FORM VI

MATHEMATICS EXTENSION 1

Examination date

Tuesday 8th August 2006

Time allowed

2 hours (plus 5 minutes reading time)

Instructions

All seven questions may be attempted.
All seven questions are of equal value.
All necessary working must be shown.
Marks may not be awarded for careless or badly arranged work.
Approved calculators and templates may be used.
A list of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet.
Hand in the seven questions in a single well-ordered pile.
Hand in a booklet for each question, even if it has not been attempted.
If you use a second booklet for a question, place it inside the first.
Keep the printed examination paper and bring it to your next Mathematics lesson.

Checklist

SGS booklets: 7 per boy. A total of 1000 booklets should be sufficient. Candidature: 120 boys.

Examiner

JNC
(a) Find the exact value of $\tan ^{-1}(-\sqrt{3})$.
(b) Differentiate $e^{2 x} \sin x$.
(c) Find the exact value of $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
(d) Find the acute angle, correct to the nearest minute, between the lines $3 x+y=4$ and $x-y=1$.
(e) Given $A(2,1)$ and $B(7,3)$, find the coordinates of the point C which divides the interval $A B$ externally in the ratio $2: 3$.
(f) Use the substitution $u=x+1$ to find $\int x(x+1)^{3} d x$.

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) Solve $\frac{3}{x-1} \leq 2$.
(b) Find the value of h if $x-2$ is a factor of $P(x)=3 x^{2}-2 h x+7$.
(c) Consider the function $f(x)=3 \cos ^{-1} \frac{x}{2}$.
(i) Evaluate $f(0)$.
(ii) State the domain and range of $y=f(x)$.
(iii) Sketch the graph of $f(x)$.
(d) A particle executes simple harmonic motion about the origin with period T seconds and amplitude A centimetres. Find its maximum speed in terms of T and A.
(a) Show that the equation of the normal to the parabola $x=2 a t, y=a t^{2}$ at the point where $t=T$ is given by $x+T y=2 a T+a T^{3}$.
(b)

In the diagram above, the two circles intersect at A and B, and $C A D, C B E, C P K$ and $D K E$ are straight lines.
(i) Give a reason why $\angle A P C=\angle A B C$.
(ii) Hence, or otherwise, show that $A D K P$ is a cyclic quadrilateral.
(c) A cup of hot milk at temperature T° Celsius loses heat when placed in a cooler environment. It cools according to the law given by the differential equation

$$
\frac{d T}{d t}=-k(T-S)
$$

where t is the time elapsed in minutes, S is the temperature of the environment in degrees Celsius and k is a positive constant.
(i) Show that $T=S+A e^{-k t}$, where A is a constant, is a solution of the differential equation.
(ii) (α) A cup of milk at $80^{\circ} \mathrm{C}$ is placed in an environment at $20^{\circ} \mathrm{C}$, and after ten minutes it has cooled to $40^{\circ} \mathrm{C}$. Find the exact value of k.
(β) Find the temperature of the milk after five more minutes have elapsed. Give your answer rounded to the nearest tenth of a degree.
(a)

The diagram above shows a 5 metre ladder leaning against a wall on level ground. The base of the ladder is sliding away from the wall at 2 centimetres per second. Find the rate at which the angle of inclination θ is changing when the foot of the ladder is 3 metres from the wall.
(b) Find the coefficient of x^{2} in the expansion of $\left(x^{2}+\frac{2}{x}\right)^{10}$.
(c) (i) Taking about one-third of a page and on the same set of axes, draw sketches of $y=\ln x$ and $y=\sin x$ for $0 \leq x \leq 2 \pi$.
(ii) On your diagram, indicate the root α of the equation $\ln x-\sin x=0$.
(iii) Show that $\frac{\pi}{2}<\alpha<\frac{3 \pi}{4}$.
(iv) Use Newton's method once, with first approximation $x_{1}=\frac{5 \pi}{8}$, to find a better approximation for α. Give your answer correct to two decimal places.
(a)

