take the meat to get to a temperature of $150^{\circ} \mathrm{C}$? Express your answer correct to the nearest minute.

Question 12 (15 Marks) Start a NEW Writing Booklet
(a) (i) Solve $\cos x-\sqrt{3} \sin x=1$ for $0 \leq x \leq 2 \pi$.
(ii) Hence, or otherwise, find a general solution to $\cos x-\sqrt{3} \sin x=1$.
(b) (i) On the same set of axes sketch the graphs of $y=\cos 2 x$ and $y=\frac{x+1}{3}$
(ii) Use the graph to determine the number of solutions to the equation

$$
3 \cos 2 x=x+1
$$

(iii) One solution of the equation $3 \cos 2 x=x+1$ is close to 0.5 .

Use one application of Newton's Method to find another approximation, correct to 3 decimal places.
(c) Evaluate $\int_{0}^{\frac{\pi}{4}} \sin ^{2} 2 x d x$
(d) When $x \mathrm{~cm}$ from the origin, the acceleration of a particle moving in a straight line is given by:

$$
\frac{d^{2} x}{d t^{2}}=-\frac{5}{(x+2)^{3}}
$$

It has an initial velocity of $2 \mathrm{~cm} / \mathrm{s}$ at $x=0$. If the velocity is $V \mathrm{~cm} / \mathrm{s}$, find V in terms of x.
(a) In the diagram below, $D C$ is a diameter of the larger circle centred at A.
$A C$ is a diameter of the smaller circle centred at B.
$D E$ is tangent to the smaller circle at F and $D C=12$.
Copy the diagram to your answer booklet.
Determine the length of $D E$.

(b) (i) Simplify $k!+k \times k!\quad 1$
(ii) Prove, by mathematical induction, that

$$
1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1
$$

for all positive integers n.
(c) (i) Using the substitution $x=3+3 \sin \theta$ find $\int \sqrt{x(6-x)} d x$
(ii) Let R be the region bounded by the curve $y=\sqrt[4]{x(6-x)}$ and the x-axis.

Find the volume of the solid of revolution generated by revolving R about the x-axis.

End of Question 13

BLANK PAGE
(a)

The figure above shows an inverted conical cup with base radius 8 cm and height 10 cm .
Some water is poured into the cup at a constant rate of $\frac{2 \pi}{5} \mathrm{~cm}^{3}$ per minute.
Let the depth of the water be $h \mathrm{~cm}$ at time t minutes.
Find the rate of change in the area of the water surface when $h=4$
(b) A particle is projected horizontally at $30 \mathrm{~ms}^{-1}$ from the top of a 100 m high wall. Assume that acceleration due to gravity is $10 \mathrm{~ms}^{-2}$ and that there is no air resistance.

The flight path of the particle is given by:

$$
x=30 t, y=100-5 t^{2} \text { (Do NOT prove this) }
$$

where t is the time in seconds after take-off.
(i) Find the time taken for the particle to reach the ground.
(ii) Find the angle and speed at which the particle strikes the ground.

Question 14 continues on page 11

Question 14 (continued)
(c) The diagram below shows a tetrahedron such that $V A=V B=A B=2 a$, $C A=C B=3 a$ and $V C=\sqrt{5} a$.
O is the foot of the perpendicular from V to the base $A B C$.
M is the midpoint of $A B$.
P is a point on $B C$ such that $B P=r a$ where $0 \leq r \leq 3$.
$\angle V M C=\theta$ and $\angle V P O=\varphi$.

(i) By considering $\triangle V M C$, show that $\cos \theta=\frac{\sqrt{6}}{4}$.
(ii) Hence find the exact value of $V O$.
(iii) Show that $V P^{2}=\frac{1}{3}\left(3 r^{2}-8 r+12\right) a^{2}$
(iv) Hence show that $\sin \varphi=\sqrt{\frac{45}{8\left(3 r^{2}-8 r+12\right)}}$

1
(v) Hence, or otherwise, find the maximum value of φ as r varies.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

SYDNEY BOYS HIGH SCHOOL

 MOORE PARK, SURRY HILLS
2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics Extension 1 Sample Solutions

