

FORM VI

MATHEMATICS EXTENSION 1

Thursday 9th August 2012

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
Total - 70 Marks
- All questions may be attempted.

Section I-10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

- Write your candidate number clearly on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Checklist

- SGS booklets - 4 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 128 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the remainder when $P(x)=x^{2}+5 x+7$ is divided by $(x+3)$?
(A) $-\frac{109}{9}$
(B) $\frac{19}{9}$
(C) 31
(D) 1

QUESTION TWO

The point R divides the interval joining $P(a, 2 b)$ and $Q(3 a,-b)$ externally in the ratio $2: 3$. What are the coordinates of R ?
(A) $(-3 a, 8 b)$
(B) $\left(\frac{11 a}{5}, \frac{4 b}{5}\right)$
(C) $(7 a,-7 b)$
(D) $\left(\frac{9 a}{5}, \frac{8 b}{5}\right)$

QUESTION THREE

The term independent of x in the expansion of $\left(x+\frac{2}{x}\right)^{6}$ is:
(A) 160
(B) 80
(C) 40
(D) 20
\qquad

QUESTION FOUR

A simplified expression for $\binom{n+1}{n-1}$ is:
(A) $\quad \frac{1}{2}\left(n^{2}-n\right)$
(B) $\frac{1}{2}\left(n^{2}+n\right)$
(C) $n^{2}-n$
(D) $n^{2}+n$

QUESTION FIVE

It is given that x_{1} is a good approximate solution of $\cos x=x$. Using one step of Newton's method, a better approximation is:
(A) $\quad x_{2}=x_{1}-\frac{\cos x_{1}+x_{1}}{\sin x_{1}+1}$
(B) $\quad x_{2}=x_{1}-\frac{\cos x_{1}-x_{1}}{\sin x_{1}-1}$
(C) $\quad x_{2}=x_{1}+\frac{\cos x_{1}-x_{1}}{-\sin x_{1}+1}$
(D) $\quad x_{2}=x_{1}+\frac{\cos x_{1}-x_{1}}{\sin x_{1}+1}$

QUESTION SIX

Which diagram best represents $P(x)=(x-a)^{2}\left(b^{2}-x^{2}\right)$, where $a>b$?
(A)

(B)

(C)

(D)

QUESTION SEVEN

What is the inverse function of $f(x)=\frac{5+e^{2 x}}{3}$?
(A) $\frac{3}{5+e^{2 x}}$
(B) $e^{5-3 x}$
(C) $\frac{1}{2} \ln (3 x-5)$
(D) $\frac{1}{2} \ln (5 x-3)$

QUESTION EIGHT

Consider the polynomial $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, where a, b, c and d are real numbers. One of the zeros of this polynomial is 1 . What is the value of $a+b+c+d$?
(A) -1
(B) $-1-\alpha^{2}$
(C) $\quad-2-\alpha^{2}$
(D) 0

QUESTION NINE

An expression for the general solution to the trigonometric equation $\tan 3 x=-\sqrt{3}$ is:
(A) $\quad x=\frac{n \pi}{3}-\frac{2 \pi}{9}$ where n is any integer
(B) $\quad x=\frac{n \pi}{3}+\frac{\pi}{3}$ where n is any integer
(C) $\quad x=\frac{n \pi}{3}-\frac{\pi}{3}$ where n is any integer
(D) $\quad x=\frac{n \pi}{3}+\frac{2 \pi}{9}$ where n is any integer

QUESTION TEN

A ball is thrown into the air from a point O, where $x=0$, with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle $\theta=\tan ^{-1} \frac{3}{4}$ to the horizontal. If air resistance is neglected and the acceleration due to gravity is taken as $-10 \mathrm{~m} / \mathrm{s}^{2}$, then the ball reaches its greatest height after:
(A) 1.5 seconds
(B) 15 seconds
(C) $\frac{2}{3}$ of a second
(D) 3 seconds

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet. Marks
(a) Factorise $a^{3}+27 b^{3}$.
(b) Differentiate $\sin ^{-1} 5 x$.
(c) Find $\int \frac{d x}{36+x^{2}}$.
(d) Evaluate $\int_{0}^{\pi} \sin ^{2} x d x$.
(e) Find $\int x \sqrt{2+x^{2}} d x$ using the substitution $u=2+x^{2}$.
(f) Solve $\frac{4}{x+1}<3$.
(g) The variable point $\left(3 t, 4 t^{2}\right)$ lies on a parabola. Find the Cartesian equation of this parabola.
(h) Find the coefficient of x^{4} in the expansion of $\left(3+x^{2}\right)^{5}$.
(i) Prove that $\tan \left(\frac{\pi}{4}+x\right)=\frac{\cos x+\sin x}{\cos x-\sin x}$, where $\cos x-\sin x \neq 0$.

QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks
(a) Evaluate $\lim _{x \rightarrow 0} \frac{2 \sin 3 x}{5 x}$.
(b)

In the diagram above, $A B$ and $C D$ are intersecting chords. The tangent at B is parallel to $C D$.
Copy this diagram into your exam booklet. Let $\angle X B C=\alpha$.
Prove that $A B$ bisects $\angle C A D$.
(c)

HMAS Tarakan is enroute to carry out its latest mission in Cairns. It is first observed from the top of a 200 m cliff, $A B$ at an angle of depression of 8° when it is at the point Q. Ten minutes later it is observed at point P with an angle of depression of 11°. Let $\angle P B Q=\theta$. The bearing of Q from B is $130^{\circ} \mathrm{T}$ and the bearing of P from B is $210^{\circ} \mathrm{T}$.
(i) Show that $P Q^{2}=200^{2}\left(\tan ^{2} 79^{\circ}+\tan ^{2} 82^{\circ}-2 \tan 79^{\circ} \tan 82^{\circ} \cos \theta\right)$.
(ii) Find the speed of HMAS Tarakan in km / h correct to three significant figures.

QUESTION TWELVE (Continued)
(d) (i) Show that $\frac{d}{d x}\left(e^{4 x}(\cos x-4 \sin x)\right)=-17 e^{4 x} \sin x$.
(ii) Hence find $\int e^{4 x} \sin x d x$.
(e) The rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed by the differential equation $\frac{d T}{d t}=k(T-A)$ where t is the time in minutes and k is a constant.
(i) Show that $T=A+B e^{k t}$, where B is a constant, is a solution of the differential equation.
(ii) An object warms from $5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$ in 20 minutes. The temperature of the surrounding air is $25^{\circ} \mathrm{C}$. Find the temperature of the object after a further 50 minutes have elapsed. Give your answer to the nearest degree.

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.
(a) The polynomial $P(x)=a x^{3}-3 x-1$ has a remainder of -27 when divided by $(x+2)$.
(i) Show that $a=4$.
(ii) Show that $(x-1)$ is a factor of $P(x)$.
(iii) Hence factorise $P(x)$ fully and sketch the curve $y=P(x)$ showing clearly all intercepts with the axes.
(b) Use the principle of mathematical induction to show that $n^{3}+2 n$ is divisible by 3 for all positive integers n.
(c)

A, B, C, P, Q and R are points on a circle such that $\angle A B C$ and $\angle P Q R$ are right angles.
Copy this diagram into your answer booklet.
(i) Explain why $P R=C A$.
(ii) Prove that $A P$ is equal and parallel to $C R$.
(d) Consider the identity of $(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$.
(i) Show that $1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+(-1)^{n}=0$.
(ii) Show that $1+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\ldots+\frac{1}{n}\binom{n}{n-1}=\frac{2\left(2^{n}-1\right)}{n+1}$.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks
(a)

A conical vessel has height 20 cm and radius 20 cm . Water is poured into this vessel at a constant rate of $24 \mathrm{~cm}^{3}$ per second. The depth of water is $h \mathrm{~cm}$ at time t seconds.
(i) Show that the volume can be written $V=\frac{1}{3} \pi h^{3}$.
(ii) What is the rate of increase of the cross-sectional area A of the surface of the liquid when the depth is 16 cm ?
(b) A particle moves along the x-axis starting at $x=0 \cdot 5$. Its velocity, v metres per second, is described by $v=\sqrt{6 x} e^{-x^{2}}$, where x is the displacement of the particle from the origin.
(i) Find the acceleration of the particle as a function of x.
(ii) Find the maximum speed attained by the particle.
(iii) Show that T, the time taken to travel from $x=1$ to $x=3$, can be expressed as

$$
T=\frac{1}{\sqrt{6}} \int_{1}^{3} x^{-\frac{1}{2}} e^{x^{2}} d x
$$

Do NOT evaluate this integral.
(c)

Points A, B and C lie on a circle as shown above. The length of the chord $A B$ is a constant k. The sum of the lengths of the chords $C A$ and $C B$ is ℓ. Suppose that $\angle A B C=\theta$ radians and $\angle B C A=\alpha$ radians.
(i) Show that $\ell=\frac{k}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha))$.
(ii) Explain why α is a constant.
(iii) Show that $\frac{d \ell}{d \theta}=0$ when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$.
(iv) Hence show that the maximum value of ℓ occurs when $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$.