In the diagram above, $A B D$ and $A E D$ are isosceles triangles with $A D=B D=A E$, and $B D$ bisects $\angle A B C$. Let $\angle A B D=\angle C B D=\theta$ and let $\angle D C B=\alpha$.
(i) Show that $\angle E A B=\alpha$, giving reasons.
(ii) Hence show that $\triangle A B E \| \triangle C B D$.
(iii) Deduce that $A E^{2}=B E \times C D$.
(b) (i) By squaring both sides, show that $2 n+3>2 \sqrt{(n+1)(n+2)}$ for $n>0$.
(ii) Prove by mathematical induction that

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

for all positive integer values of n.

QUESTION SIX (12 marks) Use a separate writing booklet.
(a) By using the substitution $x=\tan \theta$, evaluate $\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$.
(b) When $(3+2 x)^{n}$ is expanded as a polynomial in x, the coefficients of x^{5} and x^{6} are equal. Find the value of n.
(c)

In the diagram above, a particle is projected from the origin O with speed U metres per second at an angle of elevation α. At the same instant, another particle is projected from the point A, h metres directly above O, with speed V metres per second at an angle of elevation β, where $\beta<\alpha$. The particles move freely under gravity in the same plane of motion and collide T seconds after projection.

You may assume that the horizontal and vertical components of displacement at time t seconds of the particle projected from O are given by

$$
x_{O}=U t \cos \alpha \text { and } y_{O}=U t \sin \alpha-\frac{1}{2} g t^{2} \text { respectively. }
$$

You may also assume that the horizontal and vertical components of displacement at time t seconds of the particle projected from A are given by

$$
x_{A}=V t \cos \beta \text { and } y_{A}=h+V t \sin \beta-\frac{1}{2} g t^{2} \text { respectively. }
$$

Show that

$$
T=\frac{h \cos \beta}{U \sin (\alpha-\beta)} .
$$

(a) (i) Use the binomial theorem to find a simplified expansion for

$$
(1+x)^{10 n}+(1-x)^{10 n}
$$

where n is a positive integer.
(ii) Hence evaluate

$$
1+\binom{30}{2}+\binom{30}{4}+\cdots+\binom{30}{30}
$$

(b) Consider the function $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
(i) Show that $f(x)$ is an odd function.
(ii) Examine the behaviour of $f(x)$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$.
(iii) Show that the curve is increasing for all values of x.
(iv) Sketch the curve $y=f(x)$.
(v) If k is a positive constant, show that the area bounded by the curve $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ and the lines $x=0, x=k$ and $y=1$ is always less than $\ln 2$.

FORM VI - EXTENSION 1 TRIAL - 2006 Question ONE
b) $\frac{d}{d x}\left(e^{2 x} \sin x\right)=2 e^{2 x} \sin x+e^{2 x} \cos x$
a) $\tan ^{-1}(-\sqrt{3})=-\frac{\pi}{3}$
c)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x & =\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 x) d x \\
& =\frac{1}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{2}+0\right)-0\right] \\
& =\frac{\pi}{4}
\end{aligned}
$$

d)
2)

$$
\begin{aligned}
& \tan \theta=\frac{-3-1}{1+(-3)(} \\
&=2^{2} \\
& \therefore \theta=63^{\circ} 26^{\prime} \\
& A-3
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
x & =\frac{-6+14}{-1}, \\
& =-8 & & y
\end{array}\right) \frac{-3+6}{-1}
$$

$$
\therefore c=(-8,-3)
$$

f)

$$
\begin{aligned}
& \mu=x+1, \\
& \frac{d u}{d x}=1 \\
& \int x(x+1)^{3} d x=\int(u-1) u^{3} d u \\
&=\int u^{4}-u^{3} d u \\
&=\left[\frac{u^{5}}{5}-\frac{u^{4}}{4}\right]+c \\
&=\frac{1}{5}(x+1)^{5}-\frac{1}{4}(x+1)^{4}+c
\end{aligned}
$$

