

20.7 SYDNEY BOYS HIGH SCHOOL trial higher school certificate examination

Mathematics Extension I

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided with this paper
- Leave your answers in the simplest exact form, unless otherwise stated
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11-14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I
 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II
 Pages 6-12

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Examiner: E.C.

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 In what ratio does the point $M(4,5)$ divide the interval $P Q$, where P and Q are $(1,2)$ and $(3,4)$ respectively?
(A) $2: 1$
(B) $1: 2$
(C) $-1: 3$
(D) $3:-1$

2 A particle moves in simple harmonic motion on a horizontal line and its acceleration is

$$
\frac{d^{2} x}{d t^{2}}=36-4 x
$$

where x is the displacement after t seconds.
Where is the centre of motion?
(A) $x=-2$
(B) $x=2$
(C) $x=-9$
(D) $x=9$

3 What is the value of $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\tan 10 x}$?
(A) 3
(B) 10
(C) $\frac{3}{10}$
(D) $\frac{10}{3}$

4 Which of the following is an equivalent expression for $\sin \left(\tan ^{-1} x\right)$?
(A) $\frac{x}{\sqrt{1-x^{2}}}$
(B) $\frac{x}{\sqrt{1+x^{2}}}$
(C) $\frac{1}{\sqrt{1-x^{2}}}$
(D) $\frac{1}{\sqrt{1+x^{2}}}$

5 The velocity, v, of a particle moving in a straight line at position x is given by $v=2 e^{-2 x}$. Initially the particle is at the origin. What is the acceleration of the particle at position x ?
(A) $a=-4 e^{-2 x}$
(B) $a=-16 e^{-2 x}$
(C) $a=-4 e^{-4 x}$
(D) $\quad a=-8 e^{-4 x}$
$6 \quad$ Let α, β and γ be the roots of $x^{3}+p x^{2}+q=0$.
Express $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}$ in terms of p and q.
(A) $p q$
(B) $\quad-p q$
(C) $-\frac{p}{q}$
(D) $\frac{p}{q}$

7 If $f(x)=\frac{3+e^{2 x}}{5}$, which of the following is $f^{-1}(x)$?
(A) $\ln (5 x-3)$
(B) $\frac{1}{2} \ln (5 x-3)$
(C) $\ln 5 x-\ln 3$
(D) $\frac{1}{2}(\ln 5 x-\ln 3)$

8 Tom, Jerry and five other people get on a bus one at a time.
How many ways can the seven get on the bus if Tom gets on the bus after Jerry?
(A) 21
(B) 120
(C) 2520
(D) 5040
$9 \quad$ What is a general solution of $\cos 2 \theta=\frac{1}{\sqrt{2}}$?
(A) $\quad \theta=\frac{\pi}{8}+n \pi$ or $\theta=\frac{7 \pi}{8}+n \pi$, for $n \in \mathbb{Z}$
(B) $\quad \theta=\frac{\pi}{8}+2 n \pi$ or $\theta=\frac{7 \pi}{8}+2 n \pi$, for $n \in \mathbb{Z}$
(C) $\theta=\frac{\pi}{4}+n \pi$ or $\theta=\frac{3 \pi}{4}+n \pi$, for $n \in \mathbb{Z}$
(D) $\quad \theta=\frac{\pi}{4}+2 n \pi$ or $\theta=\frac{3 \pi}{4}+2 n \pi$, for $n \in \mathbb{Z}$

10 The size of a population at time t is given by $P(t)=100+200 e^{-0.1 t}$. What is the time for the population size to fall to half its initial value?
(A) $10 \log _{e} 2$
(B) $10 \log _{e} 3$
(C) $10 \log _{e} 4$
(D) $10 \log _{e} 5$

Section II

60 marks
Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Solve $\frac{x+1}{x-2} \geq 1$
(b) Find
(i) $\int \frac{2}{\sqrt{1-9 x^{2}}} d x$
(ii) $\quad \int \sin ^{2}\left(\frac{x}{2}\right) d x$
(c) Using the substitution $u=x+2$, find $\int \frac{x}{3} \sqrt{x+2} d x$.
(d) Sketch the graph of $y=f(x)$, where $f(x)=\frac{1}{2} \cos ^{-1}(1-3 x)$.
(e) (i) Show that $f(x)=e^{x}-x^{3}+1$ has a zero between $x=4.4$ and $x=4.6$
(ii) Starting at $x=4.5$, find an approximation for the zero in part (i) using Newton's method.
Express this approximation correct to 2 decimal places.
(f) Prove $\tan ^{-1} \frac{2}{3}+\cos ^{-1} \frac{2}{\sqrt{5}}=\tan ^{-1} \frac{7}{4}$

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) A particle with displacement x and velocity v, is moving in simple harmonic motion such that its acceleration, \ddot{x}, is given by $\ddot{x}=-12 x$.

Initially the particle it is at rest at $x=-4$.
(i) State the period of the motion
(ii) Show that $v^{2}=12\left(16-x^{2}\right)$
(iii) Find x as a function of time t.

