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Question 1:

a) Solve x - < 0

1
x

b) If x = V3 + v2 find the value of x + 1, hence or otherwise
; ‘. X
find the value of f¥”+ 35

" [
o

g) The point P (6,9) divides the interval AB in the ratio -3:2.
Find the point B given that A is (1,4) A

d) f _f x’dx

e) J 3 dx
16 + x?

Question 2:
a) Solve sin x + sin 2x = 0 " 0° < x < 360°

b)

Find x, give reasons

©) The positive square root of 37 is approximately 6
Use one application of Newton's Method to find a better

approximation, correct to 2 decimal places
d) A function is defined by the rules
( 8in™ x if-l' £ x <0
£(x) = ( .
( cos™! x if 0 S xs1
i) Sketch the graph of the function for -1 £ x <1

ii) For this function evaluate exactly £(%) + 2£(0) - £(-%)




Question 3: ‘ ca

'4) A certain particle moves along the x axis in accordance with the
law '

t = 2x? - 4x + 3
where x is measured in cms and t in seconds
Initially the particle is 1.5cms to the right of 0 and moving
away from 0

i) Prove that the velocity, v cm/sec is given by

v o= 1
4x - 4

ii) Find an expression for the acceleration a cm/sec? in terms
of x . '

iii) Find the velocity and- acceleration of the particle when

a) x = 2cns
b) t = 9secs

iv) Describe in words the motion of the particle
b) Prove by induction that

3" > 1 + 2n forn > 1

Question 4:
The points P (2ap, ap?) and Q (2aq, ag?) lie on the parabola x? = 4ay

a) Derive the equation of the normal to the parabola at P

b) Find the coordinates of the point N the intersection of the normals

at P and @

¢) Find the equation of the chord P@ and determine the condition
necessary for PQ to be a focal chord

d) If Pa is a focal chord and N is the intersection of the normals
at P and Q, find the equation of the locus of N. Describe the
locus ;




Question 5:

a) Prove that

l1 - cos & = tan ?
1 + cos @&

b)

BC II EF

ABCD is a cyclic quadrilateral

Prove that
EF ? = EA 5 ED

c) The product of two of the roots of the eqqation
24%% + 14x%?* - 11x ~ 6 = 0

is equal to the other root. Find the values of all three roots
of the equation




Question 6:

a) Find the value of

sec X
0

I
j 2 sec? (sin x) dx
using the substitution
u = sin x

b) Express 7 cos a - sin a in the form R cos (a + B) where R > o
and 0° < B < 360°. Hence solve the equation -

7 cos & -~ g8in a = 5 . -

c) Assume that the rate at which a body cools in air is proportional
to the difference between its temperature T and the constant temp-
erature A of the surrounding air. This rate can be expressed by
the differential equation . -

- df = -k (T - A)
dt

*

where t is the time in minutes and k is a constant

-kt . s .
i) Show that T = A + Cek is a solution to the differential
equation (C is a constant) -

ii) The body of a murder victim is discovered at 2am when its
temperature is 35°C. One hour later its temperature has fallen
to 34°C. If the room temperature remains constant at 21°C, find
the value of k . . ;

iii) calculate the time the murder was committed. (Normal body
temperature is approximately 37°C.) '
Question 7:

a) Find the volume of the solid of revolution obtained by revolving
the area bounded by y = 1 + sin x and the x-axis between x = 0 and
¥ = n about the x axis




Loy

b) A particle undergoes simple harmonic motion about the origin 0.

Its displacement x cm from 0 at time t seconds is given by
X =5 cos (4t + m )
2
1) Find @he acceleration in terms of t and hence or otherwise as a
function of displacement

ii) Write down the amplitude of the motion

iii) Find the maximum speed

c)
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A dam wall is 4d units high. Small leaks occur at 3 evenly
spaced points 3d, 2d and 1d units down from the water level

i) Using axes as shown, show that the parametric equations for
the water from leak 1 are: ) .

x = Vt y = 3d - %gt?

ii) Find the parametric equations for leak 2 and leak 3

iii) Show that the jets of water from leak 1 and leak 3 reach the

ground level at the same point given that the velocity of water
issuing from a leak is V? = kh where h is the height of water
above the leak and k is a constant

iv) Find the veiocity of impact of the water from leak 2 in terms
of g, k and d

v) A leak occurs at a distance { units above ground. Show that it
hits the ground a maximum distance from the dam if £ = 2d