QuESTION TWO
a)

$$
\begin{gathered}
\frac{3}{x-1} \leqslant 2, x \neq 1 \\
3(x-1) \leqslant 2(x-1)^{2} \\
(x-1)(2(x-1)-3) \geqslant 0 \\
(x-1)(2 x-5) \geqslant 0 \\
\therefore \quad x<1 \text { or } x \geqslant \frac{5}{2}
\end{gathered}
$$

b) $P(2)=12-4 h+7=0$

$$
\therefore h=\frac{19}{4}
$$

c) (i) $f(0)=\frac{3 \pi}{2}$
(ii) $\begin{aligned}-1 & \leqslant \frac{x}{2} \\ -2 & \leqslant x\end{aligned} \quad$ and $0 \leqslant 2 \leqslant y \leqslant \pi$

d)

$$
\frac{2 \pi}{n}=T
$$

$\therefore n=\frac{2 \pi}{T}$ and amplitude is A

$$
x=A \sin \left(\frac{2 \pi t}{T}+\alpha\right) \quad \stackrel{O R}{T} v^{2}=\left(\frac{2 \pi}{T}\right)^{2}\left(A^{2}-x^{2}\right)
$$

$$
\ddot{x}=\frac{2 \pi A}{T} \sin \cos \left(\frac{2 \pi t}{T}+\alpha\right) / \operatorname{Max} \text { at } x=0 \text {; }
$$

Max veloaty when

$$
\cos \left(\frac{2 \pi t}{T}+\alpha\right)=+1
$$

$$
\text { So max speed }=\frac{2 \pi A}{T}
$$

$$
\begin{aligned}
& v^{2}=\left(\frac{2 \pi A}{T}\right)^{2} \\
& v= \pm \frac{2 \pi A}{T} \\
& \text { so max speed is } \frac{2 \pi A}{T}
\end{aligned}
$$

QUESTION THREE
(a)

$$
\left.\begin{array}{rl}
x=2 a t \\
y=a t^{2}
\end{array}\right\} \quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

$$
=t
$$

when $t=T, \quad \frac{d y}{d x}=T, x=2 a T, y=a T^{2}$.

$$
\begin{aligned}
T y-a T^{3} & =-x+2 a T \\
x+T y & =2 a T+a T^{3}
\end{aligned}
$$

(b) (i) $\angle A P C=\angle A B C$ (angles at arounference standing on same are $A C$)
(ii) Let $\angle A P C=\angle A B C=\alpha$

$$
\begin{aligned}
& \angle A D E=\alpha \text { (exterior } \angle \text { of cyolic quad } A D E B \text {) } \\
& \angle A P K=180^{\circ}-\alpha \text { (straight } \angle \text {) } \\
& \angle A P K+\angle A D E=180^{\circ}-\alpha+\alpha \\
& =180^{\circ}
\end{aligned}
$$

$\therefore A D K P$ is a cyanic quadmiateral since interior opposite angles are supplementary.
(c) (i) $\quad T=S+A e^{-k t}$

$$
\begin{equation*}
T-S=A e^{-k t} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{d}{d t}\left(S+A e^{-k t}\right) \\
& =-k A e^{-k t} \\
& =-k(T-S) \text { from(1) }
\end{aligned}
$$

(ii) (α) when $t=0, S=20, T=80$.

$$
80=20+A e^{0}
$$

$$
A=60
$$

when $t=10,5=20, T=40$.

$$
\begin{aligned}
40 & =20+60 e^{-10 k} \\
e^{-i 0 k} & =\frac{1}{3} \\
k & =-\frac{1}{10} \ln \frac{1}{3} \text { OR } \frac{1}{10} \ln 3
\end{aligned}
$$