1

Two circles C_{1} and C_{2} touch at T. The line $A E$ passes through O, the centre of C_{2}, and through T.
The point A lies on C_{2} and E lies on C_{1}.
The line $A B$ is a tangent to C_{2} at A, D lies on C_{1} and $B E$ passes through D.
The radius of C_{1} is R and the radius of C_{2} is r.
(i) Find the size of $\angle E D T$, giving reasons.
(ii) If $D E=2 r$ find an expression for the length of $E B$ in terms of r and R.

Question 12 (continued)
(c) (i) Show that the equation of the normal at $P\left(a t^{2}, 2 a t\right)$ on the parabola
$y^{2}=4 a x$ is given by $t x+y=2 a t+a t^{3}$.
(ii) The normal intersects the x-axis at point Q.

Find the coordinates coordinates of Q and hence find the coordinates of R, where R is the midpoint of $P Q$.
(iii) Hence find the Cartesian equation of the locus of R. 2

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Sketch the curve $y=x+\frac{4}{x}$, showing clearly all the stationary points and asymptotes. Hence find the values of k such that the equation $x+\frac{4}{x}=k$ has no real roots.
(b) How many different arrangements can be made using all the letters of PARALLEL?
(c) Find the obtuse angle between the lines $3 x-y+5=0$ and $2 x+3 y-1=0$.

Give your answer correct to the nearest degree.
(d) Prove by mathematical induction that

$$
n \times 1+(n-1) \times 2+(n-2) \times 3+\ldots+2 \times(n-1)+1 \times n=\frac{n}{6}(n+1)(n+2)
$$

for positive integers n.
(e) A particle moves in a straight line so that its velocity $v \mathrm{~m} / \mathrm{s}$ at a position x metres from the origin is given by

$$
v=9+4 x^{2} .
$$

It starts at $x=0$.
(i) Find its acceleration, \ddot{x}, as a function of its displacement x.
(ii) Express its displacement x, as a function of time t.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Differentiate $\cos ^{-1}(\sin x)$ with respect to x.
(b)

In the diagram above, $A B$ is a fixed diameter of a circle centre O, radius 10 cm . $A B$ is produced to C such that $B C=20 \mathrm{~cm}$.
X and Y lie on the circle such that $C X Y$ is a straight line.
Also, $\angle B O X=\varphi$ and $\angle A C X=\theta$.
X is free to move around the circle such that $\frac{d \varphi}{d t}=2 \pi$ radians per second.
(i) Show that the area, A, of the shaded region is given by

$$
A=50[2 \theta+\varphi+\sin 2(\theta+\varphi)+3 \sin \varphi]
$$

(ii) Find the maximum area of the shaded region.

Leave your answer correct to 1 decimal place.
[Note: Calculus is not required]
(iii) Determine the rate of change of $\angle A C X$ at the instant when $C X$ is a tangent to the circle.

Question 14 (continued)
(c) A particle is projected from the top of a wall of height h with a speed u at an angle α to the horizontal, where $0^{\circ}<\alpha<90^{\circ}$.
It strikes the horizontal ground at a point P which is R metres from the wall.

You may assume that the trajectory of the particle is given by

$$
y=x \tan \alpha-\frac{g x^{2}\left(1+\tan ^{2} \alpha\right)}{2 u^{2}} \text { (Do NOT prove) }
$$

(i) If $u=\sqrt{\frac{4 g h}{3}}$ and $R=2 h$, find the two possible values of α.
(ii) If $u=\sqrt{2 g h}$, find the maximum value of R in terms of h and also find the corresponding value of α.
[Hint: Form a quadratic equation in terms of $\tan \alpha$.]

2017 sYDNEY BOYS HIGH SCHOOL

Mathematics Extension I

Suggested Solutions

MC Answers

Q1	D
Q2	D
Q3	C
Q4	B
Q5	D
Q6	D
Q7	B
Q8	C
Q9	A
Q10	C

X1 Y12 Assessment THSC 2017 Multiple choice solutions

Mean (out of 10): 8.83
1.

Extarmel division
$\therefore 3:-1$ or $=3: 1$
D

A	3
B	0
C	12
D	149

2. $\ddot{x}=-4(9-x)$
\therefore Contra of motion is $x=9$

A	1
B	3
C	3
D	157

3. $\lim _{x \rightarrow \infty} \frac{\sin 3 x}{\tan 10 x}$
$=\lim _{3 x \rightarrow 0} \frac{\sin 3 x}{3 x} \lim _{10 x \rightarrow 0} \frac{10 x}{\tan 10 x} \lim _{x \rightarrow 0} \frac{3 x}{10 x}$
$=1 \cdot 1 \cdot \frac{3}{10}$
$=\frac{3}{10} \quad c$

