Sydney Girls High School

2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 - 14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I Pages 3-5
10 Marks

- Attempt Questions 1 - 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II Pages 6-9
60 Marks

- Attempt Questions 11-14
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 1 hour and 45 minutes for this section

Name: ..	THIS IS A TRIAL PAPER ONLY		
Teacher: ...			It does not necessarily reflect the format
:---			
or the content of the 2015 HSC			
Examination Paper in this subject.			

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. A committee of six is to be formed from seven women and nine men. Find the number of committees possible if exactly two members of the committee are to be men.
(A) 1260
(B) 2646
(C) 36036
(D) 60480
2. In the diagram below $\angle B A C=34^{\circ}$ and $\angle A D E=85^{\circ}$. What is the size of angle $\angle A C B$?
(A) 51°
(B) 56°
(C) 61°
(D) 60°

3. Use the substitution $u=e^{x}$ to determine which of the following is an expression for $\int \frac{e^{x}}{1+e^{2 x}} d x$.
(A) $\tan ^{-1}\left(e^{x}\right)+C$
(B) $\tan ^{-1}\left(e^{2 x}\right)+C$
(C) $\frac{-1}{2\left(1+e^{x}\right)^{2}}+C$
(D) $\frac{-e^{x}}{\left(1+e^{x}\right)^{2}}+C$
4. The radius of a spherical balloon is increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$. The rate at which the volume of the balloon is increasing when the radius is 10 cm is :
(A) $200 \pi \mathrm{~cm}^{3} / \mathrm{s}$
(B) $\quad 400 \pi \mathrm{~cm}^{3} / \mathrm{s}$
(C) $800 \pi \mathrm{~cm}^{3} / \mathrm{s}$
(D) $\quad 100 \pi \mathrm{~cm}^{3} / \mathrm{s}$
5. A stone is thrown vertically upwards with a speed of $21 \mathrm{~m} / \mathrm{s}$. How long is the stone in the air before it reaches its maximum height? (Assume acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.)
(A) 4.2 s
(B) $\quad 0.48 \mathrm{~s}$
(C) 0.95 s
(D) 2.1 s
6. The polynomial equation $f(x)=x^{3}+x-1$ has a root near $x=0.5$. Using this as the initial approximation, determine another approximation (correct to four decimal places) to the root using one application of Newton's method.
(A) $x=0.7141$
(B) $x=0.7142$
(C) $x=0.7143$
(D) $x=0.7144$
7. If $y=\sin ^{-1}\left(\frac{a}{x}\right)$, then $\frac{d y}{d x}=$
(A) $\frac{-a}{\sqrt{x^{2}-a^{2}}}$
(B) $\frac{a}{\sqrt{x^{2}-a^{2}}}$
(C) $\frac{-a}{x \sqrt{x^{2}-a^{2}}}$
(D) $\frac{a}{x \sqrt{x^{2}-a^{2}}}$
8. What is the value of $\sum_{k=1}^{20}{ }^{20} C_{k}$?
(A) 1048574
(B) 1048575
(C) 1048576
(D) 1048577
9. Given that a, b and c are the roots of the equation $x^{3}-3 x^{2}+m x+24=0$, and that $-a$ and $-b$ are the roots of the equation $x^{2}+n x-6=0$, then the value of n is :
(A) 1
(B) -1
(C) 7
(D) $\quad-7$
10. The sum $1^{4}+2^{4}+3^{4}+4^{4}+\ldots+n^{4}$ is given by the expression $\frac{6 n^{5}+a n^{4}+b n^{3}-n}{30}$. The value of $a-b$ is:
(A) $\quad-25$
(B) 25
(C) -5
(D) 5

Section II

Total 60 marks

Attempt Questions 11-14
Allow about 1 hour and 45 minutes for this section
Answer all questions, starting each question on a new page.
In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

 the function.(c) The velocity of a particle when $x \mathrm{~m}$ from the origin is given by $v^{2}=x^{2} e^{3 x}+4$.