(β) when $t=15$,

$$
\begin{aligned}
T & =20+60 e^{-15 k} \\
& \vdots 31.5^{\circ} \mathrm{C} \\
& \text { (nearest tout of a degree) }
\end{aligned}
$$

QUESTION FOUR
(a)

$$
\frac{d x}{d t}=0.02 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{x}{5}=\cos \theta
$$

$$
\therefore \quad \theta=\cos ^{-1} \frac{x}{5}
$$

$$
\therefore \frac{d \theta}{d x}=\frac{-1}{\sqrt{25-x^{2}}}
$$

By the chain rule,

$$
\begin{aligned}
\frac{d \theta}{d t} & =\frac{d \theta}{d x} \cdot \frac{d x}{d t} \\
& =\frac{-0.02}{\sqrt{25-x^{2}}} \\
\frac{d \theta}{d t} & =\frac{-0.02}{4} \\
& =\frac{-1}{200} \text { or }-0.005 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\text { when } x=3, \quad \frac{d \theta}{d t}=\frac{-0.02}{4}
$$

(b) The general term is ${ }^{10} C_{r} \cdot\left(x^{2}\right)^{10-r} \cdot\left(\frac{2}{x}\right)^{r}$

$$
\begin{aligned}
& ={ }^{10} C_{r} \cdot x^{20-2 r} \cdot 2^{r} \cdot x^{-r} \\
& ={ }^{10} C_{r} \cdot 2^{r} \cdot x^{20-3 r}
\end{aligned}
$$

We require $20-3 r=2$

$$
\text { ie. } r=6
$$

So the coefficient of x^{2} is

$$
{ }^{10} C_{6} \cdot 2^{6}=13440
$$

c) (i)

(ii) α is marked on graph.
(iii) $\ln \frac{\pi}{2}-\sin \frac{\pi}{2} \doteqdot-0.548 \ldots$

$$
\ln \frac{3 \pi}{4}-\sin \frac{3 \pi}{4} \doteqdot 0.1499 \ldots
$$

since $f\left(\frac{\pi}{2}\right)<0$ and $\left.f\left(\frac{3 \pi}{4}\right)>0, \frac{\pi}{2}<\alpha<\frac{3 \pi}{4}\right\}$
(iv) $f^{\prime}(x)=\frac{1}{x}-\cos x$

So $\left.x_{2}=\frac{5 \pi}{8}-\frac{f\left(\frac{5 \pi}{8}\right)}{f^{\prime}\left(\frac{5 \pi}{8}\right)}\right\}$

$$
\doteqdot 2.24
$$

QUESTION FIVE
(a) (i)

$$
\begin{aligned}
\therefore \angle A E D & =\theta+\alpha \text { (base angles of isosceles } \triangle A D E) \\
\therefore \angle E A B & =\angle A E D-\angle A B E\binom{\text { exterior angle }}{\text { of } \triangle A B E} \\
& =(\theta+\alpha)-\theta \\
& =\alpha
\end{aligned}
$$

(ii) In triangles $A B E$ and $C B D$:

$$
\left.\begin{array}{rl}
\text { n triangles } A B E \text { and } C B D: \\
& \angle A B E= \\
\angle E A B= & \angle D C B \text { (fro mpart (i)) }
\end{array}\right\}
$$

(iii)

$$
\begin{aligned}
& \frac{A E}{C D}=\frac{B E}{B D} \quad \text { (matching } \\
& \text { the s. } \\
& A E \times B D=B E \times C D
\end{aligned}
$$

$\left.\begin{array}{c}\text { But } A E=B D \text { (given), } \\ \text { so } A E^{2}=B E \times C D\end{array}\right\}$
(b) (i)

$$
\text { (i) } \begin{aligned}
& \text { CHS }^{2}=(2 n+3)^{2} \\
&=4 n^{2}+12 n+9 \\
& \text { RHS }=4(n+1)(n+2) \\
&=4 n^{2}+12 n+8 \\
& \therefore \quad \text { CHS }
\end{aligned}
$$