A	3
B	0
C	152
D	9

4. $\sin \left(\tan ^{-1} x\right)$ $=\frac{x}{\sqrt{1+x^{2}}}$

B 1

A	2
B	154
C	3
D	5

$$
\begin{aligned}
r & =2 e^{-2 x} \\
\frac{d r}{d x} & =-4 e^{-2 x} \\
v \frac{d r}{x} & =-8 a^{-4 x}
\end{aligned}
$$

$$
\therefore a=-8 e^{-4 x}
$$

6. $x^{3}+p x^{2}+q=0$

$$
\begin{aligned}
& \alpha+\beta+\gamma=-p \\
& \alpha \beta+\beta \gamma+\gamma \gamma=0 \\
& \alpha \beta \gamma=-q \\
& \therefore \frac{1}{\alpha \beta}+\frac{1}{\gamma \gamma}+\frac{1}{\gamma \alpha} \\
&= \frac{\gamma+\alpha+\beta}{\alpha \beta \gamma} \\
&= \frac{-p}{=q} \\
&= \frac{p}{q}
\end{aligned}
$$

(D)

A	0
B	1
C	24
D	138

7. $f(x)=\frac{3+e^{2 x}}{5}$

For inverter $x=\frac{3+e^{2 y}}{5}$

$$
\begin{aligned}
5 x-3 & =e^{2 y} \\
\therefore \quad 2 y & =\ln (5 x-3) \\
y & =\frac{\ln (5 x-3)}{2}
\end{aligned}
$$

A	0
B	160
C	0
D	3

8. Tom gets on the bus after Jerry half the time.
7 people getting on the bus $\Rightarrow T!=5040$ arrangements.
\therefore Tom gets on after-Terry in
2520 arrangements 2520 arrangements

A	1
B	9
C	148
D	5

9. $\quad \cos 2 \theta=\frac{1}{\sqrt{2}}$

$$
\begin{align*}
& \therefore 2 \theta=\frac{\pi}{4}+2 n \pi \text { or }-\frac{\pi}{4}+2 n \pi \\
& \therefore \theta=\frac{\pi}{8}+n \pi \quad \text { OR }-\frac{\pi}{8}+n \pi \tag{A}
\end{align*}
$$

A	139
B	18
C	3
D	3

10. $\quad P(t)=100+200 e^{-0.1 t}$

$$
\begin{aligned}
\text { Instal size } & =100+200 \\
& =300
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 150=100+200 e^{-0.1 t} \\
&-0.1 t
\end{aligned}
$$

$$
\therefore 50=\lambda 00 e^{-0.1 t}
$$

$$
\therefore \frac{50}{200}=a-0.1 t
$$

$$
\therefore 4=e^{0.1 \cdot t}
$$

$$
\therefore \ln 4=0.1 t
$$

$$
\therefore t=10 \operatorname{sen} 4
$$

(c)

a) | $\frac{x+1}{x-2}$ | ≥ 1 |
| ---: | :--- |
| $\frac{x}{(x-2)^{2}}$ | $\geq(x-2)^{2}$ |
| $(x+1)(x-2)$ | $\geqslant(x-2)^{2}$ |
| $x^{2}-x-2 \geqslant x^{2}-4 x+4$ | |
| $3 x \geqslant 6$ | $x \geqslant 2$ |

Marker's Comments

Most candidates were able to solve the inequality correctly. However, candidates lost a mark if they did not consider the denominator in the original inequation. Candidates whom wrote $x \neq 2$ in their first line of working were less likely to make the error of $x \geq 2$.

Marker's Comments

Most candidates did well in this question; however, a few did not have a denominator of three in their final answer.

(11) | | $\int \sin ^{2}\left(\frac{x}{2}\right) d x$ |
| ---: | :--- |
| $=$ | $2 \int \sin ^{2} u d u$ |
| $=$ | let $u=\frac{x}{2}$ |
| $=$ | $\int \frac{1-\cos 2 u}{2} d u$ |
| $=$ | $\frac{d u}{d x}=\frac{1}{2}$ |
| $=$ | $\frac{1-\cos 2 u d u=d x}{2}-\frac{1}{2} \sin 2 u+C$ |

Marker's Comments

Most candidates did well in this question; however, a few silly errors were made in this question especially with the substitution of $u=2 x$ or equivalent.

Marker's Comments

- One mark is given for the right shape of the graph and one mark for the correct domain and range.
- A significant number of candidates lost one mark, due to not satisfying one of the criteria above.
$f(x)$ is a continuous function
e) (1) $f(x)=e^{x}-x^{3}+1$
$f(4.4)=e^{4 \cdot 4}-(4.4)^{3}+1$
$=-2.733131 \ldots<0$
$f(4.6)=e^{4.6}-(4.6)^{3}+1$
$=3.148315692>0$
Since there is a sign change; a zero exist between $x=4.4$ and $x=4.6$.

Marker's Comments

- Candidates should mention $f(x)$ is a continuous function as well, however no mark was penalised.

Marker's Comments

- Candidates should substitute $x=$ 4.5 into Newton's Method rather state the answer after writing the first line.
f) let $\alpha=\operatorname{Tan}^{-1} \frac{2}{3} \quad$ let $\left.\beta=\cos ^{-1} \frac{2}{\sqrt{5}}\right]$
$\therefore \quad \therefore+B=\tan ^{-17} / 4$

Take tan of both sides
$\operatorname{Tan}(\alpha+B)=\operatorname{Tan}\left(\operatorname{Tan}^{-1} 7 / 4\right)$

$$
=7 / 4
$$

$$
\begin{aligned}
L H S & =\operatorname{Tan}(\alpha+\beta) \\
& =\frac{\operatorname{Tan} \alpha+\operatorname{Tan} \beta}{1-\operatorname{Tan} \alpha \operatorname{Tan} \beta} \\
& =\frac{2 / 3+1 / 2}{1-2 / 3 \times 1 / 2}
\end{aligned}
$$

Solutions and comments.