Question	Teacher
Q11	RB
Q12	BK
Q13	BD
Q14	PB

MC Answers

Q1	D
Q2	B
Q3	C
Q4	D
Q5	C
Q6	D
Q7	B
Q8	D
Q9	D
Q10	D

1 The roots of $3 x^{3}-2 x^{2}+x-1=0$ are α, β and γ.
What is the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$?
(A) $-\frac{1}{9}$
(B) $-\frac{2}{9}$
(C) 1
(D) $\frac{2}{9}$

ANSWER: D

$$
\begin{aligned}
& 3 x^{3}-2 x^{2}+x-1=0 \\
& \begin{aligned}
& \alpha \beta \gamma=-\frac{d}{a} \quad \alpha+\beta+\gamma=-\frac{b}{a} \\
&==\frac{1}{3} \\
& \alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}=\alpha \beta \gamma(\alpha+\beta+\gamma) \\
&=\frac{1}{3} \times \frac{2}{3} \\
&=\frac{2}{9}
\end{aligned}
\end{aligned}
$$

2 What is the minimum value of $\sqrt{7} \sin x-3 \cos x$?
(A) -2
(B) $\quad-4$
(B) -16
(D) $\sqrt{7}-3$

ANSWER: B

$$
\begin{aligned}
\sqrt{7} & \sin x-3 \cos x \\
r & =\sqrt{(\sqrt{7})^{2}+3^{2}} \\
& =\sqrt{7+9} \\
& =4
\end{aligned}
$$

Let $\sqrt{7} \sin x-3 \cos x=r \sin (\theta-\alpha)$

$$
=4 \sin (\theta-\alpha)
$$

No matter what the value of α

$$
\begin{aligned}
& -1 \leq \sin (x-\alpha) \leq 1 \\
& -4 \leq 4 \sin (x-\alpha) \leq 4
\end{aligned}
$$

Therefore the minimum value is $x=-4$.
$3 \quad$ What is the domain and range of $y=\sin ^{-1}\left(\frac{2 x}{5}\right)$?
(A) Domain: $-1 \leq x \leq 1$; Range: $-\pi \leq y \leq \pi$
(B) Domain: $-1 \leq x \leq 1$;

Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) Domain: $-\frac{5}{2} \leq x \leq \frac{5}{2}$;

Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) Domain: $-\frac{5}{2} \leq x \leq \frac{5}{2}$;

Range: $-\pi \leq y \leq \pi$

ANSWER: C

$$
y=\sin ^{-1}\left(\frac{2 x}{5}\right) \Rightarrow \sin y=\left(\frac{2 x}{5}\right)
$$

Domain: $-1 \leq \sin y \leq 1$

$$
\begin{aligned}
& -1 \leq \frac{2 x}{5} \leq 1 \\
& \frac{-5}{2} \leq x \leq \frac{5}{2}
\end{aligned}
$$

Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ as this is the range of $y=\sin ^{-1} x$

4 Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x}$.
(A) 0
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{3}{2}$

ANSWER: D

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x} & =\frac{3}{2} \lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x} \times \frac{2}{3} \\
& =\frac{3}{2} \lim _{x \rightarrow 0} \frac{2 \sin 3 x}{2 \times 3 x} \\
& =\frac{3}{2} \times 1 \\
& =\frac{3}{2}
\end{aligned}
$$

5 In the diagram below, $A B$ is a tangent to the circle $B C D$.
Also, $C D$ is a tangent to the circle $A B D$.
$\angle B A D=\theta$ and $\angle B C D=\phi$.

Which of the following is a true statement?
(A) $\triangle A B D \equiv \triangle B D C$
(B) $A B C D$ is a cyclic quadrilateral
(C) $\triangle A B D \|| | B D C$
(D) $A B \| C D$

ANSWER: C

In $\triangle A B D$ and $\triangle D C B$:
$\angle D C B=\angle D B A$ (angle in the alternate segment)
ie $\angle D C B=\angle A B D$
$\angle B A D=\angle B D C$ (angle in the alternate segment)
ie $\angle B A D=\angle C D B$
$B D$ is but not respective to angles.
Therefore $\triangle A B D \nexists \triangle D C B$

Hence, triangles are equiangular they are similar and $\triangle A B D \|| | \triangle D C B$

6 A particle moves in simple harmonic motion so that its velocity, v, is given by

$$
v^{2}=6-x-x^{2} .
$$

Between which two points does it oscillate?
(A) $x=6$ and $x=3$
(B) $x=-2$ and $x=3$
(C) $x=1$ and $x=2$
(D) $x=2$ and $x=-3$