SGS Trial 2012 Form VI Mathematics Extension 1 Page 12

BLANK PAGE

SGS Trial 2012 Form VI Mathematics Extension 1 Page 13

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

Candidate number:

Question One

AB \bigcirc
C

D

Question Two

A \bigcirc
B
C

D \bigcirc

Question Three

A \bigcirc
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
$\mathrm{C} \bigcirc$
D

Question Five

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Six

- Fill in the circle completely.
- Each question has only one correct answer.
A \bigcirc
BD \bigcirc

Question Seven

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Eight

AB
C
D \bigcirc

Question Nine

$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

Question Ten

A \bigcirc
B \bigcirc
C
\bigcirc
D \bigcirc

Trial

1	D
2	A
3	A
4	B
5	D
6	C
7	C
8	A
9	D
10	A

Qll.
(a) $a^{3}+22 b^{3}=(a+3 b)\left(a^{2}-3 a b+a b^{2}\right)$.
(a) $\quad y=\sin ^{-1} 5 x$

$$
\frac{d y}{d x}=\frac{5}{\sqrt{1-25 x^{2}}} \text { or } \frac{1}{\sqrt{\frac{1}{25}-x^{2}}}
$$

(c) $\int \frac{d x}{36+x^{2}}=\frac{1}{6} \tan ^{-1} \frac{x}{6}+c$
(d) $\int_{0}^{\pi} \sin ^{2} x d x=\frac{1}{2} \int_{0}^{\pi}(1-\cos 2 x) d x$

$$
\begin{aligned}
& =\frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi} \\
& =\frac{\pi}{2}
\end{aligned}
$$

cel $\int x \sqrt{2+x^{2}} d x$

$$
\begin{aligned}
u & =2+x^{2} \\
d u & =2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int \mu^{\frac{1}{2}} d u \\
& =\frac{1}{2} \frac{3}{3} \mu^{3 / 2}+c \\
& =\frac{1}{3}\left(2+x^{4}\right)^{3 / 2}+c
\end{aligned}
$$

(does ust matter of exta sturdous 20 us uxe scho.)
(f)

$$
\begin{gathered}
\frac{4}{x+1}<3 \\
4(x+1)<3(x+1)^{2} \\
(x+1)[4-3(x+1)]<0 \\
(x+1)(1-3 x)<0
\end{gathered}
$$

$$
x<-1 \text { or } x>\frac{1}{3} \text {. }
$$

(g)

$$
\begin{aligned}
x=3 t \text { and } y & =4 t^{2} \\
\text { so } t=\frac{x}{3} \text { so } y & =4\left(\frac{x}{3}\right)^{2} \\
y & =\frac{4 x^{2}}{9} \text { or } q y=4 x^{2}
\end{aligned}
$$

(h) $\int_{2} 3^{3}\left(x^{2}\right)^{2}$ is tem in x^{y}.

So coctitio ${ }^{5} \mathrm{C}_{2} 3{ }^{3}$

$$
=270
$$

$\left(\sqrt{ } \mathrm{forr}^{5} \mathrm{C}_{2}\right.$ and $\left.\sqrt[3]{ }{ }^{3}\right)$.
(i)

$$
\begin{aligned}
L H S & =\tan \left(\frac{4}{4}+x\right) \\
& =\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x} \\
& =\frac{1+\tan x}{1-\tan x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1+\frac{\sin x}{\cos x}}{1-\frac{\operatorname{sen} x}{\cos }} \times \frac{\cos x}{\cos x} \\
& =\frac{\cos x+\sin x}{\cos x-\operatorname{sen} x} \\
& =\text { RHS. }
\end{aligned}
$$

Q12.
(a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 \sin 3 x}{5 x} & =2 \times \frac{3}{5} \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x} \\
& =\frac{6}{5}
\end{aligned}
$$

a)

The angla logtowen toment ans clord sery it Tha angle w the abtrmat segmaxt
So $\angle X B A=\angle C A B=\alpha$
$\angle X B C=\angle B C D=\alpha$, altemate ampla, $x y 11 e D$ $\angle B C D=\angle B A D=\alpha$, angles in the lowne expment so $\angle B C D=\angle B A D=\alpha$ so $A B$ bisecto $\angle C A D$.
(c)

2 mark for Shown where $x^{\circ}+8 z^{\circ}$ come from-euthe terran: or cations.

