

Sydney Girls High School

2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks – 70

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II Pages 6 – 9

60 Marks

- Attempt Questions 11 14
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 1 hour and 45 minutes for this section

	THIS IS A TRIAL PAPER ONLY
Name:	It does not necessarily reflect the format or the content of the 2015 HSC Examination Paper in this subject.
Teacher:	

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1. A committee of six is to be formed from seven women and nine men. Find the number of committees possible if exactly two members of the committee are to be men.
 - (A) 1260
 - (B) 2646
 - (C) 36036
 - (D) 60480
- 2. In the diagram below $\angle BAC = 34^{\circ}$ and $\angle ADE = 85^{\circ}$. What is the size of angle $\angle ACB$?
 - (A) 51°
 - (B) 56°
 - (C) 61°
 - (D) 60°

3. Use the substitution $u = e^x$ to determine which of the following is an expression for $\int \frac{e^x}{1 + e^{2x}} dx$.

(A)
$$\tan^{-1}(e^x) + C$$

- $(\mathbf{B}) \qquad \tan^{-1}\left(e^{2x}\right) + C$
- $(\mathbf{C}) \qquad \frac{-1}{2\left(1+e^x\right)^2} + C$

(D)
$$\frac{-e^x}{\left(1+e^x\right)^2}+C$$

- 4. The radius of a spherical balloon is increasing at the rate of 2 cm/s. The rate at which the volume of the balloon is increasing when the radius is 10 cm is :
 - (A) $200\pi \text{ cm}^3/\text{s}$
 - (B) $400\pi \text{ cm}^3/\text{s}$
 - (C) $800\pi \text{ cm}^3/\text{s}$
 - (D) $100\pi \text{ cm}^3/\text{s}$
- 5. A stone is thrown vertically upwards with a speed of 21 m/s. How long is the stone in the air before it reaches its maximum height? (Assume acceleration due to gravity is 10 m/s².)
 - (A) 4.2 s
 - (B) 0.48 s
 - (C) 0.95 s
 - (D) 2.1 s
- 6. The polynomial equation $f(x) = x^3 + x 1$ has a root near x = 0.5. Using this as the initial approximation, determine another approximation (correct to four decimal places) to the root using one application of Newton's method.
 - (A) x = 0.7141
 - (B) x = 0.7142
 - (C) x = 0.7143
 - (D) x = 0.7144

7. If
$$y = \sin^{-1}\left(\frac{a}{x}\right)$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{-a}{\sqrt{x^2 - a^2}}$$

(B) $\frac{a}{\sqrt{x^2 - a^2}}$

(C)
$$\frac{-a}{x\sqrt{x^2-a^2}}$$

(D)
$$\frac{a}{x\sqrt{x^2-a^2}}$$

- 8. What is the value of $\sum_{k=1}^{20} {}^{20}C_k$?
 - (A) 1 048 574
 - (B) 1 048 575
 - (C) 1 048 576
 - (D) 1 048 577
- 9. Given that *a*, *b* and *c* are the roots of the equation $x^3 3x^2 + mx + 24 = 0$, and that -a and -b are the roots of the equation $x^2 + nx 6 = 0$, then the value of *n* is :
 - (A) 1
 - (B) –1
 - (C) 7
 - (D) –7

10. The sum $1^4 + 2^4 + 3^4 + 4^4 + ... + n^4$ is given by the expression $\frac{6n^5 + an^4 + bn^3 - n}{30}$. The value of a - b is : (A) -25 (B) 25 (C) -5

(D) 5

Section II

Total 60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer all questions, starting each question on a new page. In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

<u>Question 11</u> (15 marks)

(a) Solve
$$\frac{2}{x-5} \le 3$$
. 3

(b) Sketch the function $f(x) = \pi \cos^{-1}\left(\frac{x}{2}\right)$, clearly indicating the domain and range of 3

the function.

(c) The velocity of a particle when x m from the origin is given by $v^2 = x^2 e^{3x} + 4$. Find the acceleration of the particle when x = 1.

(d) Find the general solution to the equation
$$\sqrt{3} \tan \theta + 1 = 0$$
.

(e) Find the value of
$$\frac{\lim_{x \to 0} \frac{5x + \sin 3x}{2x}}{2x}$$
.

(f) In the diagram, AOB is the diameter of the circle with centre at O. TC is a tangent to the circle at the point C such that AC bisects $\angle TAB$. Copy the diagram onto your writing paper. Prove that AT is perpendicular to TC.