Find the acceleration of the particle when $x=1$.
(d) Find the general solution to the equation $\sqrt{3} \tan \theta+1=0$.
(e) Find the value of $\lim _{x \rightarrow 0} \frac{5 x+\sin 3 x}{2 x}$.
(f) In the diagram, $A O B$ is the diameter of the circle with centre at $O . T C$ is a tangent to the circle at the point C such that $A C$ bisects $\angle T A B$. Copy the diagram onto your writing paper. Prove that $A T$ is perpendicular to $T C$.

End of Question 11

(a) By considering the derivative of $\ln (\tan x)$, find $\int \operatorname{cosec} 2 x d x$.
(b) In the expansion of $\left(x+\frac{2}{x^{2}}\right)^{10}$, find the coefficient of x.
(c) $P\left(4 p, 2 p^{2}\right)$ and $Q\left(4 q, 2 q^{2}\right)$ are two variable points on the parabola $x^{2}=8 y$. The tangents at P and Q intersect at the point T.
(i) Derive the equation of the tangent at P.
(ii) Hence, show that the point T has the coordinates $(2(p+q), 2 p q)$.
(iii) Given that $p^{2}+q^{2}=10$, determine the cartesian equation of the locus of T.
(d) Find $\int\left(\sin ^{2} x+2 \cos ^{2} x+3 \tan ^{2} x\right) d x$.
(e) Prove that $\tan ^{-1}(x+1)+\cot ^{-1} x=\tan ^{-1}\left(-x^{2}-x-1\right)$ for $x>0$.

End of Question 12

(a) The growth rate per month of the number N of birds on a property during a drought is -20% of the excess of the bird population over 1000 .
(i) Express the information in the form of a differential equation and show that $N=1000+A e^{-0.2 t}$ (where t is the time in months) is a solution to this differential equation.
(ii) Given that initially there are 8000 birds on the property, find the amount of time that will elapse before the population is reduced to half.
(b) Ansett Airlines offer two options on all flights for their meal service - chicken or beef (vegetarians choose not to fly with Ansett). If 60\% of the time Ansett passengers select the chicken dish, what is the probability that out of 7 randomly selected passengers at least 2 will select chicken for their meal?
(c) An iPhone is thrown from the top of a building, 6 metres high, with an initial velocity of $8 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizon.
(i) Using $10 \mathrm{~m} / \mathrm{s}^{2}$ for acceleration due to gravity, derive the horizontal and vertical equations of motion for the iPhone.
(ii) Determine the greatest height of the iPhone above ground level.
(iii) Find the velocity and direction of the iPhone's path after 1 second.
(d) Prove the following statement is true by mathematical induction for all integers $n \geq 1$.

$$
\sum_{r=1}^{n} r(r!)=(n+1)!-1
$$

End of Question 13

(a) A particle moves in a straight line with simple harmonic motion. At time t seconds, its displacement x metres from a fixed point O, is given by $x=2+5 \sin \left(3 t+\frac{\pi}{4}\right)$.
(i) Show that $\ddot{x}=-9(x-2)$.
(ii) Determine the maximum speed of the particle and its displacement at this time.
(b) How many different arrangements of the word MAMMOTH can be made if only five letters are used?
(c) Use the substitution $u^{2}=x+1$ to find the volume of the solid formed by rotating the area bounded by the curve $y=\frac{x-1}{\sqrt{x+1}}$, the x axis and the lines $x=3$ and $x=8$ about the x axis. Express your answer in exact form.
(d) Use the expansion of $(1+x)^{n}$ to prove that

$$
\frac{n+(-1)^{n}}{n+1}=\frac{1}{2}{ }^{n} C_{1}-\frac{1}{3}{ }^{n} C_{2}+\cdots+\frac{(-1)^{n}}{n}{ }^{n} C_{n-1} .
$$

(e) Given that $f(x)=A x^{3}+B x^{2}+C x+D$ is a function with a double zero at $x=1$, and

End of paper

2015 Trial MSC - Extension 1
SECTION I

1. ${ }^{9} C_{2} \times{ }^{7} C_{4}=1260$
2. $\angle A B C=85$ (ext. \angle of cyclic quad)

$$
\begin{align*}
& \angle A C B+34+85=180 \text { (} \angle \text { sum of } \triangle A B C \text {) } \\
& \therefore \angle A C B=61^{\circ} \quad \text { C) } \tag{C}
\end{align*}
$$