(ii) When $n=1$, CHS $=\frac{1}{\sqrt{1}}=1$

$$
\text { and RHS }=2(\sqrt{2}-1) \doteqdot 0.8
$$

\therefore LHS $>$ RHS, so the result is true for $n=1$.
Suppose that the result is true for the positive integer $n=k$,
ie. Suppose that $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{k}}>2(\sqrt{k+1}-1)$
Prove that the result is true for $n=k+1$, ie. prove that $1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2(\sqrt{k+2}-1)$.)

$$
\begin{aligned}
\text { LHS } & =1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} \\
& >2(\sqrt{k+1}-1)+\frac{1}{\sqrt{k+1}} \quad \text { (using *) } * \\
& =\frac{2[(k+1)-\sqrt{k+1}]+1}{\sqrt{k+1}} \\
& =\frac{2 k+3-2 \sqrt{k+1}}{\sqrt{k+1}} \\
& >\frac{2 \sqrt{(k+1)(k+2)}-2 \sqrt{k+1}}{\sqrt{k+1}} \quad \text { (using part (i)) } \\
& =2(\sqrt{k+2}-1)
\end{aligned}
$$

$=$ RHS , so the result is true for $n=k+1$ if it is true for $n=k$.
R..t the result is true for $n=1$, so, by. induction, it is trues for all

Question Six
a)

$$
, \tan \theta=0
$$

$$
\therefore \theta=0
$$

$$
x=1, \quad \begin{aligned}
\therefore \theta & =0 \\
\tan \theta & =1
\end{aligned}
$$

$$
\therefore \theta=\frac{\pi}{4}
$$

b) $(3+2 x)^{n}$ has general term ${ }^{n} c_{r} 3^{n-r} 2^{r} x^{r}$.

When $r=5$ and $r=6$ we have:

$$
\begin{aligned}
{ }^{n} C_{5} 3^{n-5} 2^{5} & ={ }^{n} c_{6} 3^{n-6} 2^{6} \\
\frac{n!}{5!(n-5)!} \cdot 3 & =\frac{n!}{6!(n-6)!} \cdot 2 \\
6 \times 3 & =2 \times(n-5) \\
18 & =2 n-10 \\
\therefore n & =14
\end{aligned}
$$

$$
\begin{aligned}
& x=\tan \theta \\
& \frac{d x}{d \theta}=\sec ^{2} \theta \\
& d x=\sec ^{2} \theta d \theta \\
& \text { When } x=0 \\
& \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{3 / 2}} d x=\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} \theta d \theta}{\left(1+\tan ^{2} \theta\right)^{3 / 2}} \\
& =\int_{0}^{\frac{\pi}{4}} \frac{d \theta}{\sec \theta} \\
& =[\sin \theta]_{0}^{\frac{\pi}{4}} \\
& =\sin \frac{\pi}{4}-0 \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

c)

$$
\left.\begin{array}{l}
x_{0}=u t \cos \alpha \\
y_{0}=u t \sin \alpha-\frac{1}{2} g t^{2}
\end{array}\right\}\left\{\begin{array}{l}
x_{A}=V t \cos \beta \\
y_{A}=h+V t \sin \beta-\frac{1}{2} g t^{2}
\end{array}\right\}
$$

particles collide when $x_{0}=x_{A}$

$$
\begin{align*}
U+\cos \alpha & =V t \cos \beta \\
U \cos \alpha & =V \cos \beta \tag{1}
\end{align*}
$$

when $y_{0}=y_{A}$ and $t=T$:

$$
\begin{align*}
& U T \sin \alpha-\frac{1}{2} g T^{2}=h+V T \sin \beta-\frac{1}{2} g T^{2} \\
& T(u \sin \alpha-v \sin \beta)=\alpha \\
& T=\frac{h}{U \sin \alpha-V \sin \beta} \\
& =\frac{h}{u \sin \alpha-\frac{u \cos \alpha}{\cos \beta} \cdot \sin \beta} \quad \sqrt{\text { from (1) }} \\
& =\frac{h}{\frac{u \sin \alpha \cos \beta-u \cos \alpha \sin \beta}{\cos \beta}} \\
& =\frac{h \cos \beta}{u(\sin \alpha \cos \beta-\cos \alpha \sin \beta)} \\
& =\frac{h \cos \beta}{u \sin (\alpha-\beta)}
\end{align*}
$$