Question $12(a)$
(i)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=-u^{2} x \\
&=-12 x \\
& u^{2}=12 \Rightarrow n=2 \sqrt{3} \\
& T=\frac{2 \pi}{n}=\frac{\pi}{\sqrt{3}}=\frac{\sqrt{3} \pi}{3}
\end{aligned}
$$

comment:
Answered Very well
(ii) $\frac{1}{2} v^{2}=-12 \int x d x$

$$
=-6 x^{2}+c
$$

When $x=-4, v=0$

$$
\begin{aligned}
& \angle=96 \\
& \therefore \frac{1}{2} r^{2}=-6 x^{2}+96 \\
& r^{2}=12\left(16-k^{2}\right)
\end{aligned}
$$

Comment:
Somestudents made too significant a jump from

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} r^{2}\right)=-12 x+0 \\
& v^{2}=12\left(16-x^{2}\right) \\
& \text { they jus quote qua } \\
& \text { the formula } \\
& r^{2}=u^{2}\left(a^{2}-x^{2}\right) .
\end{aligned}
$$

Marks were awarded as follows.

- istmark for obtaining $\frac{1}{2} v^{2}=-6 x^{2}+c$ OR correct substitution of initial conditions into incorrect function
- 2ud mark for corract answer'
(iii) since the motion starts at the negative end of the path of ur ion we use the general form

$$
x=-a \cos n t^{\prime}
$$

The particle is stationary at $x=-4$
Since $\ddot{i}=-12 x$ the centre of $m_{0}+10 \mathrm{n}$ is at $x=0$ So $a=4$.

$$
\therefore \quad x=-4 \cos (2 \sqrt{3} t)
$$

comment
Marks were a warded as follow.

- $1 / 2$ mark for finding a and n correctly
OR girl ing correct general form for re wet teasoung like coo. $m=x \Rightarrow a=4$

$4 \sin \left[-\left(\frac{\pi}{2}-2 \sqrt{3}+1\right]=x\right.$
$\sin (-x)=-\sin x$
and $\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha$
$\therefore x=-4 \sin \left(\frac{\pi}{2}-2 \sqrt{3 x}\right.$
$1 \cdot \dot{e} x=-4 \cos 2 \sqrt{3} t$
- or
equiraleut merit
$(b)<1$ and c_{2} touch at T, AE passes
(1) through 0 ; the centre of C_{2}, and through, then AE also passes through the centre of C_{1}. So $T E$ is a diameter of c_{1}
(Wee ncircles touch, the line through the centres passos through the point of contact.)

$$
\therefore \angle E D T=90^{\circ}
$$

(Augles in a sem-Circk comment.

Majority of students ans weed this poorly with lucortect reasoung
Most could not Substantiate the argument using the ir own words of reasons.

- quite a few students drew a common tangent ad proved $D T A B$

Is a cyclic quad. we thou proving
$\angle O A B=90^{\circ}$ first ($+g+1$ radium at the contact.

$$
D E=2 r, E T=2 R
$$

$$
a d E A=2 R+2 r
$$

$$
\angle E A B=90^{\circ}
$$

CThe tat to a circle is per p endicular to the radius a rawer to the point of contact).

In $\Delta S_{S A B E}$ ad $D T^{x}$
$\angle E D T=\angle E A B=90^{\circ}$
(from part ci) ad
from above)
$\angle D E T$ is common $\angle E T D=\angle E B A$
Angles in a triangle \therefore add to give 180°)
$\therefore \triangle A B E \| \triangle D T E$
Coquiangular),

$$
\therefore \frac{E B}{E T}=\frac{E A}{E D}
$$

$$
E_{B}=2 R\left(\frac{2 R+2 r}{2 r}\right)
$$

$$
=\frac{2 R(R+r)}{r}
$$

Comment r
This question caused a lot of grief for students

Quite a few $d_{1} d$ mot stated proper reasoung. and marks were lost as a result

Marks were a wardod as follow r
lIst mark
Stating that $\angle E A \neq$ $=90^{\circ}$ (with proper)
teasoung I
End mark
Showing $\triangle A B E-U \backslash D \mid i$
With proper reasong
sud mark
Correct answor
including show wag that $\triangle A B E \|$ A DE
(c)

$$
x=a t^{2}, y=2 a t
$$

$$
\begin{aligned}
\text { (i) } \frac{d x}{d t} & =2 a t, \\
\frac{d y}{d t} & =2 a . \\
\therefore \frac{d y}{d x} & =\frac{d y}{d t} \times \frac{d t}{d x} \\
& =\frac{1}{t} \\
\therefore m_{T} & =\frac{1}{t} \\
m_{N} & =-t \\
y-2 a t & =-t\left(x-a t^{2}\right) \\
\therefore t x+y & =2 a t+a x^{2}
\end{aligned}
$$