3. let $u=e^{x} \quad d u=e^{x} d x$

$$
\int \frac{e^{x}}{1+\left(e^{x}\right)^{2}} d x=\int \frac{d u}{1+u^{2}}=\tan ^{-1} u+c=\tan ^{-1}\left(e^{x}\right)+C
$$

4. $\quad \frac{d v}{d t}=\frac{d V}{d r} \times \frac{d r}{d t}$

$$
V=\frac{4}{3} \pi r^{3} \quad \frac{d V}{d r}=4 \pi r^{2}
$$

$$
\begin{align*}
& =4 \pi(10)^{2} \times 2 \\
& =800 \pi \mathrm{~cm}^{3} / \mathrm{s} \tag{C}
\end{align*}
$$

5. when $t=0, \dot{y}=21 \mathrm{~m} / \mathrm{s} \quad t=$? when $\dot{y}=0$

$$
\begin{align*}
& \ddot{y}=-10 \\
& \ddot{y}=-10 t+c \quad \therefore c=21 \\
& 0=-10 t+21 \quad 10 t=21 \quad \therefore t=2.1 \mathrm{~s}
\end{align*}
$$

6. $f(x)=x^{3}+x-1 \quad f^{\prime}(x)=3 x^{2}+1$

$$
\begin{array}{rl}
f(x)-x+x-1 & f(x)=3 x+1 \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} & =0.5-\frac{\left(0.5^{3}+0.5-1\right)}{3(0.5)^{2}+1} \\
& =0.7143
\end{array}
$$

7. $\quad \frac{d y}{d x}=\frac{1}{\sqrt{1-\frac{a^{2}}{x^{2}}}} \times-\frac{a}{x^{2}}=\frac{-a}{x \sqrt{x^{2}-a^{2}}}$
8. Consider $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}$
let $x=1$

$$
(1+1)^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}
$$

let $n=20$

$$
\begin{array}{r}
\therefore \sum_{k=1}^{20}{ }^{20} C_{k}+{ }^{20} C_{0}=(2)^{20} \\
\therefore \sum_{k=1}^{20}{ }^{20} C_{k}=2^{20}-1=1048575 \tag{B}
\end{array}
$$

9. $a+b+c=3$

$$
-a-b=-n
$$

$$
a+b=n
$$

$$
\begin{aligned}
a b c & =-24 \\
a b & =-6 \\
\therefore c & =4
\end{aligned}
$$

$$
\therefore n=3-c=3-4
$$

$$
\begin{equation*}
\therefore n=-1 \tag{B}
\end{equation*}
$$

10. $\quad 1^{4}=\frac{6+a+b-1}{30}$

$$
\begin{array}{r}
1^{4}+2^{4}=\frac{6(2)^{5}+a(2)^{4}+b(2)^{3}-2}{30} \\
190+16 a+8 b=510 \\
2 a+b=\frac{320}{8}=40 \\
a=15, b=10 \\
a-b=5
\end{array}
$$

Question 11. (15 Marks).
a)

$$
\begin{aligned}
& \text { a) } \frac{2}{x-5} \leq 3 \quad(x \neq 5 \\
& \frac{2(x-5)^{2}}{(x-5)} \leq 3(x-5)^{2} \\
& 2(x-5) \leq 3(x-5)^{2} \\
& 3(x-5)^{2}-2(x-5) \geqslant 0 \\
& (x-5)[3(x-5)-2] \geqslant 0 \\
& (x-5)(3 x-15-2) \geqslant 0 \\
& (x-5)(3 x-17) \geqslant 0 \\
& x<5 \quad \text { or } x \geqslant \frac{17}{3}
\end{aligned}
$$

* Many students lost a mark as $x \neq 5$.
b) $f(x)=\pi \cos ^{-1}\left(\frac{x}{2}\right)$