ANSWER: D

$v^{2}=6-x-x^{2}$
For the particle to reach its oscillation
points $v=0$.

$$
\begin{aligned}
v^{2} & =6-x-x^{2} \\
0 & =6-x-x^{2} \\
0 & =(3+x)(2-x) \\
\therefore x & =-3 \text { and } 2
\end{aligned}
$$

$7 \quad$ Which of the following is an expression for $\int \cos ^{3} x \sin x d x$?
(A) $-\cos ^{4} x+c$
(B) $-\frac{1}{4} \cos ^{4} x+c$
(C) $\cos ^{4} x+c$
(D) $\frac{1}{4} \cos ^{4} x+c$

ANSWER: B

$$
\begin{gathered}
\int \cos ^{3} x \sin x d x, \text { testing solutions: } \\
\frac{d}{d x}\left(\cos ^{4} x\right)=4 \cos ^{3} x \times-\sin x \\
\frac{d}{d x}-\frac{1}{4}\left(\cos ^{4} x\right)=\cos ^{3} x \sin x \\
-\frac{1}{4} \cos ^{4} x=\int \cos ^{3} x \sin x d x
\end{gathered}
$$

8 Which of the following is the correct expression for the inverse of $f(x)=e^{1-2 x}$?
(A) $\quad f^{-1}(x)=-2 e^{1-2 x}$
(B) $f^{-1}(x)=-\frac{1}{2} e^{1-2 x}$
(C) $\quad f^{-1}(x)=-\frac{1}{2} \log _{e}(1-2 x)$
(D) $f^{-1}(x)=\frac{1}{2}\left(1-\log _{e} x\right)$

ANSWER: D

Let $y=e^{1-2 x}$

$$
\begin{aligned}
y & =e^{1-2 x} \\
\ln y & =1-2 x \\
2 x & =1-\ln y \\
x & =\frac{1}{2}(1-\ln y) \\
\therefore f^{-1}(x) & =\frac{1}{2}(1-\ln y)
\end{aligned}
$$

9 Three Mathematics study guides, four Mathematics textbooks and five exercise books are randomly placed along a bookshelf. What is the probability that the Mathematics textbooks are all next to each other?
(A) $\frac{4!}{12!}$
(B) $\frac{9!}{12!}$
(C) $\frac{4!3!5!}{12!}$
(D) $\frac{4!9!}{12!}$

ANSWER: D

Since there are 9 elements counting the textbooks as 1 element, hence these can be arranged in 9! ways. Also the textbooks can be arranged in 4! ways.

As there are 12 separate elements, the divisor for population can be counted in 12 ! ways.

Therefore, the probability is $\frac{9!4!}{12!}$

10 A particle moves on the x-axis with velocity $v \mathrm{~m} / \mathrm{s}$, such that $v^{2}=16 x-x^{2}$. Which of the following is the particle's maximum speed and the position of where this maximum speed occurs?
(A) Maximum speed $=16 \mathrm{~m} / \mathrm{s}$ at $x=0$
(B) Maximum speed $=8 \mathrm{~m} / \mathrm{s}$ at $x=-8$
(C) Maximum speed $=-8 \mathrm{~m} / \mathrm{s}$ at $x=8$
(D) Maximum speed $=8 \mathrm{~m} / \mathrm{s}$ at $x=8$

ANSWER: D

$$
\begin{aligned}
v^{2} & =16 x-x^{2} \\
\frac{1}{2} v^{2} & =8 x-\frac{x^{2}}{2} \\
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) & =8-\frac{2 x}{2} \\
& =8-x \\
\ddot{x} & =8-x
\end{aligned}
$$

When $\ddot{x}=0$ the speed is the greatest so,

$$
\ddot{x}=8-x
$$

$$
0=8-x
$$

$$
x=8
$$

$$
\text { At } x=8 \text {, }
$$

$$
\begin{aligned}
v^{2} & =16 x-x^{2} \\
& =16(8)-(8)^{2} \\
& =64 \\
v & = \pm 8
\end{aligned}
$$

As v, velocity can take positive and negative values, but the speed can only be positive, the maximum speed is $8 \mathrm{~m} / \mathrm{s}$.
(11) 3 uni Trial 2015 Sydney Boys.
(a) let $y=\sin ^{-1}(\ln x)$

$$
\begin{align*}
y^{\prime} & =\frac{1}{\sqrt{1-(\ln x)^{2}}} \times \frac{1}{x} \\
& =\frac{1}{x \sqrt{1-(\ln x)^{2}}}
\end{align*}
$$