Z marks Correct
Answer
1 mark obtaimg the correct grad lent of the hor ma

Comment
(i) Answered very Well by cohort. Earless mistake was make by using mT instead

(ii) $f x=2 a t^{\prime}+a t^{3}$
$\therefore x=a\left(2+t^{2}\right)$
$\therefore Q\left[a\left(2+t^{2}\right), 0\right]$
$R=\left(\frac{a\left(2+t^{2}\right)+a t^{2}}{2}, \frac{0+2 a t}{2}\right)$ $\therefore R=\left(a\left(t+x^{2}\right), a t\right)$ Lmatks Corract answer I mark obtaining one correct coordinate of $R, \circ R$ find the correct corirdinates of Q.

$$
\begin{aligned}
& x=a\left(1+t^{2}\right) \\
& y=a t \\
& x=a\left(1+\frac{y^{2}}{a^{2}}\right) \\
& t=\frac{y}{a} \\
& \frac{y^{2}}{a^{2}}=\frac{x}{a}-1 \\
& y^{2}=a x-a^{2} \\
& \therefore y^{2}=a(x-x)
\end{aligned}
$$

2 marks correct answer.
1 mark: Correct substitution of

$$
\begin{aligned}
& A=y / a \text { into } \\
& x=a\left(1+t^{2}\right)
\end{aligned}
$$

$-Q 13$
$(x) \quad y=x+\frac{4}{x}$
Intercept $x \neq 0$
If $y=0$,
$x+\frac{4}{x}=0$
$-x^{2}+4=0$
No solus.
Stat ip t
\therefore no interests.

$$
\begin{aligned}
& y^{\prime}=1-\frac{4}{y^{\prime}}=0 \text { for sit } p^{2} \\
& \Rightarrow \quad 1-\frac{4}{x^{2}}=0 \\
& \frac{4}{x^{2}}=1 \\
& x^{2}=4
\end{aligned}
$$

St pit at $\left(-\frac{x= \pm 2}{-4}\right)$ and $(2,4)$
Ty $y^{\prime \prime}=\frac{8}{x^{3}}$

$$
\begin{aligned}
& y^{\prime \prime}=\frac{8}{x^{3}} \\
& y^{\prime \prime}(-2)=-1<0 \Rightarrow \max \text { at }(-2,-4) \\
& y^{\prime \prime}(2)=1>0 \Rightarrow \min \operatorname{at}(2,4)
\end{aligned}
$$

Note Vertical Asymptote at $x=0$
$3(a)($ cont $)$
As $x \rightarrow \infty, y \rightarrow \infty$ along the line $y=x$
$x \rightarrow-\infty, y \rightarrow-\infty .11$ " " $y=x$

Values of k for which no solution

$$
\begin{aligned}
& y=x+\frac{4}{x} \\
& y=k
\end{aligned}
$$

$$
\text { or } y=k
$$ or $y=x$.

$$
\begin{aligned}
& \therefore \text { If } x+\frac{4}{x}=k \\
& \Rightarrow x^{2}+4=k x \\
& x^{2}-k x+4=0 \\
&
\end{aligned}
$$

No sold if $k^{2}-16<0$

$$
\begin{aligned}
& k^{2}<16 \\
\Rightarrow & -4<k<4 \Rightarrow \text { no real rod b }
\end{aligned}
$$

This question was done well. For values of K students needed to realise that k is simply the-same as y. 1 mark was-given for turning points, 1 mark for-sketch-and 1 mark for values of k.
(b) PARALLEL

Done well. 1 mark for numerator and 1 mark for denominator.

HS ME 1 q13(b)
(d) Prove by mathematical induction that

$$
n \times 1+(n-1) \times 2+(n-2) \times 3+\ldots+2 \times(n-1)+1 \times n=\frac{n}{6}(n+1)(n+2)
$$

for positive integers n.

Test $n=1$:

$$
\begin{aligned}
& \text { LHS }=1 \times 1=1 \\
& \text { RMS }=\frac{1}{6}(1+1)(1+2)=1
\end{aligned}
$$

\therefore true for $n=1$

Assume true for $n=k$
ie. $k \times 1+(k-1) \times 2+(k-2) \times 3+\ldots+2 \times(k-1)+1 \times k=\frac{k}{6}(k+1)(k+2)$
Need to prove true for $n=k+1$:
ie. $(k+1) \times 1+k \times 2+(k-1) \times 3+\ldots+2 \times k+1 \times(k+1)=\frac{k+1}{6}(k+2)(k+3)$
Method 1:
Consider the LHS of the assumption.
If you add 1 to the first term, 2 to the $2^{\text {nd }}$ term and continuing in this fashion so that you add k to the last term then an extra $k+1$, then you get the LHS of the expression that needs to be proved
\therefore add $1+2+\ldots+k+k+1$ to the RHS of the assumption

$$
\begin{aligned}
\frac{k}{6}(k+1)(k+2)+1+2+\ldots+k+1 & =\frac{k}{6}(k+1)(k+2)+\frac{(k+1)(k+2)}{2} \\
& =\frac{k}{6}(k+1)(k+2)+\frac{3(k+1)(k+2)}{6} \\
& =\frac{(k+1)(k+2)}{6} \times(k+3) \\
& =\frac{(k+1)(k+2)(k+3)}{6}
\end{aligned}
$$

Done well. 1 mark for acute angle and 1 mark for obtuse angle.
\qquad
\qquad
\qquad
\qquad
\qquad
This is the RHS of the expression that needs to be proved.
So assuming true for $n=k$ means that the statement is true for $n=k+1$.