Domain: $-1 \leqslant \frac{x}{2} \leqslant 1$ Range: $0 \leqslant \frac{y}{\pi} \leqslant \pi$

$$
-2 \leq x \leq 2 \quad 0 \leq y \leq \pi
$$

$$
\text { c) } \begin{aligned}
a= & v^{2}=x^{2} e^{3 x}+4 \\
= & \left.\frac{d}{2} v^{2}\right) \\
= & \frac{d}{d x} \frac{1}{2}\left(x^{2} e^{3 x}+4\right) \\
= & \frac{1}{2}\left[x^{2} \cdot 3 e^{3 x}+e^{3 x} \cdot 2 x\right] \\
= & \frac{1}{2}\left[3 x^{2} e^{3 x}+2 x e^{3 x}\right] \\
= & \frac{1}{2} e^{3 x}\left(3 x^{2}+2 x\right)
\end{aligned}
$$

when $x=1$

$$
\begin{aligned}
& a=\frac{1}{2} \cdot e^{3} \cdot(5) \\
& a=\frac{5}{2} e^{3} \mathrm{~m} / \mathrm{s}^{2} \\
& {\left[a \div 50 \cdot 21 \mathrm{~m} / \mathrm{s}^{2} \text { (2dec.pl.) }\right]}
\end{aligned}
$$

d)

$$
\begin{aligned}
\sqrt{3} \tan \theta & =-1 \\
\tan \theta & =-\frac{1}{\sqrt{3}} \\
\theta & =\pi n+\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right) \\
\theta & =n \pi-\frac{\pi}{6} \cdot(n \text { is an integer) } \\
O R \quad \theta & =n \pi+\frac{5 \pi}{6}
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
& \lim _{x \rightarrow 0} \frac{5 x+\sin 3 x}{2 x} \\
= & \lim _{x \rightarrow 0} \frac{5 x}{2 x}+\lim _{x \rightarrow 0} \frac{\sin 3 x}{2 x} \\
= & \frac{5}{2}+\frac{3}{2} \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \\
= & \frac{8}{2} \\
= & 4 .
\end{aligned}
$$

f)

Join B to C
$\angle A C B=90^{\circ}$ (\angle in a semi circle).
Let $\angle T A C=\angle C A B=\theta$ ($A C$ bisects $\angle T A B$)
In $\triangle A C B: \angle A B C=90-\theta \quad(\angle$ sum of $\triangle A C B)$.
$\angle T C A=\angle A B C=90-\theta$ (\angle in attorn ate segment.
In $\triangle A T C: \angle A T C+\angle T A C+\angle T C A=180^{\circ}(\triangle$ SUM

$$
\angle A T C+\theta+90-\theta=180
$$

$$
\angle A T C+90=180
$$

$$
\angle A T C=90^{\circ} \text {. }
$$

$$
\therefore \quad A T \perp T C
$$

$Q_{12} y^{-}=\ln (\tan x)$
a) $y^{\prime}=\frac{\sec ^{2} x}{\tan x}=\frac{\frac{1}{\cos ^{2} x}}{\frac{\sin x}{\cos x}}=\frac{1}{\cos x \sin x}$

Now $\frac{1}{\cos x \sin x}=\frac{2}{2 \sin x \cos x}=\frac{2}{\sin 2 x}=2 \operatorname{cosec} 2 x$
$\left[\begin{array}{l}\text { Some students, } \\ \text { could not fink }\end{array}\right.$
$\frac{1}{2}\left(2 \operatorname{cosec} 2 x d x=\frac{\ln [\tan x]}{2}+c \frac{\operatorname{d[\operatorname {ln}(\operatorname {tan}x]]}}{2 x}\right.$, hence coven 4 get
the final Ans.]
b)

$$
\begin{aligned}
(x & \left.+\frac{2}{x^{2}}\right)^{10} \\
T_{k+1} & ={ }^{n} C_{k} \cdot a^{n-k} \cdot b^{k} \\
& ={ }^{10} C_{k} \cdot x^{10-k} \cdot\left(2 x^{-2}\right)^{k} \\
& ={ }^{10} C_{k} \cdot x^{10-k} \cdot 2^{k} \cdot x^{-2 k} \\
& ={ }^{10} C_{k} \cdot 2^{k} \cdot x^{10-3 k}
\end{aligned}
$$