Marks

End of Question 11

~ 6 ~

Question 12 (15 marks)

Marks

3

2

(a) By considering the derivative of $\ln(\tan x)$, find $\int \csc 2x \, dx$.

(b) In the expansion of
$$\left(x + \frac{2}{x^2}\right)^{10}$$
, find the coefficient of x. 3

- (c) $P(4p, 2p^2)$ and $Q(4q, 2q^2)$ are two variable points on the parabola $x^2 = 8y$. The tangents at *P* and *Q* intersect at the point *T*.
 - (i) Derive the equation of the tangent at P.1(ii) Hence, show that the point T has the coordinates (2(p+q), 2pq).2(iii) Given that $p^2 + q^2 = 10$, determine the cartesian equation of the locus of T.2
- (d) Find $\int (\sin^2 x + 2\cos^2 x + 3\tan^2 x) dx$.
- (e) Prove that $\tan^{-1}(x+1) + \cot^{-1} x = \tan^{-1}(-x^2 x 1)$ for x > 0.

End of Question 12

<u>Question 13</u> (15 marks)

(a)	The gr	owth rate per month of the number N of birds on a property during a drought	
	is -20	% of the excess of the bird population over 1000.	
	(i)	Express the information in the form of a differential equation and show that	2
		$N = 1000 + Ae^{-0.2t}$ (where t is the time in months) is a solution to this	
		differential equation.	
	(ii)	Given that initially there are 8000 birds on the property, find the amount of	C
		time that will elapse before the population is reduced to half.	Z
(b)	Ansett	Airlines offer two options on all flights for their meal service – chicken or	2
	beef (v	regetarians choose not to fly with Ansett). If 60% of the time Ansett	
	passen	gers select the chicken dish, what is the probability that out of 7 randomly	
	selecte	d passengers at least 2 will select chicken for their meal?	
(c)	An iPh	one is thrown from the top of a building, 6 metres high, with an initial velocity	
	of 8 m	/s at an angle of 30° to the horizon.	
	(i)	Using 10 m/s ² for acceleration due to gravity, derive the horizontal and	2
		vertical equations of motion for the iPhone.	_
	(ii)	Determine the greatest height of the iPhone above ground level.	2
	(iii)	Find the velocity and direction of the iPhone's path after 1 second.	2
(d)	Prove	the following statement is true by mathematical induction for all integers $n \ge 1$.	3

$$\sum_{r=1}^{n} r(r!) = (n+1)! - 1$$

End of Question 13

Question 14 (15 marks)

1

2

3

(a) A particle moves in a straight line with simple harmonic motion. At time *t* seconds, its displacement *x* metres from a fixed point *O*, is given by $x = 2 + 5\sin\left(3t + \frac{\pi}{4}\right)$.

- (i) Show that $\ddot{x} = -9(x-2)$.
- (ii) Determine the maximum speed of the particle and its displacement at this time.
- (b) How many different arrangements of the word MAMMOTH can be made if only five 2 letters are used?
- (c) Use the substitution $u^2 = x+1$ to find the volume of the solid formed by rotating the area bounded by the curve $y = \frac{x-1}{\sqrt{x+1}}$, the x axis and the lines x = 3 and x = 8about the x axis. Express your answer in exact form.
- (d) Use the expansion of $(1+x)^n$ to prove that

$$\frac{n+(-1)^n}{n+1} = \frac{1}{2} {}^n C_1 - \frac{1}{3} {}^n C_2 + \dots + \frac{(-1)^n}{n} {}^n C_{n-1}.$$

(e) Given that $f(x) = Ax^3 + Bx^2 + Cx + D$ is a function with a double zero at x = 1, and with a minimum value of -4 when x = -1, find the values of A, B, C and D.