Forgot the $\frac{1}{x}$.
(1) Others thought (lino $)^{2}$
$=2 \ln x$ or $\ln x^{2}$
no.
(b) $\int \frac{1 d x}{\sqrt{4-9 x^{2}}}=\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{2}\right)+c$

Some studier do ane but
(C) (i) $\sin ^{2}(A+B)+\sin (A-B)$ the $\frac{\sin }{3}$.
$\sin A \cos B+\cos A / \sin B+\sin A \cos B-\cos A \sin B$
$=2 \sin A \cos B$
(1) this part, way well
(ii) $\int_{0}^{\frac{\pi}{6}} \sin 3 x \cos x d x$.

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{2} 2 \sin 3 x \cos x d x \\
& =\frac{1}{2} \int_{0}^{2}[\sin 4 x+\sin 2 x] d x \\
& =-\frac{1}{2} \frac{1}{4}\left[4 \sin 4 x d x+-\frac{1}{2} \frac{1}{2} 2 \sin 2 x d x\right. \\
& \left.\left.=-\frac{1}{8} \cos 4 x\right]_{0}^{\frac{\pi}{6}}-\frac{1}{4} \cos 2 x\right]_{0}^{6}
\end{aligned}
$$

(ii) (d) (ii) $\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$ ratio formulas,

$$
\begin{aligned}
& p\left(x_{1} b^{y} p^{y^{2}} p^{2}\right) \\
& B\left(0,-3 p^{2}\right) \\
& m: n=1: 2
\end{aligned}
$$

$x=4 p \Rightarrow p=\frac{x}{4} \quad \frac{A\left(4 p, p^{2}\right)}{\text { many students found 'A' but could }}$ many students found 'A' but could
not 12
\qquad So $y=\frac{x^{2}}{16}$
(e) (1) $T=H+B e^{-k t}$

$$
\begin{aligned}
\frac{d T}{d t} & =0-B k e^{-k t} \\
& =-k(T-H)
\end{aligned}
$$

$$
\Rightarrow B e^{-k t}=T-H
$$

$$
=-k(T-H)
$$

(ii) $H=180^{\circ}$

When $t=0, T=10^{\circ}$ Ullll answered. Using the method shown.
$10=180+B e^{\circ}$ Some boys wanted to integrate the $\frac{d T}{d t}$ and
$10-180=B$
$B=-170$ got int a dot of

So

$$
T=180-170 e
$$

data

$$
\begin{aligned}
& t=30 \\
& 1=50
\end{aligned}
$$

So

$$
\begin{align*}
& 50=180-170 e^{-30 k} \\
& -130=-170 e^{-30 k} \\
& \left(\frac{13}{17}\right)=e^{-30 k} \\
& \ln \left(\frac{13}{17}\right)=\ln e^{-30 k} \\
& =-30 k \\
& k=\frac{\ln \left(\frac{13}{17}\right)}{-30}=.008942 \text { will give flolat or arpectox. } \\
& \text { So } T=180-170 e^{-} \tag{2}
\end{align*}
$$

(iii)

$$
\begin{align*}
150 & =180-170 e^{-0.008942 t} \\
-30 & =-170 e^{-0.008942 t} \\
\left(\frac{3}{17}\right) & =e^{-0.008942 t} \\
\ln \left(\frac{3}{17}\right) & =\ln e^{-0.008942 t} \\
& =-0.008942 t \\
t & =\frac{\ln \left(\frac{3}{17}\right)}{-0.008942} \div 194 \operatorname{mins} \tag{2}
\end{align*}
$$

3 hrs 14 mins
Whall ansurered.

$$
\begin{aligned}
& \left(-\frac{1}{8} \cos \frac{4 \pi}{6}+\frac{1}{8} \cos 0\right)-\left(\frac{1}{4} \cos \frac{2 \pi}{6}-\frac{1}{4} \cos 0\right) \\
& =-\frac{1}{8} \cos \frac{2 \pi}{3}+\frac{1}{8}-\left(\frac{1}{4} \cos \frac{\pi}{3}-\frac{1}{4}\right) \\
& =-\frac{1}{8} \cos 120^{\circ}+\frac{1}{8}-\frac{1}{4} \cos 60^{\circ}+\frac{1}{4} \\
& =-\frac{1}{8} x-\frac{1}{2}+\frac{1}{8}-\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{4} \\
& =\frac{1}{16}+\frac{1}{8}-\frac{1}{8}+\frac{1}{4}=\frac{1}{16}+\frac{1}{4}=\frac{5}{16}
\end{aligned}
$$