Method 2:
Let $S_{k}=k \times 1+(\dot{k}-1) \times 2+(k-2) \times 3+\ldots+2 \times(k-1)+1 \times k$
$\therefore S_{k+1}=(k+1) \times 1+k \times 2+(k-1) \times 3+\ldots+2 \times k+1 \times(k+1)$

$S_{k+1}=$	$(k+1) \times 1$	$k \times 2$	$(k-1) \times 3$	\ldots	$2 \times k$
$S_{k}=$	$k \times 1$	$(k-1) \times 2$	\ldots	$2 \times(k-1)$	$1 \times k$

Consider $S_{k+1}-S_{k}$:

$$
\begin{aligned}
S_{k+1}-S_{k} & =(k+1) \times 1+k+(k-1)+\ldots+2+1 \\
& =\frac{(k+1)(k+2)}{2} \\
\therefore S_{k+1}= & S_{k}+\frac{(k+1)(k+2)}{2} \\
\therefore S_{k+1} & =\frac{k}{6}(k+1)(k+2)+\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

(by assumption)
This now follows the path of Method 1
Method 3

$$
\begin{aligned}
\text { LH } & =\frac{k \times 1}{}+1+\frac{(k-1) \times 2+2+(k-2) \times 3}{+}+3+\ldots \\
& =k \times 1+(k-1) \times 2+(k-2) \times 3+\ldots+1 \times k+\frac{1+2+3+\ldots+k+}{1 \frac{k+1}{}} \\
& =\frac{k}{6}(k+1)(k+2)+\frac{k+1}{2}(1+k+1) \text { fumgAP } \\
& =\frac{k+1}{6}(k+2)[k+3] \\
& =\text { RUS }
\end{aligned}
$$

Most students did not get more than 2 marks for this - these 2 marks were given fo the case $\mathrm{n}=1$ and assumption $\mathrm{n}=\mathrm{k}$. Final 2 marks were for proving true for $n=k+1$. Many students tried to fudge the answer.
$B(e) \quad v=9+4 x^{2} \quad A t x=0, v=9$.

$$
\begin{aligned}
(i) \ddot{x} & =\frac{d\left(\frac{1}{2}+2\right)}{d x} \\
& =\frac{d}{d x}\left(\frac{1}{2}\left(9+4 x^{2}\right)^{2}\right) \\
\ddot{x} & =8 x\left(9+4 x^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\Rightarrow \frac{d x}{d t}=9+4 x^{2} \\
\frac{d t}{d x}=\frac{1}{9+4 x^{2}}=\frac{1}{4}\left(\frac{1}{\frac{9}{4}+x^{2}}\right) \\
t \equiv \frac{1}{4} \times \frac{2}{3} \tan ^{-1} \frac{x}{(32)}+c \\
t=\frac{1}{6} \tan ^{-1} \frac{2 x}{3}+c \\
t=0=\frac{1}{6} \tan ^{-1} 0+c \\
A t=0 \Rightarrow c=0 \\
x t=\frac{1}{6} \tan ^{-1} \frac{2 x}{3} \Rightarrow \quad(3) \\
6 t=\tan ^{-1}\left(\frac{2 x}{3}\right) \\
\tan 6 t=\frac{2 x}{3} \\
\Rightarrow x=\frac{3}{2} \tan 6 t
\end{gathered}
$$

(a) Differentiate $\cos ^{-1}(\sin x)$ with respect to x.

$$
\begin{aligned}
& \frac{d}{d x}\left[\cos ^{-1}(\sin x)\right]=-\frac{\cos x}{\sqrt{1-\sin ^{2} x}} \\
&=-\frac{\cos x}{\sqrt{\cos ^{2} x}} \\
&=-\frac{\cos x}{|\cos x|} \\
&= \begin{cases}1 & \text { if } \cos x<0 \\
-1 & \text { if } \cos x>0\end{cases} \\
& \text { Note } \frac{d}{d x}\left[\cos ^{-1}(\sin x)\right] \text { is undefined if } \cos x=0
\end{aligned}
$$

Comment

Too many students stopped at the first line of the solutions and also many made the mistake of cancelling leaving the answer as -1 .