End of paper

2015 Trial MSC - Extension 1 SECTION I fen. $\frac{1}{2} - {}^{9}C_{2} \times {}^{7}C_{4} = 1260$ (A in. in. 2. LABC= 85 (ext. L of cyclic quad) -LACB+ 34+85 = 180 (L Sum of ABC) len 1 $\therefore LACB = 61^{\circ}$ (C) fire 1 3. let $u=e^{x}$ $du=e^{x}dx$ **...** $\int \frac{e^{x}}{1+e^{x}} dx = \int \frac{du}{1+u^{-1}} = \tan^{-1}(e^{x}) + C$ Es. Er-En: $\frac{V=4}{3} \frac{\pi r^3}{dr} \frac{dV}{dr} = 4\pi r^2$ $\frac{4}{dt} = \frac{dv}{dr} \times \frac{dr}{dt}$ = 4TT (10) × 2 E C = 800TT cm3/S fiir 1 5. when t=0, y=21 m/s t=? when y=0E ÿ = -10 ÿ = -10t+c ∴ C=21 -O = -10t+2 10t=21 : t=2.1 S -6. $f(x) = x^3 + x - 1$ $f'(x) = 3x^2 + 1$ $\frac{x_{1} = x_{0} - f(x_{0})}{f'(x_{0})} = 0.5 - (0.5^{3} + 0.5 - 1)}$ 1 **F** ÷ 0.7143 C F. E-7. $\frac{dy}{dx} = \frac{1}{\sqrt{1-\frac{a^2}{2}}} + \frac{x-a}{x} = \frac{-a}{\sqrt{x^2-a^2}}$ C 6-5

3 8. Consider $(1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{1}x^{2} + \cdots + {}^{n}C_{n}x^{n}$ let x=1 $(1+1)^{h} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$ let n=20 $\frac{20}{120} = \frac{20}{20} C_{\rm K} + \frac{20}{10} C_{\rm R} = (2)^{20}$ Э $\therefore \sum_{k=1}^{20} 2^{\circ} C_{k} = 2^{20} - 1 = 1048575$ Ξ Э 9. a+6+c=3 abc = -24-a-b = -hab = -6a+b = n:. c = 4 .. n= 3-c=3-4 (B) : n= -1 3 10. $1^4 = 6 + a + b - 1$ a + b = 30 - 5 = 25 () 3 $|^{4}+2^{4}=6(2)^{5}+a(2)^{4}+b(2)^{3}-2$ LEI LEI 30 190 + 16a + 8b = 5103 $2a+b=\frac{320}{2}=40$ (2) a = 15, b = 10a - b = 5 (D a - b = 512 3 11

З

Question 11. (15 Marks) a) $\frac{2}{7-5} \leq 3$ (x\$5 $\frac{2(n-5)^2}{(n-5)^2}$ $\frac{23(n-5)^2}{(n-5)^2}$ $2(\pi-5) \leq 3(\pi-5)^{2}$ 3(n-5)2-2(n-5)70 (x-5)[3(x-5)-2] >, 0 (x-5)(3n-15-2)≥0 (n-5) (3n-17) 70 * x 45 or x 7, 17 (x 75) 3 /// * Many students lost a mark as x 75. \$ b) $f(n) = T \cos^{-1}\left(\frac{n}{2}\right)$ Range: $0 \leq \frac{y}{T} \leq T$ $0 \leq y \leq T$ Domain: $-1 \leq \frac{\pi}{2} \leq 1$ $-2 \leq \chi \leq 2$ 1 shape Õ -2

c) $V^2 = \chi^2 e^{3\chi} + 4$ $\alpha = \frac{d}{dx} \left(\frac{1}{2} \sqrt{2} \right)$ $= \frac{d}{dx} \frac{1}{2} \left(\pi^2 e^{3x} + 4 \right)$ $= \frac{1}{2} \int x^2 \cdot 3e^{3x} + e^{3x} \cdot 2x$ $= \frac{1}{2} \left[3\chi^2 e^{3\chi} + 2\chi e^{3\chi} \right]$ $= \frac{1}{2} e^{3\chi} \left(3\chi^2 + 2\chi \right)$ when n= $a=1 \cdot e^3 \cdot (5)$ $a=5e^3m/s^2$ [a= 50.21 m/s2 (2 dec. pl.) $\sqrt{3}$ tom 0 = -1 $fan \Theta = - \frac{1}{\sqrt{3}}$ $\theta = \pi n + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ $\Theta = n\pi - \pi$ (n is an integer) $\frac{\partial R}{\partial t} = nT + \frac{ST}{6}$

lim 5x + sin 3x e) パラロ 22 = lim Sin 3x 5% + lim 27 22 270 スラロ Sirax lim 50 Solu 2 スシ 3%. 82 \$ some confusion for students with this limit. = 4 f) A Many more ways 90to prove that ATITC & The proof had to be logical from start to finish Join Btoc LACB = 90° (Lin a semi circle Let LTAC=LCAB=O (AC bisects LTAB) In DACB: LABC = 90-0 (LSUM OF DACB). LTCA = LABC = 90-0 (Lin alternate segment In AATC: LATC+LTAC+LTCA=180 (AATC LATC+ 0 + 90-0=180 LATC +90 =180 LATC = 90°. 0 AT_LTC 3

$$\frac{[Q_{12}]}{e} = \frac{1}{12} \left[\frac{1}{e} + A = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] = \frac{1}{12} \left[\frac{1}{e^2 + x} + \frac{1}{2} +$$