(i)

$$
\begin{array}{ll}
\tan 09=\frac{P B}{200} & \tan 82=\frac{\beta Q}{\tan 8^{2}} \\
P B=200 \tan 79 & \text { and } \quad B Q=200 \cot \beta .
\end{array}
$$

(ii) lesung cescene rule her $\triangle P B Q$.

$$
\begin{aligned}
& P Q^{2}=(200 \tan 79)^{2}+(200 \tan 22)^{2}- \\
& 2 \times 200 \tan 79 \times 200 \tan 82 \times \cos \theta \\
& \begin{array}{l}
=200^{\circ}\left(\tan ^{2} 79^{\circ}+\tan ^{2} 82^{\circ}-2 \tan 79 \tan 88\right) \\
=2575279.958
\end{array} \\
& =25752790955 \\
& P C \text { = }=1604-76 \mathrm{~m} \\
& \text { Speed }=\frac{\text { Distance }}{\text { Time }}=\frac{P Q}{10} \text { imper min } \\
& =\frac{1604-76}{10} \frac{60}{1000} \mathrm{~lm} \text { per lex. } \\
& =9.6 \mathrm{Kin} \text { perk. }
\end{aligned}
$$

(d)
(i)

$$
\begin{array}{rlrl}
y=e^{4 x}(\cos x-4 \sin x) & & u=e^{4 x} & v=\cos x-4 \sin x \\
\begin{array}{rlr}
\frac{d y}{d x} & =v u^{\prime}+u v^{\prime} & u^{\prime}=4 e^{4 x}
\end{array} \quad v^{\prime}=-\sin x-4 \cos x \\
& =4 e^{4 x}(\cos x-4 \sin x)+e^{4 x}(-\sin x-4 \cos x) \\
& =4 e^{4 x} \cos x-16 e^{4 x} \sin x-e^{4 x} \sin x-4 e^{4 x} \cos x \\
& =-17 e^{4 x} \sin x
\end{array}
$$

(ii) $\int-17 e^{4 x} \sin x d x=e^{4 x}(\cos x-4 \sin x)+c$
so $\int e^{4 x} \sin x d x=-\frac{1}{17} e^{4 x}(\cos x-4 \sin x)+C$
ce)(i)

$$
\begin{aligned}
T & =A+B e^{\beta t} \\
\frac{d T}{d t} & =b B e^{B t}, \quad B e^{b t}=T-A \\
& =k(T-A)
\end{aligned}
$$

(ii)

$$
\begin{gathered}
t=0, \quad T=5, \quad A=25 \\
5=25+B \\
B=-20
\end{gathered}
$$

So $T=25-20 e^{k t}$

$$
\begin{gathered}
t=20, \quad T=15 \text { geve } \quad 15=25-20 e^{20 k} \\
-10=-20 e^{20 k} \\
e^{20 k}=\frac{1}{2} \\
k=\frac{1}{20} \ln \frac{1}{2} \\
t=70, \quad T=25-20 e^{\frac{1}{10} \ln \frac{1}{2}(>0)} \\
\simeq 23^{\circ}
\end{gathered}
$$

Q13.
(a) (i)

$$
\begin{gathered}
P(x)=a x^{3}-3 x-1 \\
P(-2)=-8 a+6-1=-27 \\
-8 a=-32 \\
a=4 .
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& P(x)=4 x^{3}-3 x-1 \\
& P(1)=4-3-1=0
\end{aligned}
$$

So $(x-1)$ as factor
(iii)

$$
\begin{array}{r}
\frac{4 x^{2}+4 x+1}{(x-1)} \frac{4 x^{3}-0 x^{2}-3 x-1}{4 x^{3}-4 x^{2}} \\
\frac{4 x^{2}-3 x}{x}-4 x \\
x-1
\end{array}
$$

now $4 x^{2}+4 x+1=(2 x+1)(2 x+1)$
so $4 x^{3}-3 x-1=(x-1)(2 x+1)(2 x+1)$.

cha
A. Consider $n=1,1^{3}+2=3$ which is divisible boy 3 So the statement is true for $n=1$.
B. Suppose that $k^{3}+2 k$ es deveriffle by 3 for some posture integer k ie suppose that $k^{3}+2 k=3 M, M$ an integer Low prove that $(k+1)^{3}+2(k+1)$ is divisible by 3.

$$
\text { low, } \begin{aligned}
(k+1)^{3}+2(b+1) & =k^{3}+3 k^{2}+3 k+1+2 k+2 \\
& =k^{3}+2 k+3\left(k^{2}+k+1\right) \\
& =31 M+3\left(k^{2}+k+1\right) \text { using tho } \\
& =3\left(H+k^{2}+h+1\right) \text { unsoch is }
\end{aligned}
$$

dearly durable by 3.
C. So by steps A-B and the prencele off mathemateref indectern, the geum stetamoit is true.
C.