Question 14 (continued)

(b)

In the diagram above, $A B$ is a fixed diameter of a circle centre O, radius 10 cm .
$A B$ is produced to C such that $B C=20 \mathrm{~cm}$.
X and Y lie on the circle such that $C X Y$ is a straight line.
Also, $\angle B O X-\varphi$ and $\angle A C X-\theta$.
X is free to move around the circle such that $\frac{d \varphi}{d t}=2 \pi$ radians per second.
(i) Show that the area, A, of the shaded region is given by

$$
A=50[2 \theta+\varphi+\sin 2(\theta+\varphi)+3 \sin \varphi]
$$

$$
\begin{aligned}
& \angle Y X O=\varphi+\theta \\
& \angle Y O X=\pi-2(\varphi+\theta) \\
& \angle Y O A=2 \theta+\varphi
\end{aligned}
$$

$$
\text { (exterior angle } \triangle O X C \text {) }
$$

$$
\text { (angle sum } \triangle O X C \text {) }
$$

$$
\text { (straight angle } \angle A O B \text {) }
$$

Comment

Generally done well, but it is a "Show that" question and so detail, which might seem obvious, was required to achieve full marks.

$$
\begin{aligned}
& \text { Area } \triangle O X C: \quad O C=O B+B C=30 \\
& \text { Area }=\frac{1}{2} \times 30 \times 10 \sin \varphi=150 \sin \varphi \\
& \text { Area } \triangle O Y X: \quad \text { Area }=\frac{1}{2} \times 10 \times 10 \times \sin [\pi-2(\theta+\varphi)] \\
& =50 \sin 2(\varphi+\theta) \\
& \text { Area sector } O Y A: \quad \text { Area }=\frac{1}{2} \times 10 \times 10 \times(2 \theta+\varphi) \\
& =50(2 \theta+\varphi) \\
& \therefore A=50[2 \theta+\varphi+\sin 2(\theta+\varphi)+3 \sin \varphi]
\end{aligned}
$$

Question 14 (continued)

(a) (ii) Find the maximum area of the shaded region.

Leave your answer correct to 1 decimal place.
[Note: Calculus is not required]

The maximum area will occur when Y and X are coincident
$\therefore Y X C$ is a tangent i.e. $\theta+\varphi=\frac{\pi}{2}$.

$$
\cos \varphi=\frac{1}{3} \Rightarrow \sin \varphi=\frac{2 \sqrt{2}}{3}
$$

$$
A=50\left[2\left(\frac{\pi}{2}-\varphi\right)+\varphi+\sin \pi+3 \sin \varphi\right]
$$

$$
=50\left[\pi-\cos ^{-1}\left(\frac{1}{3}\right)+2 \sqrt{2}\right] u^{2}
$$

$$
\doteqdot 237.0 \mathrm{u}^{2}
$$

Comment

Generally done well, though many made the mistake of taking $\varphi=90^{\circ}$, as long as this was the only mistake they were only penalised 1 mark.
Part (iii) was not done well at all.
(iii) Determine the rate of change of $\angle A C X$ at the instant when $C X$
is a tangent to the circle.
When X is at B then $\theta=0$, as X continues anti-clockwise it increases until $Y X C$ is a tangent and then starts to decrease again after tangency.
This means that when $Y X C$ is a tangent that θ is a maximum or $\dot{\theta}=0$.
Calculus Proof: From diagram in part (i) and using the Sine rule

$$
\frac{\sin \theta}{10}=\frac{\sin (\theta+\varphi)}{30} \Rightarrow 3 \sin \theta=\sin (\theta+\varphi)
$$

Differentiating wrt $t: \quad 3 \cos \theta \times \dot{\theta}=\cos (\theta+\varphi) \times(\dot{\theta}+\dot{\varphi})$
With $\dot{\varphi}=2 \pi$ and $\theta+\varphi=\frac{\pi}{2}$ then $3 \cos \theta \times \dot{\theta}=0 \times(\dot{\theta}+2 \pi)$
$\therefore 3 \cos \theta \times \dot{\theta}=0$
$\therefore \dot{\theta}=0 \quad\left[\cos \theta=\frac{2 \sqrt{2}}{3}\right]$

Question 14 (continued)

(c) A particle is projected from the top of a wall of height h with a speed u at an angle α to the horizontal, where $0^{\circ}<\alpha<90^{\circ}$.
It strikes the horizontal ground at a point P which is R metres from the wall.

You may assume that the trajectory of the particle is given by

$$
y=x \tan \alpha-\frac{g x^{2}\left(1+\tan ^{2} \alpha\right)}{2 u^{2}}(\text { Do NOT prove })
$$

(i) If $u=\sqrt{\frac{4 g h}{3}}$ and $R=2 h$, find the two possible values of α.