 from. (c)as or used it bodly. The (0.3125) $\frac{1}{2}$ out the front was there in most ansuers. Those that made the comection that (1) can suevin (2)
(d)

$$
p\left(6 p, 3 p^{2}\right)
$$

$$
x^{2}=12 y
$$

$$
\begin{aligned}
& y-3 p^{2}=p x-6 p^{2} \\
& \left.1=0 x-3 p^{2}-12\right)
\end{aligned}
$$

(i)

$$
\begin{aligned}
& x^{2}=12 y \\
& y=\frac{x^{2}}{12} \\
& y^{\prime}=\frac{2 x}{12}=\frac{x}{6}
\end{aligned}
$$

$$
y=p x-3 p^{2}(2)
$$

at $x=\operatorname{lop} \quad m=\frac{b p}{b}=p$

$$
\begin{aligned}
& x=10 p m=6 \\
& \left(y-3 p^{2}\right)=p(x-6 p)
\end{aligned}
$$

(ii) Cuts yasis at B. $x=0 \quad y=-3 p^{2}$ ${ }_{1}^{k_{0}} B\left(0,-3 p^{2}\right)$ (i) $p\left(6 p, 3 p^{2}\right)$.

12

$$
\Rightarrow
$$

$$
\begin{aligned}
& \text { (a) (i) } \begin{array}{c}
\cos x-\sqrt{3} \sin x=1 \quad 0 \leqslant x \leqslant 2 \pi \\
\cos x-\sqrt{3} \sin x=R \cos (x+\alpha) \\
\cos x-\sqrt{3} \sin x=R \cos x \cos \alpha-R \sin x \sin \alpha \\
R=\sqrt{1+3}=2
\end{array} \quad \begin{aligned}
R
\end{aligned}
\end{aligned}
$$

Then $2 \cos \alpha=1$ and $2 \sin \alpha=\sqrt{3}$.

$$
\begin{aligned}
& \cos \alpha=\frac{1}{2} \\
& \therefore \alpha=\frac{\pi}{3}
\end{aligned}
$$

Then $2 \cos \left(x+\frac{\pi}{3}\right)=1$

$$
\begin{aligned}
& \cos \left(x+\frac{\pi}{3}\right)=\frac{1}{2} \\
& x+\frac{\pi}{3}=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \\
& x=0, \frac{4 \pi}{3}, 2 \pi
\end{aligned}
$$

(ii) Geneal Som: $x=2 n \pi$ or $2 n \pi \pm \frac{4 \pi}{3}$

$$
\begin{aligned}
& \text { or } x=-\frac{\pi}{3}+2 n \pi \pm \frac{\pi}{3}, n \in Z \\
& \text { yang le } x=\frac{-2 \pi}{3}+2 k \pi \pi \text { or } 2 k \pi \\
& k \in Z
\end{aligned}
$$

(i) Most students realised they needed the auxiliary angle

$$
\sin \alpha=\frac{\sqrt{3}}{2}
$$

method. Commonterrors included:
-evaluating tan incorrectly and having $1 /$ sqrt(3)
(ii) Some had the incorrens in the given domain.
(ii) Some had the incorrect formula.

(ii) 3 solutions

(iii) $f(x)=3 \cos 2 x-x-1$:

Let $f(0.5)=$.

$$
f(0.5)=0.1209069 .
$$

Also

$$
\begin{aligned}
f^{\prime}(x) & =-6 \sin 2 x-1 \\
f^{\prime}(x) & =-6.0488 \\
\text { Then } x_{n+1} & =x_{1}-f\left(x_{1}\right) \\
& =0.5-\frac{0.120909}{-6.0488259}\left(x_{1}\right) \\
& =0.5199888907 \\
& = \\
x_{h+1} & =0.520 \text { to } 3 d p
\end{aligned}
$$

An inaccurate graph resulted in the wrong number of solutions. Using Newton's Method done well on the whole. Some students did not use the given starting value and so were incorrect.
(c)