	QIA Et4 MAIS		~	1	
	213 EKT 2013	- 1			
	$\alpha_{1} \underline{a} N = K (N - 1000)$	<i>c)</i>			
	ac	-0			
	= -6.2 (N - 1000)	x = 0		* Many students	
	-0.2t	x = C		didn't show	
	N= 1000 + A e _ 0.2t	x = V cost	9	all the steps	
	dN = 0.2Ae	x = Vt cos	0+0	of deriving these	
	dt Ae -0.2t = N-1000/	at +=0,	2=0	equations	
<u> 201-</u> 201-2011	= - G.2 (N-1000)	: C=0		~	
	× , e h	x = Vt co	50		
	The setting out for this	- 8+ a	0510	/	
	gradian was not very	- 8+ ×	13		
_	you need to show all the steps.	The HE	2		
	ii) at t-0 46 8000	16- 713	5		
	11) at 130, NS 8000				
	8000 - 1000 + 40	9 = -10	•		
	000 = 1000 +110	y= -10	>T+C		
	H = 7000 _0.2t	CEVSIA	0		
	N = 1000 + 7000 e	95-10	t+VSIND		
	4000 = 1000 + 7000 e	y= - 5.	t"+VISNO	+ C	
	3 = e ^{-0.2+}	at 1=0	656		
	7 V V	.: 456	÷.		
	$ln(\frac{3}{7}) = -0.2t$	ys-St	2+ Vtsin0+	6 V	
	t = 4.23 months	0 = - St	2 8tx1 +	6	
	. This and there was done	u- st	-2 + 4+ + 6	1	
)	* This good well	12===	- +1010		
		ii) ii	= 0	* This questa	
			3+ + 4 = 0	nes dere and	
	b) P(at least 2 chicken) -		t = 2		
	/		5		
	1 7 (0.4) (0.4) 6 7	10 10 (04)	4=-5/4	(), 8, (
		00000	1	5) 5 5	
	- 1 1344 128		9= 0.0	11 10 1-6	
	78125 78105	• / /	111) . 4	453	
			(11) $\chi = 1$	V3 0/11	
			9=-1	の(1)+の(立)	
	* Many students could. 7 de This que			<u> </u>	
-)	51	1 -	V-= (4)3	+36	
	The particle is travelling at		V= 9.2	m/s	
7.2 m/s down wards at		541 10	tand = 6	F3 -: 0= 41	
	un horizontal. * Manys	tudents did.	1 know		
	NOW TO FINA THE direction				

d) $1 + 2(2!) + 3(3!) + \dots + n(n!) = (n+1)! - 1$ when n = 1 LNS = RMS = 21-1 - 1 . true for n=1 when n=k 1+2(21)+..... k(K!)=(k+1)1-1 prove true for n=k+1 1+2(21)+... k(K1)+(k+1)(k+1)1 = (k+2)1-1 LHS = (k+1)! - 1 + (k+1)(k+1)!= (k+1)! [1+k+1] - 1V = (k+1)! (k+2) - 1= (k+2)! - 1= RMS : true for ny1 By Mathematical induction * This greation was done well. except some students didn't show the last step properly

Question 14 (15 Marks) $\chi = 2 + 5 \sin\left(3t + \frac{\pi}{4}\right) \Rightarrow \chi - 2 = 5 \sin\left(3t + \frac{\pi}{4}\right)$ a) $i) x = 0 + 5 \cos(3t + \frac{\pi}{4}) \times 3$ = 15 cos (3t+=) x = -15 sin (3t+= x3 = -45 sin (3t+T) = -9 [5 sin (31+] : = - 9 (x-2), as required ii) Maximum speed occurs at the centre of motion i.e. at x=2 $5\sin\left(3t+\pi\right)=0$ when x=2: 3t + TT = TT (tro)3t= 3TT 4 t= T see A+ x=2: x = 15 cos (3T + T) = 15 WSTT -15 m/see 12 max = 15 m/see at x=2

b). different arrangements of the word MAMMOTH using only 5 letters. Case 1: (1M) M ____ = 5! ways $Case 2: (2M'_{s}) M M = = \frac{5!}{21} \times 4C_{3}$ Case 3: $(3M'_{s}) MMM = - = \frac{5!}{3!} \times \frac{4}{2}$ Total arrangements $= 5! + 5! \times 4l_3 + 5! \times 4l_2$ $= 120 + 60 \times 4 + 20 \times 6$ 120 + 240 + 120 = 480 A One mark awarded for considering the different cases of repetition. One mark for the correct answer.