Using $y=x \tan \alpha-\frac{g x^{2}\left(1+\tan ^{2} \alpha\right)}{2 u^{2}}$ and substituting $x=R=2 h, y=-h$
and $u=\sqrt{\frac{4 g h}{3}}$.
$-h=2 h \tan \alpha-\frac{g(2 h)^{2}\left(1+\tan ^{2} \alpha\right)}{2 \times \frac{4 g h}{3}}$
$-h=2 h \tan \alpha-\frac{3 h\left(1+\tan ^{2} \alpha\right)}{2} \quad[\div h(\neq 0)]$
$\therefore-2=4 \tan \alpha-3\left(1+\tan ^{2} \alpha\right)$
$\therefore 3 \tan ^{2} \alpha-4 \tan \alpha+1=0$
$\therefore(3 \tan \alpha-1)(\tan \alpha-1)=0$
$\therefore \tan \alpha=\frac{1}{3}, 1$
$\therefore \alpha=\tan ^{-1} \frac{1}{3}, \frac{\pi}{4}$

Comment

It was very hard to get marks if the correct quadratic was not found.
Students need to substitute for u, x and y and simplify initially.
Too many students made the problem harder for themselves by not doing this early on and correctly.
Students who found a negative angle, generally tried to fudge it rather than fix it.

Question 14 (continued)

(c) (ii) If $u=\sqrt{2 g h}$, find the maximum value of R in terms of h and also find the corresponding value of α.
[Hint: Form a quadratic equation in terms of $\tan \alpha$.]
Use $y=x \tan \alpha-\frac{g x^{2}\left(1+\tan ^{2} \alpha\right)}{2 u^{2}}$ with $x=R$ and $y=-h$.
$-h=R \tan \alpha-\frac{g R^{2}\left(1+\tan ^{2} \alpha\right)}{2 \times(2 g h)}$
$\therefore-4 g h^{2}=4 g h R \tan \alpha-g R^{2}\left(1+\tan ^{2} \alpha\right) \quad[\div g]$
$\therefore R^{2} \tan ^{2} \alpha-4 h R \tan \alpha+R^{2}-4 h^{2}=0$
$\Delta=(4 h R)^{2}-4\left(R^{2}\right)\left(R^{2}-4 h^{2}\right)$
$=16 h^{2} R^{2}-4 R^{4}+16 h^{2} R^{2}$
$=32 h^{2} R^{2}-4 R^{4}$
$=4 R^{2}\left(8 h^{2}-R^{2}\right)$
For there to be any values of α then $\Delta \geq 0$
$\therefore 4 R^{2}\left(8 h^{2}-R^{2}\right) \geq 0$
$\therefore 8 h^{2}-R^{2} \geq 0$
$\therefore R^{2} \leq 8 h^{2}$
$\therefore 0<R \leq 2 \sqrt{2} h$
$\therefore R_{\text {max }}=2 \sqrt{2} h$
Note: \quad For $R_{\max }=2 \sqrt{2} h, \Delta=0$.
Solving $R^{2} \tan ^{2} \alpha-4 h R \tan \alpha+R^{2}-4 h^{2}=0$
$\tan \alpha=\frac{4 h R}{2 R^{2}}$
$=\frac{2 h}{R}$
$=\frac{2 h}{2 \sqrt{2} h}$

$$
=\frac{1}{\sqrt{2}}
$$

\therefore the angle that gives maximum range is $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \doteqdot 35^{\circ} 52^{\prime}$
Alternative on following page

Question 14 (continued)

(ii) (continued)

Consider $R^{2} \tan ^{2} \alpha-4 h R \tan \alpha+R^{2}-4 h^{2}=0$
The range reaches a maximum as α increases, since $R=0$ at $\alpha=0$ and $\alpha=\frac{\pi}{2}$, but for what angle.

Find $\frac{d R}{d \alpha}$ i.e. differentiate wrt α.
Note h is a constant.
$R^{2} \times \frac{d}{d \alpha}\left(\tan ^{2} \alpha\right)+\frac{d}{d \alpha}\left(R^{2}\right) \times \tan ^{2} \alpha-4 h\left[\frac{d}{d \alpha}(R) \times \tan \alpha+R \times \frac{d}{d \alpha}(\tan \alpha)\right]+\frac{d}{d \alpha}\left(R^{2}\right)=0$
$\therefore 2 R^{2} \tan \alpha \sec ^{2} \alpha+2 \tan ^{2} \alpha \frac{d R}{d \alpha}-4 h \tan \alpha \frac{d R}{d \alpha}-4 h R \sec ^{2} \alpha+2 R \frac{d R}{d \alpha}=0$

Now $R_{\max }$ will occur when $\frac{d R}{d \alpha}=0$
$\therefore 2 R_{\max }^{2} \tan \alpha \sec ^{2} \alpha-4 h R_{\max } \sec ^{2} \alpha=0 \quad\left[\div R_{\max } \sec ^{2} \alpha(\neq 0]\right.$
$\therefore 2 R_{\text {max }} \tan \alpha-4 h=0$
$\therefore \tan \alpha=\frac{2 h}{R_{\text {max }}}$
This now follows the previous solution.

Comment

As for part (i), it was very hard to get marks if the correct quadratic was not found.
Students need to substitute for u, x and y and simplify initially.
Too many students made the problem harder for themselves by not doing this early on and correctly.
The hint for the most part was ignored or at least did not remind students that this is ultimately a quadratic problem and hence the need to examine Δ (discriminant).

Students simply stating that for $R_{\max }$ then $\Delta=0$ and then obtaining the correct answers did not score full marks.

Many students are still convinced that the maximum range always occurs when a projectile is fired at 45°.