(d)

$$
\ddot{x}=\frac{-5}{(x+z)^{3}}
$$

When

$$
\begin{aligned}
& t=0, x=x(m . \\
& t=0, v=2, x=0 . \\
& \frac{d\left(\frac{1}{2} v^{2}\right)}{d x}=\frac{-5}{(x+2)^{3}} \\
& \frac{1}{2} v^{2}=-5 \int \frac{1}{(x+2)^{3}} d x \\
& v^{2}=-10 \frac{(x+2)^{-2}}{-2}+c \\
& v^{2}=\frac{5}{(x+2)^{2}}+c \\
& \text { When } x=0, v=2 \Rightarrow 4
\end{aligned}
$$

(d) $($ cont $)$

$$
v^{2}=\frac{5}{(x+2)^{2}}+\frac{11}{4}
$$

$V>0$ since V can never be O
Also when $t=0, v=z$ and $\frac{d^{2} x}{d t^{2}}<0 \Rightarrow$ decreasing

$$
\therefore V=\sqrt{\frac{5}{(x+2)^{2}}+\frac{11}{4}}
$$

The most common error was to differentiate the given function in terms of t .

Half a mark was deducted if no statement about sign of v was included.

Solutions Q13 X1 THSC 2015
Average mark: 11.31/15
(a)

$F B \perp D F$ (radius 1 tangent at point of contact)

$$
\begin{aligned}
& D B^{2}=F B^{2}+D F^{2} \text { (Pythagoras' Theorem) } \\
& \therefore 9^{2}=3^{2}+D F^{2} \\
& \therefore D F^{2}=72 \\
& \therefore D F=6 \sqrt{2}
\end{aligned}
$$

$E C \perp D E$ ($D C$ is a diameter

$$
\begin{aligned}
& \therefore \angle D E C=90^{\circ} \text {, angle } \\
& \text { in a semicircle) }
\end{aligned}
$$

$$
\therefore \triangle D B F \text { III } \triangle D C E \text { (equiangular) }
$$

$$
\text { as }<D \text { is common }
$$

$$
\angle D F B=\angle D E C=90^{\circ}
$$

(as indicated above)

$$
\begin{aligned}
& \therefore \frac{D E}{D F}=\frac{D C}{C B} \quad \begin{array}{c}
\text { (corresponding } \\
\text { sides in similar } \\
\text { triangles) }
\end{array} \\
& \therefore \frac{D E}{6 \sqrt{2}}= \frac{12}{9} \\
& \therefore D E= \frac{12 \times 6 \sqrt{2}}{9} \\
&= 8 \sqrt{2}
\end{aligned}
$$

There seemed to be a reluctance to give reason's for geometrical conclusions

0	0.5	1	1.5	2	2.5	3	3.5	4	Mean
7	6	11	14	25	8	20	22	49	2.70

(b) (i)

$$
\begin{align*}
& k!+k \times k! \\
= & k!(1+k) \\
= & (k+1)! \tag{1}
\end{align*}
$$

Done well although some stopped at $k!(1+k)$

0	0.5	1	Mean
6	18	138	0.91

(ii) $S(n) \equiv 1 \times 1!+2 \times 2!+\ldots+n \times n!=(n+1)!-1$

Show $S(1)$ is true
ie $1 \times 1!=2!-1$

$$
\begin{aligned}
\text { CHS } & =1 \\
\text { RHS } & =2-1 \\
& =1
\end{aligned}
$$

$$
\therefore S(1) \text { is true }
$$

Assume $S(k)$ is true
ie $|\times|!+2 \times 2!+\ldots+k \times k!=(k+1)!-1$
Show $S(k+1)$ is true

$$
\begin{aligned}
& \text { Show } S(k+1) \text { is } \\
& \text { i.e. } \mid \times 1!+2 \times 2!+\cdots+k \times k!+(k+1) \times(k+1)! \\
& =(k+2)!-1
\end{aligned}
$$

$$
\begin{aligned}
\text { LHS } & =(k+1)!-1+(k+1) \times(k+1)^{!} \\
& =(k+1)!(1+k+1)-1 \\
& =(k+1)!(k+2)-1 \\
& =(k+2)!-1 \\
& =\text { RUS }
\end{aligned}
$$

\therefore If $S(k)$ is true, $S(k+1)$ is true
$S(1)$ is true and, if $S(k)$ is ivan, $S(k+1)$ is true
\therefore By the process of Mathematical Indirection, $S(n)$ is true for all integral $n \geqslant 1$.