Equating the coefficient of x

$$
\begin{aligned}
\therefore 10-3 k & =1 \\
3 k & =9 \\
k & =3
\end{aligned}
$$

The coefficient of x is

$$
{ }^{10} c_{3} \cdot 2^{3}=960
$$

[Most students did well in this question.]
$\overline{Q_{12}}$
c) $P\left(4 p, 2 p^{2}\right) \quad Q\left(4 q, 2 q^{2}\right)$
i)

$$
\begin{aligned}
& x^{2}=8 y \\
& y=\frac{x^{2}}{8} \therefore y^{\prime}=\frac{x}{4}
\end{aligned}
$$

At $p\left(4 p, 2 p^{2}\right) \quad \therefore \quad y^{\prime}=\frac{4 p}{4}=p$
Equation of the tangent at P.

$$
\begin{gather*}
y-2 p^{2}=p(x-4 p) \\
y=p x-2 p^{2} \tag{1}
\end{gather*}
$$

Similarly the equation of the tangent at α

$$
\begin{equation*}
y=q x-2 q^{2} \tag{2}
\end{equation*}
$$

ii) Solve (1) and (2)

$$
\begin{aligned}
p x-2 p^{2} & =q x-2 q^{2} \\
(p-q) x & =2(p+q)(p-q) \\
x & =2(p+q) \text { sub into (1) }
\end{aligned}
$$

$$
\begin{aligned}
& y=p[2(p+q)]-2 p^{2} \\
& y=2 p^{2}+2 p q-2 p^{2} \\
& y=2 p q
\end{aligned}
$$

Thus $T(2(p+q), 2 p q)$.
[Almost every one did well in parts (chi) and $(c / i i)]$

Q12
c/iii) $\begin{aligned} x & =2(p+q) \quad \text { Given } p^{2}+q^{2}=10 \\ y & =2 p q\end{aligned} \quad$.

$$
\begin{aligned}
& x^{2}=[2(p+q)]^{2} \\
& x^{2}=4\left(p^{2}+q^{2}+2 p q\right) \\
& x^{2}=4(10+y)
\end{aligned}
$$

$$
x^{2}=4(y+10): \text { Locus of } T
$$

$$
\begin{aligned}
& \text { d) } \int\left(\sin ^{2} x+2 \cos ^{2} x+3 \tan ^{2} x\right) d x \\
& I=\int\left[\sin ^{2} x+\cos ^{2} x+\cos ^{2} x+3\left(\sec ^{2} x-1\right)\right] d x \\
& I=\int\left[3 \sec ^{2} x+\frac{1}{2}(1+\cos 2 x)-2\right] d x \\
& I=\int\left(3 \sec ^{2} x+\frac{1}{2} \cos 2 x-\frac{3}{2}\right) d x \\
&= 3 \tan x+\frac{1}{4} \sin 2 x-\frac{3}{2} x+C
\end{aligned}
$$

[A number of students forgot Tiny identities, double-angle formula, hence could not Integrate this question correctly.]
Q_{12}
e) Let, $A=\tan ^{-1}(x+1)$, let $B=\cot ^{-1} x$

$$
\tan ^{-1}\left[-\left(x^{2}+x+1\right)\right]=-\tan ^{-1}\left(x^{2}+x+1\right)
$$

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

$$
=\frac{x+1+\frac{1}{x}}{1-(x+1) \times \frac{1}{x}}
$$

$$
=\frac{\frac{x^{2}+x+1}{x}}{\frac{x-x-1}{x}}=-\left(x^{2}+x+1\right)
$$

Thus $A+B=\tan ^{-1}\left[-\left(x^{2}+x+1\right)\right]$
OR $\tan ^{-1}(x+1)+\cot ^{-1} x=\tan ^{-1}\left(-x^{2}-x-1\right)$
[Many students could not
Simplify $\tan ^{-1}(x+1), \cot ^{-1} x$ and $\tan \left[-\left(x^{2}+x+1\right)\right]$ correctly $]$

$$
\begin{aligned}
& \tan A=x+1 \quad \cot B=x \\
& \tan B=\frac{1}{x}
\end{aligned}
$$