(i) $P R$ and A subtend requtangles of the circunferevce, so the are both deagonals, and thexpore equal.
(ii) $\angle A C P=0^{\circ}$ avele an somevell dicunte $P R$. $\angle C P A=80^{\circ}$ ande sen eomecevel dicuncts $C A$ $\angle C R A=180-90^{\circ}$, oppeati $\angle C B A$ en expelic So CRAP to a reqead CBAR ,
So $A R A P$ to a reverngle (3 anyer regitongls) So $A P$ is equal and peralle to $C R$
loprete te of rectiula).
UV thera, oxe many ways to do thes!!!
(d)
(i) $(1+x)^{n}=\binom{n}{6} x^{0}+\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots+\binom{n}{n} x^{n}$ let $\begin{aligned} x & =-1 \\ 0 & =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots\binom{n}{n}\left(-1^{n}\right.\end{aligned}$

But $\binom{n}{0}=\binom{n}{n}=1$.
so $0=1-\left(\begin{array}{l}n\end{array}\right)+\binom{n}{2}-\binom{n}{3}+\cdots(-1)^{n}$.
(ii) integrate both sides of the expousisen.

$$
\begin{aligned}
& \frac{(1+x)^{n+1}}{n+1}=\binom{n}{0} x+\frac{1}{2}\binom{n}{1} x^{2}+\frac{1}{3}\binom{n}{2} x^{3}+\frac{1}{4}\binom{n}{3} x^{4}+\cdots \\
&+\frac{1}{n+1}\binom{n}{n} x^{n+1}+k
\end{aligned}
$$

Find $b:$ let $x=0$
then $\frac{1}{n+1}=0+0+0+\cdots+k$.
so $k=\frac{1}{n+1}$.
and $\frac{(1+x)^{n+1}}{n+1}=\binom{1}{0} x+\frac{1}{2}\binom{n}{1} x^{2}+\frac{1}{3}\binom{n}{2} x^{3}+\frac{1}{4}\binom{n}{3} x^{4}+\cdots$

$$
\cdots \frac{1}{n}\binom{n}{n-1} x^{n}+\frac{1}{n+1}\binom{n}{n} x^{n+1}+\frac{1}{n+1}
$$

let $x=1$.

$$
\begin{aligned}
\frac{2^{n+1}}{n+1} & =1+\frac{1}{2}\binom{n}{)}+\frac{1}{3}\binom{n}{2}+\frac{1}{4}\binom{n}{3}+\cdots \frac{1}{n}\binom{n}{n-1}+\frac{1}{n+1}+\frac{1}{n+1} \\
\frac{2^{n+1}}{n+1}-\frac{2}{n+1} & =1+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\frac{1}{4}\binom{n}{3}+\cdots+\frac{1}{n}\binom{n}{n-1} \\
\frac{2\left(2^{n}-1\right)}{n+1} & =1+\frac{1}{2}\binom{n}{1}+\frac{1}{3}\binom{n}{2}+\frac{1}{4}\binom{n}{3}+\cdots \frac{1}{n}\binom{n}{n-1} .
\end{aligned}
$$

Q14.
(a) (i) Here $r=h$

$$
\text { so } \begin{aligned}
V & =\frac{1}{3} \pi x^{2} h \\
& =\frac{1}{3} \pi h^{3}
\end{aligned}
$$

(ii) $\frac{d A}{d t}=\frac{d A}{d V} \frac{d V}{d t}$ and $\frac{d A}{d V}=\frac{d A}{d h} \frac{d h}{d V}$.