Most students demonstrated an understanding of the process of mathematical Induction. However, many statements were sloppy, For example, "Assume $h=k$ " rather then "Assume the statement is true if $n=k^{\prime \prime}$ or, having defined the statement as $S(n)$ as above, "Assume that $S(k)$ is true". Many concluding statements ware also sloppy.

0	0.5	1	1.5	2	2.5	3	Mean
2	8	2	3	0	4	143	2.77

(c) (i) If $x=3+3 \sin \theta$,

$$
d x=3 \cos \theta
$$

and $\sin \theta=\frac{x-3}{3}$.

$$
\begin{aligned}
& \int \sqrt{x(6-x)} d x \\
= & \int \sqrt{(3+3 \sin \theta)(6-3-3 \sin \theta)} \cdot 3 \cos \theta d \theta \\
= & \int 3 \sqrt{\left(1-\sin ^{2} \theta\right)} \cdot 3 \cos \theta d \theta \\
= & 9 \int \cos ^{2} \theta d \theta
\end{aligned}
$$

NOTE: ORIGINAL INTEGRAL is Positive

$$
=9 \int \frac{\cos ^{2} \theta+1}{2} d \theta
$$

$$
\begin{aligned}
& =\frac{9}{2}\left[\frac{\sin 2 \theta}{2}+\theta\right]+c \\
& =\frac{9}{2}[\sin \theta \cos \theta+\theta]+c \\
& =\frac{9}{2}\left[\frac{x-3}{3} \sqrt{1-\frac{(x-3)^{2}}{3}}+\sin ^{-1} \frac{x-3}{3}\right]+c \\
& =\frac{9}{2}\left[\frac{x-3}{3} \frac{\sqrt{6 x-x^{2}}}{3}+\sin ^{-1} \frac{x-3}{3}\right]+c \\
& =\frac{1}{2}\left[(x-3) \sqrt{x(6-x)}+9 \sin ^{-1} \frac{x-3}{3}\right]+c
\end{aligned}
$$

Many students found their integration challenging. Some left the integral at the form $\frac{9}{2}[\sin \theta \cos \theta+\theta]+c$, or equivalent rather than returning to an expression in terms of x

0	0.5	1	1.5	2	2.5	3	3.5	4	Mean
3	5	11	4	20	15	25	24	55	2.93

(ii)

$$
\begin{align*}
V & =\pi \int_{0}^{6}(\sqrt[4]{x(6-x)})^{2} d x \\
& =\pi \int_{0}^{6} \sqrt{x(6-x)} d x \\
& =\pi \times \frac{1}{2}\left[(x-3) \sqrt{x(6-x)}+9 \sin ^{-1}\left(\frac{x-3}{3}\right)\right]_{0}^{6} \\
& =\frac{\pi}{2}\left\{\left[9 \sin ^{-1} 1\right]-\left[9 \sin ^{-1}(-1)\right]\right\} \\
& =\frac{\pi}{2}\left\{9 \cdot \frac{\pi}{2}-9\left(-\frac{\pi}{2}\right)\right\} \\
& =\frac{9 \pi^{2}}{2} \tag{3}
\end{align*}
$$

Dost wto progressed through t
(c) (i) found the appropriate volume.

0	0.5	1	1.5	2	2.5	3	Mean
15	10	21	4	24	23	65	2.05

$14(a)$

$$
\begin{aligned}
& \left|\frac{d V}{d t}=\frac{2 \pi}{5}\right| \text { (yrien) } \\
& S=\pi r^{2} \\
& V=\frac{1}{3} \pi r^{2} h . \\
& \left.\therefore \frac{d S}{d r}=2 \pi r \right\rvert\, \\
& d \frac{h}{10}=\frac{r}{8} \quad \text { (Siminhairl) } \\
& \therefore V=\frac{5}{12} \pi r^{3} \\
& \left.\frac{d V}{d r}=\frac{5}{4} \pi r^{2} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
\text { nawdS } & =\frac{d S}{d t} \times \frac{d r}{d v} \times \frac{d V}{a t} \\
& =2 \pi r \times \frac{4}{5 \pi r^{2}} \times \frac{2 \pi}{5} \\
& =\frac{16 \pi}{2 i r} \quad \text { when } h=4 \\
& =\frac{16}{21} \times \pi \times \frac{5}{16} \\
& =\frac{\pi}{5} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