7. (a) (i)

$$
\begin{aligned}
& \text { (i) }(1+x)^{10 n}+(1-x)^{10 n} \\
&= 1+\binom{10 n}{1} x+\binom{10 x}{2} x^{2}+\cdots+\binom{10 n}{10 n-1} x^{10 n-1}+x^{10 n} \\
&+1-\binom{10 n}{1} x+\binom{10 n}{2} x^{2}-\cdots-\binom{10 n}{10 n-1} x^{100-1}+x^{11} \\
&= 2\left[1+\binom{10 n}{2} x^{2}+\cdots+\binom{10 n}{10 n-2} x^{10 n-2}+x^{10 n}\right]
\end{aligned}
$$

(ii) Let $x=1$ and $n=3$

So $(1+1)^{30}+0^{30}=2\left[1+\binom{30}{2}+\binom{20}{4}+\cdots+\binom{30}{28}+\binom{30}{30}\right]$, ie $1+\binom{30}{2}+\binom{30}{4}+\cdots+\binom{30}{28}+\binom{30}{30}=2^{29}$
(b) (i)

$$
\begin{aligned}
f(x) & =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
\Rightarrow f(-x) & =\frac{e^{-x}-e^{x}}{e^{-x}+x} \\
& =-\frac{e^{x}+e^{-x}}{e^{x}+e^{-x}} \\
\Rightarrow f(-x) & =-f(x)
\end{aligned}
$$

Hance $f(x)$ is an odd fuenction.
(ii) $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

$$
\text { So } f(x)=\frac{1-e^{-2 x}}{1+e^{-2 x}}
$$

As $x \rightarrow \infty, e^{-2 x} \rightarrow 0$
So as $x \rightarrow \infty, f^{\prime}(x) \rightarrow 1$
Furthermore as $f(x) \dot{m}$ odd thon as $x \rightarrow-\infty, f(x) \rightarrow-1$
(iii)

$$
\begin{aligned}
f(x) & =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& =\frac{e^{2 x}-1}{e^{2 x}+1} \\
\Rightarrow f^{\prime}(x) & =\frac{2 e^{2 x}\left(e^{2 x}+1\right)-2 e^{2 x}\left(e^{2 x}-1\right)}{\left(e^{2 x}+1\right)^{2}} \\
& =\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}
\end{aligned}
$$

But $e^{2 x}>0$ for all x.
So $f^{\prime}(x)>0$ for all $\left.x.\right\}$

(V)

$$
\begin{aligned}
A & =k-\int_{0}^{k} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x \\
& =k-\left[\ln \left(e^{x}+e^{-x}\right)\right]_{0}^{k} \\
& =k-\ln \left(e^{k}+\frac{1}{e^{k}}\right)+\ln 2
\end{aligned}
$$

So

$$
\begin{aligned}
A & =k-\ln \left(\frac{e^{2 k}+1}{e^{k}}\right)+h 2 \\
& =k-\ln \left(e^{2 k}+1\right)+h e^{k}+h 2 \\
& =2 k-h\left(e^{2 k}+1\right)+h 2
\end{aligned}
$$

Now as lost h_{x} and $e^{2 x}$ are imaneming functions then $h\left(e^{2 k}+1\right)>h e^{2 k n}=2 k$

Hence $2 k-h\left(e^{2 k}+1\right)<0$ for all $k>0$
Hence $A<h 2$ as requireal.