Q13 Ext 12015

d)
$1+2(2!)+3(3!)+\ldots n(n!)=(n+1)!-1$
when $n=1$
LOS $=1$
RMS $=21-1$
$=1$
true for $n=1$
when
$n=k$
$1+2(2!)+\ldots \ldots k(k!)=(k+1)!-1$
prove true fer $n=k+1$
$1+2(2!)+\ldots k(k!)+(k+1)(k+1)!=(k+2)!-1$
$L H S=(k+1)!-1+(k+1)(k+1)!$
$=(k+1)![1+k+1]-1$
$=(k+1)!(k+2)-1$
$=(k+2)!-1$
$=R n s$
\therefore true for $n \geqslant 1$
By M athematical induction

* This question was done well.
except some st, dents didn't
show the last step propaly
\therefore lost mark.

Question 14 (15 Marks).
a) $x=2+5 \sin \left(3 t+\frac{\pi}{4}\right) \Rightarrow x-2=5 \sin \left(3 t+\frac{\pi}{4}\right)$
i)

$$
\text { i) } \begin{aligned}
\dot{x} & =0+5 \cos \left(3 t+\frac{\pi}{4}\right) \times 3 \\
& =15 \cos \left(3 t+\frac{\pi}{4}\right) \\
\ddot{x} & =-15 \sin \left(3 t+\frac{\pi}{4}\right) \times 3 \\
& =-45 \sin \left(3 t+\frac{\pi}{4}\right) \\
& =-9\left[5 \sin \left(3 t+\frac{\pi}{4}\right)\right] \\
\therefore \ddot{x} & =-9(x-2) \text {, as required }
\end{aligned}
$$

ii) Maximum speed occurs at the centre of motion i.e. at $x=2$
when $x=2: \quad 5 \sin \left(3 t+\frac{\pi}{4}\right)=0$

$$
\begin{aligned}
3 t+\frac{\pi}{4} & =\pi \quad(t>0) \\
3 t & =\frac{3 \pi}{4} \\
t & =\frac{\pi}{4} \mathrm{sec} .
\end{aligned}
$$

At $x=2: \quad \dot{x}=15 \cos \left(\frac{3 \pi}{4}+\frac{\pi}{4}\right)$

$$
\begin{aligned}
& =15 \cos \pi \\
& =-15 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

$$
\therefore|\dot{x}|_{\max }=15 \mathrm{~m} / \mathrm{sce} \text { at } x=2
$$

b). different arrangements of the word MAMMOTH using only 5 letters.
Case 1: $(1 M) M \ldots=5$! ways.
Case 2: $\left(2 M^{\prime}\right.$ s) $M \frac{M}{=} \cdots=\frac{5!}{2!} \times{ }^{4} C_{3}$
Case 3: $\left(3 M^{\prime}\right.$ S $)$ MM $-=\frac{5!}{3!} \times{ }^{4} C_{2}$
Total arrangements

$$
\begin{aligned}
& =5!+\frac{5!}{2!} \times{ }^{4} C_{3}+\frac{5!}{3!} \times{ }^{4} C_{2} \\
& =120+60 \times 4+20 \times 6 \\
& =120+240+120 \\
& =480 .
\end{aligned}
$$

* One mark awarded for considering the different cases of repetition. one mark for the correct answer.
c)

$$
\begin{aligned}
& V=\pi \int_{3}^{8} y^{2} d x \\
& \left.=\pi \int_{3}^{8} \frac{(x-1)^{2}}{(x+1)} d x \right\rvert\, \begin{array}{c}
u^{2}=x+1
\end{array} \\
& =\pi \int_{2}^{3} \frac{\left(u^{2}-2\right)^{2}}{u^{2}} \cdot 2 u d u=d x . \\
& =2 \pi \int_{2}^{3}\left(\frac{\left.u^{4}-\frac{4 u^{2}+4}{u}+\frac{u^{2}-1=x .}{u}\right) d u}{} \left\lvert\, \begin{array}{r}
u^{2}-2=x \ln x \\
u^{2}=8, u^{2}=9 \\
u=3
\end{array}\right.\right. \\
& x=3, u^{2}=4 \\
& u=2 .
\end{aligned}
$$