c) $V = \pi \int_{0}^{8} y^{2} dx$ $= \pi \int_{3}^{8} \frac{(\pi - i)^{2}}{(\pi + i)} d\pi$ $\frac{u^2 = x + 1}{2u du = dx}$ $=\pi \int_{2}^{2} \frac{(u^{2}-2)^{2}}{2} \cdot 2u \, du$ $\int u^2 - 1 = \chi$. $\int u^2 - 2 = \chi - 1$ $= 2\pi \int_{2}^{3} \left(\frac{u^{4} - 4u^{2} + 4}{u} \right) du \qquad \text{when } x = 8, u^{2} = 9$ $x = 3, u^2 = 4$ u = 2. $=2\pi \int_{0}^{3} \left(4^{3} - 4y + \frac{4}{4} \right) dy$ $= 2\pi \left[\frac{u^4}{u^4} - 2u^2 + 4\ln u \right]^3$ $= 2\pi \left[\frac{81 - 18 + 4 \cdot \ln 3}{4} - \frac{4 - 8 + 4 \cdot \ln 2}{4} \right]$ <u>7 25 + 4lu3 - 4lu2</u> 4 = 2TT | = 25T + 8TT (lu3-lu2) units # Most students substituted incorrectly with the new variable, back into the integral

d) $(I+\chi)^n = {}^n C_0 + {}^n C_1 \chi + {}^n C_2 \chi^2 + \dots + {}^n C_{n-1} \chi^{n-1} + {}^n C_n \chi^n$ Integrate both sides w.r.t.x: $\frac{(1+\pi)^{n+1}}{n+1} + C = \frac{n}{6} \times + \frac{n}{2} + \frac{n}{2} + \frac{n}{3} + \dots + \frac{n}{n} + \frac{n}{n} \times \frac{n+1}{n+1}$ Let x=0: $\frac{1}{n+1} + C = 0$:. $C = -\frac{1}{n+1}$ $\int_{0}^{\infty} \frac{(1+\chi)^{n+1} - 1}{2} = \int_{0}^{n} \frac{\chi + \frac{1}{2} \int_{0}^{1} \chi + \frac{1}{2} \int_{0}^$ (n+1)Let x = -1: noting that "Co = "Cn = 1 $\frac{-1}{n+1} = -1 + \frac{1}{2} C_1 - \frac{1}{3} C_2 + \dots + \frac{(-1)^n}{2} C_{n-1} + \frac{(-1)^{n+1}}{2}$ $\frac{1-1}{n+1} - \frac{(-1)(-1)^n}{n+1} = \frac{1}{2} n \binom{-1}{3} \binom{-1}{2} \binom{-1}{n} \binom$ $\frac{n+1-1}{n+1} + \frac{(-1)^n}{n+1} = \frac{1}{2} \frac{n(1-1)^n}{3} \frac{(2+1-1)^n}{2} \frac{n(1-1)^n}{n} \frac{n(1-1$ $\frac{n+(-1)^{n}}{n+1} = \frac{1}{2} \frac{n}{c_{1}} - \frac{1}{3} \frac{n}{c_{2}} + \dots + \frac{(-1)^{n}}{n} \frac{n}{c_{n-1}}$ \$ Most students forgot the constant of integration in the first step

e) $f(n) = An^{3} + Bn^{2} + (n + D)$ $f'(n) = 3An^{2} + 2Bn + C$ \$(1)=0: A+B+C+D=0 ... (1) f'(1)=0: 3A+2B+C =0 ... 2 f((-1)=0: 3A-2B+C=0--.3) f (-1)=-4; -A +B - C + D=-4... (7) 0+0: 2B+2D=-4 ---5 2-3: 4B = D B = OFrom(S): 20=-4 D = -2From (T): A+C-2=0 6 3A+C=0 -- (7) Prom (2): 1-6: 2A+2 =0 2A = -2 A = -1 From (b): -1+ C-2=0 C=3 .'. A=-1, B=0, C=3, D=-2.