COMMRNE pust partienlodysule das. smany students treated h as a contant in the differentiatioi $\% \frac{d V}{d r}$.
(b)
(1). let $y=0$.

$$
\begin{aligned}
100-5 t^{2} & =0 \\
5 t^{2} & =100 \\
t^{2} & =20 \\
t & =2 \sqrt{3} \text { recs. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\dot{x}=30 \quad \dot{y} & =-10 t \\
& =-20 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
V^{2} & =900+2000 \\
& =\sqrt{2900} \\
V & =10 \sqrt{29} m / 10 \\
\mid \theta & =\tan ^{-1} \frac{2 \sqrt{3}}{3}
\end{aligned}
$$

CoMMiset T Comaron enurs war At let $y=-100$. Yearally wull dore.
(c).

$$
\begin{aligned}
V M & =2 a \sin 60^{\circ} \\
& =2 a \frac{\sqrt{3}}{2} \\
V M & =a \sqrt{3} .
\end{aligned}
$$

$$
\begin{aligned}
\cos \theta & =C M^{2}+V M^{2}-V c^{2} \\
& =\frac{8 a^{2}+3 a^{2}-5 a^{2}}{2 \times a \sqrt{3} \times 2 \sqrt{2} a} \\
& =\frac{6 a^{2}}{4 \sqrt{6} a^{2}} \\
\therefore \mid \cos \theta & \left.=\frac{\sqrt{6}}{4} \right\rvert\,
\end{aligned}
$$

commert Unite suec done.
(II) Vo $\quad V M \sin \theta$.

$$
\begin{aligned}
& =a \sqrt{3} \times \frac{\sqrt{10}}{4} \\
& =\frac{a \sqrt{30}}{4}
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{2} \theta & =1-\frac{6}{16} \\
& =\frac{10}{16} \\
\therefore 2 \theta & =\frac{\sqrt{10}}{7}
\end{aligned}
$$

COMMKNT.
In ary stirdents unatk to pind $\sin \theta$.
(III.)

$$
\begin{aligned}
\cos V \hat{B} C & =\frac{(2 a)^{2}+(3 a)^{2}-(\sqrt{5}-a)^{2}}{2 \times 2 a+3 a} \\
& =\frac{4 a^{\alpha}+9 a^{2}-5 a^{2}}{12 a^{\alpha}} \\
& =\frac{2}{3} \\
\therefore V P^{\alpha} & =V B^{\alpha}+(r a)^{2}-2 \times 2 a \times r a \times \frac{2}{3} \\
& =4 a^{2}+r^{2} a^{2}-\frac{8 r a^{2}}{3} \\
& =\frac{a^{2}}{3}\left[12+3 r^{2}-8-r\right]
\end{aligned}
$$

Commint Keny few stridents svere ableth oftexin this arrwer.
Thecrmon eces was to ascome. $\Delta \operatorname{COP}$ III $\triangle C M B$. Rence finaling an expuecsai pre or then urigg P_{y} ctagison th rhtomin $V \rho^{2}$. (This was sut queen mach)
$(1 \sqrt{ })$

$$
\begin{aligned}
& V p=a \sqrt{\frac{12+3 r^{2}-8 r^{2}}{3}} \\
& \therefore \operatorname{ain} \phi=\frac{\frac{a \sqrt{30}}{4}}{a \sqrt{\frac{12+3 r^{2}-8 r}{3}}} \\
& \\
& =\frac{\sqrt{90}}{4 \sqrt{12-3 r^{2}-8 r}} \\
&
\end{aligned}
$$

Commaint-
moct aftained a mant, allewing

隹 fereoics evew in vo.
(v). Beet dare hy recogaicing
that sin ϕ is maximined by $3 r^{2}-8 s+12$ being a simemin this occuen suthen $6 r-8=0$

$$
r=\psi / 3 .
$$

$$
\text { i. } \begin{aligned}
\sin \phi & =\sqrt{\frac{45}{8\left(3 r^{2}-8+12\right)}} \text { where } \\
& =\sqrt{\frac{4-\times 9}{8 \times 60}} \\
& =\frac{3 \sqrt{6}}{8} \\
\therefore \mid \phi & =\sin ^{-1} \frac{3 \sqrt{6}}{8}
\end{aligned}
$$

Commint
studects srue able it oftani a mauk or troto. snary masimiced sin ϕ by cacculus. Hew saw the eacier allwach.