* Most students substituted incorrectly with the new variable, back into the integral.
d)

$$
(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\cdots+{ }^{n} C_{n-1} x^{n-1}+{ }^{n} C_{n} x^{n}
$$

Integrate both sides w.r.t. x :

$$
\frac{(1+x)^{n+1}}{n+1}+C={ }^{n} C_{0} x+{ }^{n} C_{1} \frac{x^{2}}{2}+{ }^{n} C_{2} \frac{x^{3}}{3}+\cdots+{ }^{n} C_{n-1} \frac{x^{n}}{n}+{ }^{n} C_{n} \frac{x^{n+1}}{n+1}
$$

Let $x=0$:

$$
\begin{aligned}
& \frac{1}{n+1}+c=0 \quad \therefore c=-\frac{1}{n+1} \\
& \therefore \frac{(1+x)^{n+1}-1}{(n+1)}={ }^{n} C_{0} x+\frac{1^{n}}{2} c_{1} x^{2}+\frac{1}{3} c_{2} x^{3}+\cdots+\frac{1}{n} C_{n-1} x^{n}+\frac{1^{n}}{n+1} c_{n} x^{n+1}
\end{aligned}
$$

Let $x=-1$: noting that ${ }^{n} C_{0}={ }^{n} C_{n}=1$

$$
\begin{aligned}
& \frac{-1}{n+1}=-1+\frac{1}{2}^{n} C_{1}-\frac{1}{3}{ }^{n} C_{2}+\cdots+\frac{(-1)^{n}}{n} C_{n-1}+\frac{(-1)^{n+1}}{n+1} \\
& 1-\frac{1}{n+1}-\frac{(-1)(-1)^{n}}{n+1}=\frac{1}{2}^{n} C_{1}-\frac{1}{3}{ }^{n} C_{2}+\cdots+\frac{(-1)^{n}}{n} C_{n-1} \\
& \frac{n+1-1}{n+1}+\frac{(-1)^{n}}{n+1}=\frac{1}{2}{ }^{n} C_{1}-\frac{1}{3}{ }^{n} C_{2}+\cdots+\frac{(-1)^{n}}{n} C_{n-1} \\
& \therefore \quad \frac{n+(-1)^{n}}{n+1}=\frac{1}{2}^{n} C_{1}-\frac{1}{3}{ }^{n} C_{2}+\cdots+\frac{(-1)^{n}}{n} C_{n-1}
\end{aligned}
$$

\$ Most students forgot the constant of integration in the first step.
e)

$$
\begin{aligned}
& f(x)=A x^{3}+B x^{2}+C x+D \\
& f^{\prime}(x)=3 A x^{2}+2 B x+C
\end{aligned}
$$

$$
\begin{align*}
& f(1)=0: \quad A+B+C+D=0 \tag{1}\\
& f^{\prime}(1)=0: \quad 3 A+2 B+C=0 \tag{2}\\
& f^{\prime}(-1)=0: \quad 3 A-2 B+C=0 \tag{3}\\
& f(-1)=-4:-A+B-C+D= \tag{5}\\
& (1)+(4): \quad 2 B+2 D=-4
\end{align*}
$$

$$
f(-1)=-4 ;-A+B-C+D=-4 \ldots \text { (4) }
$$

(2) $-(3): \quad 4 B=0$

$$
B=0
$$

From (5): $\quad 2 D=-4$

$$
\begin{equation*}
D=-2 \tag{6}
\end{equation*}
$$

From (1): $\quad A+C-2=0$
From (2): $\quad 3 A+C=0$
(7) -(6): $2 A+2=0$

$$
\begin{aligned}
2 A & =-2 \\
A & =-1
\end{aligned}
$$

From(b): $\quad-1+c-2=0$

$$
c=3
$$

$$
\therefore \quad A=-1, B=0, C=3, D=-2 .
$$