$$
=\frac{d A}{d h} \frac{d h}{d V} \frac{d V}{d t}
$$

Low $\quad V=\frac{1}{3} \pi h^{3}$ so $\frac{d V}{d r}=\pi h^{2}$

$$
A=\pi h^{2} \text { so } \frac{d A}{d t}=2 \pi h
$$

$$
\begin{aligned}
\text { So } & \frac{d A}{d t}=2 \times h \times \frac{1}{\sqrt{h}} \times 24 \\
r=16, & \frac{d A}{d t}
\end{aligned}=\frac{2}{16} \times 24 .
$$

bl
(i) $\quad v=\sqrt{6 x} e^{-x^{2}}$

$$
\begin{aligned}
v^{2} & =6 x e^{-2 x^{2}} \\
\frac{1}{2} v^{2} & =3 x e^{-2 x^{2}} \\
\ddot{x}=\frac{d\left(\frac{1}{2} v^{2}\right.}{d x} & =3 x \cdot(-4 x) e^{-2 x^{2}}+3 e^{-2 x^{2}} \\
& =-12 x^{2} e^{-2 x^{2}}+3 e^{-2 x^{2}} \\
& =3 e^{-2 x^{2}}\left(1-4 x^{2}\right)
\end{aligned}
$$

(ii) Fastest speed es chon $\ddot{x}=0$.

$$
\begin{aligned}
1-4 x^{2} & =0 \\
x & =\frac{1}{2} \text { or }-\frac{1}{2} \text { lout } x>0.5
\end{aligned}
$$

$$
\text { so } \quad x=\frac{1}{2} \text {. }
$$

$$
x=\frac{1}{2}, \quad v=\sqrt{3} e^{-\frac{1}{4}} \mathrm{~ms}^{-1}
$$

(iii) $\quad \frac{d x}{d t}=\sqrt{6 x} e^{-x^{2}}$

$$
\begin{aligned}
\frac{d x}{d x} & =\frac{1}{\sqrt{6 x}} e^{x^{2}} \\
T & =\int_{1}^{3} \frac{1}{\sqrt{6 x}} e^{x^{2}} d x \\
& =\frac{1}{\sqrt{6}} \int_{1}^{3} x^{-\frac{1}{2}} e^{x^{2}} d x
\end{aligned}
$$

14.

(i) wont $(c+b)$
lasing sine vile in $\triangle A B C$

$$
\frac{l}{\sin \theta}=\frac{k}{\sin \alpha}=\frac{c}{\sin (\pi-\theta-\alpha)}
$$

so $b=\frac{k}{\sin \alpha} \sin \theta$
and $\quad c=\frac{k}{\sin \alpha} \sin (\pi-\theta-\alpha)$
now $l=b+c$

$$
\begin{aligned}
& =\frac{k}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha)) \\
\{\sin (\pi-\theta-\alpha) & =\sin (\pi-(\theta+\alpha)) \\
& =\sin \pi \cos (\theta+\alpha)-\sin (\theta+\alpha) \cos \pi \\
& =0 \sin (\theta+\alpha)
\end{aligned}
$$

(i11 α is a comtent becaise chard $A B$ is of constout length l, and chards
(iii)

$$
\begin{aligned}
& l=\frac{k}{\sin \alpha}(\sin \theta+\sin (\theta+\alpha)) \\
& \frac{d l}{d \theta}=\frac{k}{\sin \alpha}(\cos \theta+\cos (\theta+\alpha))
\end{aligned}
$$ cercurferesene.

at $\theta=\frac{\pi}{2}-\frac{\alpha}{2}$.

$$
\begin{aligned}
\frac{d l}{d \theta} & =\frac{h}{\sin \alpha}\left[\cos \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)+\cos \left(\frac{\pi}{2}+\frac{\alpha}{2}\right)\right] \\
& =\frac{k}{\sin \alpha}\left[\cos \frac{\pi}{2} \cos \frac{\alpha}{2}+\sin \frac{\pi}{2} \sin \frac{\alpha}{2}+\cos \frac{\pi}{2} \cos \frac{\alpha}{2}\right. \\
& \left.-\sin \frac{\pi}{2} \sin \frac{\alpha}{2}\right]
\end{aligned}
$$

$$
=\frac{k}{\sin \alpha}[0]
$$

$$
=0
$$

(u) $\frac{d^{2} l}{d \theta^{2}}=\frac{k}{\sin \alpha}(-\sin \theta-\sin (\theta+\alpha))=-l$
sunce $l>0$, the moown thet $\frac{d^{2} l}{d \theta}<0$
so l is a max when $\frac{d l}{d \theta}=0$ ee

$$
\theta=\frac{\pi}{2}-\frac{\alpha}{2}
$$

